# Properties

 Label 273.2.by.c.223.8 Level $273$ Weight $2$ Character 273.223 Analytic conductor $2.180$ Analytic rank $0$ Dimension $32$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.by (of order $$12$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$32$$ Relative dimension: $$8$$ over $$\Q(\zeta_{12})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

## Embedding invariants

 Embedding label 223.8 Character $$\chi$$ $$=$$ 273.223 Dual form 273.2.by.c.202.8

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(2.37607 + 0.636667i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(3.50833 + 2.02554i) q^{4} +(0.498430 + 0.498430i) q^{5} +(-2.37607 + 0.636667i) q^{6} +(-2.12397 + 1.57758i) q^{7} +(3.56765 + 3.56765i) q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+(2.37607 + 0.636667i) q^{2} +(-0.866025 + 0.500000i) q^{3} +(3.50833 + 2.02554i) q^{4} +(0.498430 + 0.498430i) q^{5} +(-2.37607 + 0.636667i) q^{6} +(-2.12397 + 1.57758i) q^{7} +(3.56765 + 3.56765i) q^{8} +(0.500000 - 0.866025i) q^{9} +(0.866973 + 1.50164i) q^{10} +(0.184478 - 0.688480i) q^{11} -4.05107 q^{12} +(3.17894 - 1.70127i) q^{13} +(-6.05110 + 2.39618i) q^{14} +(-0.680869 - 0.182438i) q^{15} +(2.15452 + 3.73174i) q^{16} +(2.27300 - 3.93695i) q^{17} +(1.73941 - 1.73941i) q^{18} +(-3.25000 + 0.870835i) q^{19} +(0.739070 + 2.75825i) q^{20} +(1.05062 - 2.42821i) q^{21} +(0.876665 - 1.51843i) q^{22} +(-1.67026 + 0.964326i) q^{23} +(-4.87350 - 1.30585i) q^{24} -4.50313i q^{25} +(8.63655 - 2.01842i) q^{26} +1.00000i q^{27} +(-10.6470 + 1.23248i) q^{28} +(0.185925 + 0.322032i) q^{29} +(-1.50164 - 0.866973i) q^{30} +(-3.53994 - 3.53994i) q^{31} +(0.131724 + 0.491600i) q^{32} +(0.184478 + 0.688480i) q^{33} +(7.90735 - 7.90735i) q^{34} +(-1.84496 - 0.272339i) q^{35} +(3.50833 - 2.02554i) q^{36} +(-0.545727 + 2.03668i) q^{37} -8.27667 q^{38} +(-1.90241 + 3.06282i) q^{39} +3.55645i q^{40} +(-3.11983 + 11.6434i) q^{41} +(4.04232 - 5.10070i) q^{42} +(6.38504 + 3.68640i) q^{43} +(2.04175 - 2.04175i) q^{44} +(0.680869 - 0.182438i) q^{45} +(-4.58262 + 1.22791i) q^{46} +(3.55898 - 3.55898i) q^{47} +(-3.73174 - 2.15452i) q^{48} +(2.02250 - 6.70145i) q^{49} +(2.86700 - 10.6998i) q^{50} +4.54600i q^{51} +(14.5988 + 0.470438i) q^{52} -4.97712 q^{53} +(-0.636667 + 2.37607i) q^{54} +(0.435109 - 0.251210i) q^{55} +(-13.2058 - 1.94934i) q^{56} +(2.37916 - 2.37916i) q^{57} +(0.236745 + 0.883543i) q^{58} +(1.03416 + 3.85953i) q^{59} +(-2.01918 - 2.01918i) q^{60} +(-10.0720 - 5.81509i) q^{61} +(-6.15739 - 10.6649i) q^{62} +(0.304236 + 2.62820i) q^{63} -7.36614i q^{64} +(2.43245 + 0.736516i) q^{65} +1.75333i q^{66} +(-12.5870 - 3.37267i) q^{67} +(15.9489 - 9.20809i) q^{68} +(0.964326 - 1.67026i) q^{69} +(-4.21038 - 1.82173i) q^{70} +(2.10681 + 7.86274i) q^{71} +(4.87350 - 1.30585i) q^{72} +(-0.608899 + 0.608899i) q^{73} +(-2.59337 + 4.49186i) q^{74} +(2.25157 + 3.89983i) q^{75} +(-13.1660 - 3.52781i) q^{76} +(0.694305 + 1.75334i) q^{77} +(-6.47026 + 6.06627i) q^{78} +9.81537 q^{79} +(-0.786133 + 2.93389i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-14.8259 + 25.6792i) q^{82} +(2.25452 + 2.25452i) q^{83} +(8.60436 - 6.39088i) q^{84} +(3.09523 - 0.829364i) q^{85} +(12.8243 + 12.8243i) q^{86} +(-0.322032 - 0.185925i) q^{87} +(3.11441 - 1.79810i) q^{88} +(17.5524 + 4.70315i) q^{89} +1.73395 q^{90} +(-4.06809 + 8.62848i) q^{91} -7.81311 q^{92} +(4.83565 + 1.29571i) q^{93} +(10.7223 - 6.19052i) q^{94} +(-2.05395 - 1.18585i) q^{95} +(-0.359876 - 0.359876i) q^{96} +(-8.73810 + 2.34137i) q^{97} +(9.07221 - 14.6355i) q^{98} +(-0.504002 - 0.504002i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$32q - 2q^{2} + 6q^{4} - 2q^{5} + 2q^{6} - 2q^{7} + 2q^{8} + 16q^{9} + O(q^{10})$$ $$32q - 2q^{2} + 6q^{4} - 2q^{5} + 2q^{6} - 2q^{7} + 2q^{8} + 16q^{9} - 2q^{10} - 4q^{11} - 32q^{12} - 6q^{13} + 34q^{14} + 4q^{15} + 14q^{16} + 8q^{17} + 2q^{18} - 2q^{19} - 44q^{20} + 2q^{21} - 4q^{22} - 18q^{23} - 4q^{24} + 28q^{26} - 18q^{28} - 18q^{29} + 14q^{31} - 8q^{32} - 4q^{33} + 66q^{34} - 20q^{35} + 6q^{36} - 24q^{37} - 24q^{38} + 8q^{39} + 16q^{42} - 6q^{43} - 20q^{44} - 4q^{45} - 58q^{46} + 28q^{47} + 60q^{48} + 10q^{49} + 70q^{50} - 28q^{52} - 80q^{53} + 4q^{54} - 60q^{55} - 120q^{56} + 16q^{57} - 4q^{58} + 42q^{59} - 58q^{60} - 36q^{61} - 52q^{62} + 2q^{63} + 14q^{65} + 26q^{67} + 72q^{68} - 2q^{69} + 68q^{70} - 4q^{71} + 4q^{72} - 12q^{73} - 18q^{74} - 16q^{75} + 48q^{76} - 28q^{77} - 14q^{78} - 4q^{79} + 98q^{80} - 16q^{81} - 20q^{82} + 36q^{83} + 32q^{84} - 10q^{85} - 40q^{86} + 96q^{88} + 54q^{89} - 4q^{90} - 54q^{91} - 4q^{92} + 2q^{93} + 60q^{95} - 22q^{96} + 40q^{97} + 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{12}\right)$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 2.37607 + 0.636667i 1.68014 + 0.450192i 0.967816 0.251661i $$-0.0809767\pi$$
0.712322 + 0.701852i $$0.247643\pi$$
$$3$$ −0.866025 + 0.500000i −0.500000 + 0.288675i
$$4$$ 3.50833 + 2.02554i 1.75417 + 1.01277i
$$5$$ 0.498430 + 0.498430i 0.222905 + 0.222905i 0.809721 0.586816i $$-0.199619\pi$$
−0.586816 + 0.809721i $$0.699619\pi$$
$$6$$ −2.37607 + 0.636667i −0.970028 + 0.259918i
$$7$$ −2.12397 + 1.57758i −0.802785 + 0.596268i
$$8$$ 3.56765 + 3.56765i 1.26135 + 1.26135i
$$9$$ 0.500000 0.866025i 0.166667 0.288675i
$$10$$ 0.866973 + 1.50164i 0.274161 + 0.474861i
$$11$$ 0.184478 0.688480i 0.0556221 0.207585i −0.932522 0.361113i $$-0.882397\pi$$
0.988144 + 0.153528i $$0.0490636\pi$$
$$12$$ −4.05107 −1.16944
$$13$$ 3.17894 1.70127i 0.881680 0.471848i
$$14$$ −6.05110 + 2.39618i −1.61723 + 0.640405i
$$15$$ −0.680869 0.182438i −0.175799 0.0471053i
$$16$$ 2.15452 + 3.73174i 0.538630 + 0.932934i
$$17$$ 2.27300 3.93695i 0.551284 0.954852i −0.446898 0.894585i $$-0.647471\pi$$
0.998182 0.0602669i $$-0.0191952\pi$$
$$18$$ 1.73941 1.73941i 0.409982 0.409982i
$$19$$ −3.25000 + 0.870835i −0.745601 + 0.199783i −0.611566 0.791193i $$-0.709460\pi$$
−0.134035 + 0.990977i $$0.542793\pi$$
$$20$$ 0.739070 + 2.75825i 0.165261 + 0.616763i
$$21$$ 1.05062 2.42821i 0.229265 0.529878i
$$22$$ 0.876665 1.51843i 0.186906 0.323730i
$$23$$ −1.67026 + 0.964326i −0.348274 + 0.201076i −0.663925 0.747799i $$-0.731110\pi$$
0.315651 + 0.948875i $$0.397777\pi$$
$$24$$ −4.87350 1.30585i −0.994799 0.266556i
$$25$$ 4.50313i 0.900627i
$$26$$ 8.63655 2.01842i 1.69377 0.395845i
$$27$$ 1.00000i 0.192450i
$$28$$ −10.6470 + 1.23248i −2.01210 + 0.232917i
$$29$$ 0.185925 + 0.322032i 0.0345254 + 0.0597998i 0.882772 0.469802i $$-0.155675\pi$$
−0.848246 + 0.529602i $$0.822341\pi$$
$$30$$ −1.50164 0.866973i −0.274161 0.158287i
$$31$$ −3.53994 3.53994i −0.635792 0.635792i 0.313723 0.949515i $$-0.398424\pi$$
−0.949515 + 0.313723i $$0.898424\pi$$
$$32$$ 0.131724 + 0.491600i 0.0232857 + 0.0869034i
$$33$$ 0.184478 + 0.688480i 0.0321134 + 0.119849i
$$34$$ 7.90735 7.90735i 1.35610 1.35610i
$$35$$ −1.84496 0.272339i −0.311856 0.0460337i
$$36$$ 3.50833 2.02554i 0.584722 0.337589i
$$37$$ −0.545727 + 2.03668i −0.0897169 + 0.334828i −0.996166 0.0874879i $$-0.972116\pi$$
0.906449 + 0.422316i $$0.138783\pi$$
$$38$$ −8.27667 −1.34265
$$39$$ −1.90241 + 3.06282i −0.304629 + 0.490443i
$$40$$ 3.55645i 0.562324i
$$41$$ −3.11983 + 11.6434i −0.487236 + 1.81839i 0.0825406 + 0.996588i $$0.473697\pi$$
−0.569776 + 0.821800i $$0.692970\pi$$
$$42$$ 4.04232 5.10070i 0.623743 0.787055i
$$43$$ 6.38504 + 3.68640i 0.973709 + 0.562171i 0.900365 0.435136i $$-0.143300\pi$$
0.0733440 + 0.997307i $$0.476633\pi$$
$$44$$ 2.04175 2.04175i 0.307805 0.307805i
$$45$$ 0.680869 0.182438i 0.101498 0.0271963i
$$46$$ −4.58262 + 1.22791i −0.675671 + 0.181045i
$$47$$ 3.55898 3.55898i 0.519131 0.519131i −0.398177 0.917308i $$-0.630357\pi$$
0.917308 + 0.398177i $$0.130357\pi$$
$$48$$ −3.73174 2.15452i −0.538630 0.310978i
$$49$$ 2.02250 6.70145i 0.288929 0.957351i
$$50$$ 2.86700 10.6998i 0.405455 1.51318i
$$51$$ 4.54600i 0.636568i
$$52$$ 14.5988 + 0.470438i 2.02449 + 0.0652380i
$$53$$ −4.97712 −0.683660 −0.341830 0.939762i $$-0.611047\pi$$
−0.341830 + 0.939762i $$0.611047\pi$$
$$54$$ −0.636667 + 2.37607i −0.0866394 + 0.323343i
$$55$$ 0.435109 0.251210i 0.0586700 0.0338732i
$$56$$ −13.2058 1.94934i −1.76470 0.260492i
$$57$$ 2.37916 2.37916i 0.315128 0.315128i
$$58$$ 0.236745 + 0.883543i 0.0310861 + 0.116015i
$$59$$ 1.03416 + 3.85953i 0.134636 + 0.502467i 0.999999 + 0.00132252i $$0.000420972\pi$$
−0.865363 + 0.501145i $$0.832912\pi$$
$$60$$ −2.01918 2.01918i −0.260675 0.260675i
$$61$$ −10.0720 5.81509i −1.28959 0.744546i −0.311011 0.950406i $$-0.600667\pi$$
−0.978581 + 0.205860i $$0.934001\pi$$
$$62$$ −6.15739 10.6649i −0.781990 1.35445i
$$63$$ 0.304236 + 2.62820i 0.0383302 + 0.331122i
$$64$$ 7.36614i 0.920767i
$$65$$ 2.43245 + 0.736516i 0.301708 + 0.0913536i
$$66$$ 1.75333i 0.215820i
$$67$$ −12.5870 3.37267i −1.53774 0.412037i −0.612207 0.790697i $$-0.709718\pi$$
−0.925536 + 0.378660i $$0.876385\pi$$
$$68$$ 15.9489 9.20809i 1.93409 1.11665i
$$69$$ 0.964326 1.67026i 0.116091 0.201076i
$$70$$ −4.21038 1.82173i −0.503237 0.217738i
$$71$$ 2.10681 + 7.86274i 0.250033 + 0.933135i 0.970787 + 0.239944i $$0.0771291\pi$$
−0.720754 + 0.693191i $$0.756204\pi$$
$$72$$ 4.87350 1.30585i 0.574347 0.153896i
$$73$$ −0.608899 + 0.608899i −0.0712663 + 0.0712663i −0.741842 0.670575i $$-0.766047\pi$$
0.670575 + 0.741842i $$0.266047\pi$$
$$74$$ −2.59337 + 4.49186i −0.301474 + 0.522168i
$$75$$ 2.25157 + 3.89983i 0.259989 + 0.450313i
$$76$$ −13.1660 3.52781i −1.51024 0.404668i
$$77$$ 0.694305 + 1.75334i 0.0791234 + 0.199812i
$$78$$ −6.47026 + 6.06627i −0.732612 + 0.686870i
$$79$$ 9.81537 1.10432 0.552158 0.833740i $$-0.313805\pi$$
0.552158 + 0.833740i $$0.313805\pi$$
$$80$$ −0.786133 + 2.93389i −0.0878924 + 0.328019i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ −14.8259 + 25.6792i −1.63725 + 2.83579i
$$83$$ 2.25452 + 2.25452i 0.247465 + 0.247465i 0.819930 0.572464i $$-0.194012\pi$$
−0.572464 + 0.819930i $$0.694012\pi$$
$$84$$ 8.60436 6.39088i 0.938812 0.697302i
$$85$$ 3.09523 0.829364i 0.335725 0.0899572i
$$86$$ 12.8243 + 12.8243i 1.38288 + 1.38288i
$$87$$ −0.322032 0.185925i −0.0345254 0.0199333i
$$88$$ 3.11441 1.79810i 0.331997 0.191678i
$$89$$ 17.5524 + 4.70315i 1.86055 + 0.498533i 0.999942 0.0107329i $$-0.00341645\pi$$
0.860609 + 0.509266i $$0.170083\pi$$
$$90$$ 1.73395 0.182774
$$91$$ −4.06809 + 8.62848i −0.426452 + 0.904510i
$$92$$ −7.81311 −0.814573
$$93$$ 4.83565 + 1.29571i 0.501433 + 0.134359i
$$94$$ 10.7223 6.19052i 1.10592 0.638503i
$$95$$ −2.05395 1.18585i −0.210731 0.121665i
$$96$$ −0.359876 0.359876i −0.0367297 0.0367297i
$$97$$ −8.73810 + 2.34137i −0.887220 + 0.237730i −0.673520 0.739169i $$-0.735218\pi$$
−0.213700 + 0.976899i $$0.568552\pi$$
$$98$$ 9.07221 14.6355i 0.916432 1.47841i
$$99$$ −0.504002 0.504002i −0.0506541 0.0506541i
$$100$$ 9.12126 15.7985i 0.912126 1.57985i
$$101$$ 6.77353 + 11.7321i 0.673991 + 1.16739i 0.976763 + 0.214324i $$0.0687547\pi$$
−0.302772 + 0.953063i $$0.597912\pi$$
$$102$$ −2.89429 + 10.8016i −0.286577 + 1.06952i
$$103$$ −16.4565 −1.62151 −0.810756 0.585385i $$-0.800944\pi$$
−0.810756 + 0.585385i $$0.800944\pi$$
$$104$$ 17.4109 + 5.27181i 1.70728 + 0.516943i
$$105$$ 1.73396 0.686629i 0.169217 0.0670081i
$$106$$ −11.8260 3.16877i −1.14864 0.307778i
$$107$$ 8.35835 + 14.4771i 0.808033 + 1.39955i 0.914225 + 0.405208i $$0.132801\pi$$
−0.106192 + 0.994346i $$0.533866\pi$$
$$108$$ −2.02554 + 3.50833i −0.194907 + 0.337589i
$$109$$ 1.77768 1.77768i 0.170271 0.170271i −0.616827 0.787099i $$-0.711582\pi$$
0.787099 + 0.616827i $$0.211582\pi$$
$$110$$ 1.19379 0.319874i 0.113823 0.0304988i
$$111$$ −0.545727 2.03668i −0.0517981 0.193313i
$$112$$ −10.4632 4.52718i −0.988683 0.427778i
$$113$$ −2.96252 + 5.13124i −0.278691 + 0.482706i −0.971060 0.238837i $$-0.923234\pi$$
0.692369 + 0.721544i $$0.256567\pi$$
$$114$$ 7.16781 4.13833i 0.671326 0.387591i
$$115$$ −1.31316 0.351860i −0.122453 0.0328111i
$$116$$ 1.50639i 0.139865i
$$117$$ 0.116127 3.60368i 0.0107359 0.333160i
$$118$$ 9.82893i 0.904826i
$$119$$ 1.38306 + 11.9478i 0.126785 + 1.09525i
$$120$$ −1.77822 3.07997i −0.162329 0.281162i
$$121$$ 9.08631 + 5.24598i 0.826028 + 0.476907i
$$122$$ −20.2296 20.2296i −1.83150 1.83150i
$$123$$ −3.11983 11.6434i −0.281306 1.04985i
$$124$$ −5.24901 19.5896i −0.471375 1.75919i
$$125$$ 4.73665 4.73665i 0.423659 0.423659i
$$126$$ −0.950401 + 6.43850i −0.0846684 + 0.573587i
$$127$$ −17.4169 + 10.0556i −1.54550 + 0.892293i −0.547019 + 0.837120i $$0.684238\pi$$
−0.998477 + 0.0551724i $$0.982429\pi$$
$$128$$ 4.95322 18.4857i 0.437807 1.63392i
$$129$$ −7.37281 −0.649139
$$130$$ 5.31076 + 3.29868i 0.465784 + 0.289313i
$$131$$ 12.0796i 1.05540i −0.849430 0.527702i $$-0.823054\pi$$
0.849430 0.527702i $$-0.176946\pi$$
$$132$$ −0.747332 + 2.78908i −0.0650469 + 0.242758i
$$133$$ 5.52909 6.97675i 0.479433 0.604961i
$$134$$ −27.7603 16.0274i −2.39813 1.38456i
$$135$$ −0.498430 + 0.498430i −0.0428981 + 0.0428981i
$$136$$ 22.1549 5.93640i 1.89977 0.509042i
$$137$$ −13.9883 + 3.74816i −1.19510 + 0.320227i −0.800901 0.598797i $$-0.795646\pi$$
−0.394202 + 0.919024i $$0.628979\pi$$
$$138$$ 3.35471 3.35471i 0.285572 0.285572i
$$139$$ 6.95647 + 4.01632i 0.590040 + 0.340660i 0.765113 0.643896i $$-0.222683\pi$$
−0.175073 + 0.984555i $$0.556016\pi$$
$$140$$ −5.92111 4.69250i −0.500425 0.396588i
$$141$$ −1.30268 + 4.86166i −0.109705 + 0.409426i
$$142$$ 20.0238i 1.68036i
$$143$$ −0.584848 2.50248i −0.0489074 0.209268i
$$144$$ 4.30904 0.359087
$$145$$ −0.0678396 + 0.253181i −0.00563378 + 0.0210255i
$$146$$ −1.83446 + 1.05912i −0.151821 + 0.0876537i
$$147$$ 1.59919 + 6.81488i 0.131899 + 0.562082i
$$148$$ −6.03996 + 6.03996i −0.496481 + 0.496481i
$$149$$ −2.13325 7.96140i −0.174763 0.652223i −0.996592 0.0824894i $$-0.973713\pi$$
0.821829 0.569734i $$-0.192954\pi$$
$$150$$ 2.86700 + 10.6998i 0.234089 + 0.873633i
$$151$$ −4.15300 4.15300i −0.337966 0.337966i 0.517635 0.855601i $$-0.326812\pi$$
−0.855601 + 0.517635i $$0.826812\pi$$
$$152$$ −14.7017 8.48802i −1.19246 0.688469i
$$153$$ −2.27300 3.93695i −0.183761 0.318284i
$$154$$ 0.533427 + 4.60810i 0.0429848 + 0.371332i
$$155$$ 3.52883i 0.283442i
$$156$$ −12.8781 + 6.89197i −1.03108 + 0.551800i
$$157$$ 14.6163i 1.16651i −0.812291 0.583253i $$-0.801780\pi$$
0.812291 0.583253i $$-0.198220\pi$$
$$158$$ 23.3220 + 6.24912i 1.85540 + 0.497154i
$$159$$ 4.31031 2.48856i 0.341830 0.197356i
$$160$$ −0.179373 + 0.310684i −0.0141807 + 0.0245617i
$$161$$ 2.02629 4.68317i 0.159694 0.369085i
$$162$$ −0.636667 2.37607i −0.0500213 0.186682i
$$163$$ 7.35195 1.96995i 0.575849 0.154298i 0.0408715 0.999164i $$-0.486987\pi$$
0.534978 + 0.844866i $$0.320320\pi$$
$$164$$ −34.5294 + 34.5294i −2.69630 + 2.69630i
$$165$$ −0.251210 + 0.435109i −0.0195567 + 0.0338732i
$$166$$ 3.92152 + 6.79228i 0.304369 + 0.527183i
$$167$$ −7.60079 2.03663i −0.588167 0.157599i −0.0475517 0.998869i $$-0.515142\pi$$
−0.540615 + 0.841270i $$0.681809\pi$$
$$168$$ 12.4112 4.91473i 0.957548 0.379180i
$$169$$ 7.21135 10.8165i 0.554719 0.832038i
$$170$$ 7.88252 0.604562
$$171$$ −0.870835 + 3.25000i −0.0665944 + 0.248534i
$$172$$ 14.9339 + 25.8662i 1.13870 + 1.97228i
$$173$$ −5.36019 + 9.28412i −0.407528 + 0.705859i −0.994612 0.103667i $$-0.966942\pi$$
0.587084 + 0.809526i $$0.300276\pi$$
$$174$$ −0.646798 0.646798i −0.0490337 0.0490337i
$$175$$ 7.10404 + 9.56453i 0.537015 + 0.723010i
$$176$$ 2.96669 0.794922i 0.223623 0.0599195i
$$177$$ −2.82537 2.82537i −0.212368 0.212368i
$$178$$ 38.7115 + 22.3501i 2.90155 + 1.67521i
$$179$$ 8.63169 4.98351i 0.645163 0.372485i −0.141438 0.989947i $$-0.545172\pi$$
0.786601 + 0.617462i $$0.211839\pi$$
$$180$$ 2.75825 + 0.739070i 0.205588 + 0.0550870i
$$181$$ 3.96508 0.294722 0.147361 0.989083i $$-0.452922\pi$$
0.147361 + 0.989083i $$0.452922\pi$$
$$182$$ −15.1596 + 17.9119i −1.12370 + 1.32772i
$$183$$ 11.6302 0.859728
$$184$$ −9.39929 2.51853i −0.692925 0.185669i
$$185$$ −1.28715 + 0.743136i −0.0946331 + 0.0546365i
$$186$$ 10.6649 + 6.15739i 0.781990 + 0.451482i
$$187$$ −2.29120 2.29120i −0.167549 0.167549i
$$188$$ 19.6949 5.27724i 1.43640 0.384882i
$$189$$ −1.57758 2.12397i −0.114752 0.154496i
$$190$$ −4.12534 4.12534i −0.299284 0.299284i
$$191$$ −9.17881 + 15.8982i −0.664155 + 1.15035i 0.315358 + 0.948973i $$0.397875\pi$$
−0.979514 + 0.201378i $$0.935458\pi$$
$$192$$ 3.68307 + 6.37926i 0.265803 + 0.460384i
$$193$$ 4.24786 15.8532i 0.305767 1.14114i −0.626515 0.779409i $$-0.715519\pi$$
0.932283 0.361731i $$-0.117814\pi$$
$$194$$ −22.2531 −1.59768
$$195$$ −2.47482 + 0.578382i −0.177225 + 0.0414188i
$$196$$ 20.6696 19.4143i 1.47640 1.38673i
$$197$$ 5.69553 + 1.52611i 0.405790 + 0.108731i 0.455940 0.890011i $$-0.349303\pi$$
−0.0501498 + 0.998742i $$0.515970\pi$$
$$198$$ −0.876665 1.51843i −0.0623019 0.107910i
$$199$$ 9.61483 16.6534i 0.681578 1.18053i −0.292922 0.956136i $$-0.594628\pi$$
0.974499 0.224391i $$-0.0720391\pi$$
$$200$$ 16.0656 16.0656i 1.13601 1.13601i
$$201$$ 12.5870 3.37267i 0.887816 0.237890i
$$202$$ 8.62496 + 32.1888i 0.606850 + 2.26480i
$$203$$ −0.902929 0.390675i −0.0633732 0.0274200i
$$204$$ −9.20809 + 15.9489i −0.644695 + 1.11665i
$$205$$ −7.35842 + 4.24839i −0.513935 + 0.296720i
$$206$$ −39.1020 10.4773i −2.72436 0.729991i
$$207$$ 1.92865i 0.134051i
$$208$$ 13.1978 + 8.19756i 0.915102 + 0.568398i
$$209$$ 2.39821i 0.165888i
$$210$$ 4.55716 0.527529i 0.314474 0.0364030i
$$211$$ −4.61920 8.00070i −0.317999 0.550791i 0.662071 0.749441i $$-0.269678\pi$$
−0.980070 + 0.198650i $$0.936344\pi$$
$$212$$ −17.4614 10.0813i −1.19925 0.692389i
$$213$$ −5.75592 5.75592i −0.394389 0.394389i
$$214$$ 10.6430 + 39.7201i 0.727539 + 2.71521i
$$215$$ 1.34508 + 5.01991i 0.0917338 + 0.342355i
$$216$$ −3.56765 + 3.56765i −0.242748 + 0.242748i
$$217$$ 13.1033 + 1.93420i 0.889507 + 0.131302i
$$218$$ 5.35570 3.09212i 0.362734 0.209425i
$$219$$ 0.222873 0.831772i 0.0150603 0.0562060i
$$220$$ 2.03534 0.137223
$$221$$ 0.527913 16.3823i 0.0355112 1.10200i
$$222$$ 5.18675i 0.348112i
$$223$$ −0.482353 + 1.80016i −0.0323007 + 0.120548i −0.980194 0.198041i $$-0.936542\pi$$
0.947893 + 0.318589i $$0.103209\pi$$
$$224$$ −1.05531 0.836340i −0.0705112 0.0558803i
$$225$$ −3.89983 2.25157i −0.259989 0.150104i
$$226$$ −10.3061 + 10.3061i −0.685549 + 0.685549i
$$227$$ −5.38143 + 1.44195i −0.357178 + 0.0957056i −0.432946 0.901420i $$-0.642526\pi$$
0.0757678 + 0.997125i $$0.475859\pi$$
$$228$$ 13.1660 3.52781i 0.871938 0.233635i
$$229$$ −0.153144 + 0.153144i −0.0101200 + 0.0101200i −0.712149 0.702029i $$-0.752278\pi$$
0.702029 + 0.712149i $$0.252278\pi$$
$$230$$ −2.89615 1.67209i −0.190966 0.110254i
$$231$$ −1.47796 1.17128i −0.0972423 0.0770648i
$$232$$ −0.485580 + 1.81221i −0.0318799 + 0.118977i
$$233$$ 19.7822i 1.29598i −0.761650 0.647989i $$-0.775610\pi$$
0.761650 0.647989i $$-0.224390\pi$$
$$234$$ 2.57027 8.48868i 0.168024 0.554922i
$$235$$ 3.54781 0.231434
$$236$$ −4.18944 + 15.6352i −0.272710 + 1.01777i
$$237$$ −8.50036 + 4.90769i −0.552158 + 0.318788i
$$238$$ −4.32053 + 29.2694i −0.280058 + 1.89726i
$$239$$ −0.636908 + 0.636908i −0.0411982 + 0.0411982i −0.727406 0.686208i $$-0.759274\pi$$
0.686208 + 0.727406i $$0.259274\pi$$
$$240$$ −0.786133 2.93389i −0.0507447 0.189382i
$$241$$ 5.16499 + 19.2760i 0.332706 + 1.24168i 0.906335 + 0.422561i $$0.138869\pi$$
−0.573629 + 0.819116i $$0.694465\pi$$
$$242$$ 18.2498 + 18.2498i 1.17314 + 1.17314i
$$243$$ 0.866025 + 0.500000i 0.0555556 + 0.0320750i
$$244$$ −23.5574 40.8025i −1.50811 2.61212i
$$245$$ 4.34828 2.33213i 0.277802 0.148994i
$$246$$ 29.6518i 1.89053i
$$247$$ −8.85003 + 8.29746i −0.563114 + 0.527955i
$$248$$ 25.2585i 1.60392i
$$249$$ −3.07973 0.825211i −0.195170 0.0522956i
$$250$$ 14.2703 8.23896i 0.902533 0.521078i
$$251$$ 14.0053 24.2580i 0.884010 1.53115i 0.0371651 0.999309i $$-0.488167\pi$$
0.846845 0.531840i $$-0.178499\pi$$
$$252$$ −4.25615 + 9.83684i −0.268112 + 0.619663i
$$253$$ 0.355793 + 1.32784i 0.0223685 + 0.0834805i
$$254$$ −47.7858 + 12.8042i −2.99835 + 0.803405i
$$255$$ −2.26587 + 2.26587i −0.141894 + 0.141894i
$$256$$ 16.1723 28.0113i 1.01077 1.75070i
$$257$$ −4.51978 7.82849i −0.281936 0.488328i 0.689925 0.723880i $$-0.257643\pi$$
−0.971862 + 0.235553i $$0.924310\pi$$
$$258$$ −17.5183 4.69402i −1.09064 0.292237i
$$259$$ −2.05391 5.18677i −0.127624 0.322290i
$$260$$ 7.04199 + 7.51095i 0.436726 + 0.465809i
$$261$$ 0.371850 0.0230169
$$262$$ 7.69071 28.7021i 0.475134 1.77322i
$$263$$ −11.6573 20.1910i −0.718819 1.24503i −0.961468 0.274917i $$-0.911350\pi$$
0.242649 0.970114i $$-0.421984\pi$$
$$264$$ −1.79810 + 3.11441i −0.110666 + 0.191678i
$$265$$ −2.48075 2.48075i −0.152391 0.152391i
$$266$$ 17.5794 13.0571i 1.07786 0.800581i
$$267$$ −17.5524 + 4.70315i −1.07419 + 0.287828i
$$268$$ −37.3278 37.3278i −2.28016 2.28016i
$$269$$ 24.9574 + 14.4092i 1.52168 + 0.878543i 0.999672 + 0.0256040i $$0.00815089\pi$$
0.522010 + 0.852939i $$0.325182\pi$$
$$270$$ −1.50164 + 0.866973i −0.0913870 + 0.0527623i
$$271$$ 11.9008 + 3.18880i 0.722920 + 0.193706i 0.601474 0.798892i $$-0.294580\pi$$
0.121446 + 0.992598i $$0.461247\pi$$
$$272$$ 19.5889 1.18775
$$273$$ −0.791166 9.50653i −0.0478836 0.575361i
$$274$$ −35.6236 −2.15210
$$275$$ −3.10032 0.830728i −0.186956 0.0500948i
$$276$$ 6.76635 3.90656i 0.407287 0.235147i
$$277$$ −12.3959 7.15677i −0.744797 0.430009i 0.0790140 0.996874i $$-0.474823\pi$$
−0.823811 + 0.566865i $$0.808156\pi$$
$$278$$ 13.9720 + 13.9720i 0.837987 + 0.837987i
$$279$$ −4.83565 + 1.29571i −0.289503 + 0.0775720i
$$280$$ −5.61057 7.55379i −0.335296 0.451425i
$$281$$ −10.7886 10.7886i −0.643591 0.643591i 0.307845 0.951437i $$-0.400392\pi$$
−0.951437 + 0.307845i $$0.900392\pi$$
$$282$$ −6.19052 + 10.7223i −0.368640 + 0.638503i
$$283$$ 6.96923 + 12.0711i 0.414278 + 0.717550i 0.995352 0.0963004i $$-0.0307009\pi$$
−0.581075 + 0.813850i $$0.697368\pi$$
$$284$$ −8.53485 + 31.8525i −0.506450 + 1.89010i
$$285$$ 2.37170 0.140487
$$286$$ 0.203609 6.31844i 0.0120396 0.373617i
$$287$$ −11.7419 29.6519i −0.693101 1.75030i
$$288$$ 0.491600 + 0.131724i 0.0289678 + 0.00776190i
$$289$$ −1.83307 3.17497i −0.107828 0.186763i
$$290$$ −0.322384 + 0.558385i −0.0189310 + 0.0327895i
$$291$$ 6.39674 6.39674i 0.374983 0.374983i
$$292$$ −3.36957 + 0.902873i −0.197189 + 0.0528367i
$$293$$ 4.49081 + 16.7599i 0.262356 + 0.979126i 0.963849 + 0.266450i $$0.0858506\pi$$
−0.701493 + 0.712677i $$0.747483\pi$$
$$294$$ −0.539020 + 17.2108i −0.0314363 + 1.00375i
$$295$$ −1.40825 + 2.43916i −0.0819915 + 0.142013i
$$296$$ −9.21312 + 5.31920i −0.535502 + 0.309172i
$$297$$ 0.688480 + 0.184478i 0.0399497 + 0.0107045i
$$298$$ 20.2750i 1.17450i
$$299$$ −3.66909 + 5.90711i −0.212189 + 0.341617i
$$300$$ 18.2425i 1.05323i
$$301$$ −19.3772 + 2.24308i −1.11688 + 0.129289i
$$302$$ −7.22375 12.5119i −0.415680 0.719980i
$$303$$ −11.7321 6.77353i −0.673991 0.389129i
$$304$$ −10.2519 10.2519i −0.587988 0.587988i
$$305$$ −2.12179 7.91863i −0.121493 0.453419i
$$306$$ −2.89429 10.8016i −0.165456 0.617489i
$$307$$ 14.5281 14.5281i 0.829164 0.829164i −0.158237 0.987401i $$-0.550581\pi$$
0.987401 + 0.158237i $$0.0505810\pi$$
$$308$$ −1.11560 + 7.55763i −0.0635672 + 0.430636i
$$309$$ 14.2518 8.22827i 0.810756 0.468090i
$$310$$ 2.24669 8.38475i 0.127603 0.476222i
$$311$$ −7.52888 −0.426924 −0.213462 0.976951i $$-0.568474\pi$$
−0.213462 + 0.976951i $$0.568474\pi$$
$$312$$ −17.7142 + 4.13992i −1.00287 + 0.234377i
$$313$$ 7.90713i 0.446938i −0.974711 0.223469i $$-0.928262\pi$$
0.974711 0.223469i $$-0.0717381\pi$$
$$314$$ 9.30570 34.7293i 0.525151 1.95989i
$$315$$ −1.15833 + 1.46162i −0.0652648 + 0.0823527i
$$316$$ 34.4356 + 19.8814i 1.93715 + 1.11842i
$$317$$ 12.2598 12.2598i 0.688580 0.688580i −0.273338 0.961918i $$-0.588128\pi$$
0.961918 + 0.273338i $$0.0881278\pi$$
$$318$$ 11.8260 3.16877i 0.663169 0.177696i
$$319$$ 0.256011 0.0685980i 0.0143339 0.00384075i
$$320$$ 3.67151 3.67151i 0.205243 0.205243i
$$321$$ −14.4771 8.35835i −0.808033 0.466518i
$$322$$ 7.79623 9.83748i 0.434467 0.548221i
$$323$$ −3.95882 + 14.7745i −0.220274 + 0.822075i
$$324$$ 4.05107i 0.225060i
$$325$$ −7.66105 14.3152i −0.424959 0.794065i
$$326$$ 18.7230 1.03697
$$327$$ −0.650678 + 2.42836i −0.0359826 + 0.134289i
$$328$$ −52.6699 + 30.4090i −2.90821 + 1.67905i
$$329$$ −1.94461 + 13.1737i −0.107210 + 0.726292i
$$330$$ −0.873913 + 0.873913i −0.0481073 + 0.0481073i
$$331$$ 1.27846 + 4.77126i 0.0702703 + 0.262252i 0.992119 0.125297i $$-0.0399884\pi$$
−0.921849 + 0.387549i $$0.873322\pi$$
$$332$$ 3.34299 + 12.4762i 0.183470 + 0.684720i
$$333$$ 1.49095 + 1.49095i 0.0817037 + 0.0817037i
$$334$$ −16.7634 9.67835i −0.917252 0.529576i
$$335$$ −4.59269 7.95477i −0.250925 0.434615i
$$336$$ 11.3250 1.31097i 0.617831 0.0715191i
$$337$$ 7.35624i 0.400720i 0.979722 + 0.200360i $$0.0642112\pi$$
−0.979722 + 0.200360i $$0.935789\pi$$
$$338$$ 24.0212 21.1095i 1.30658 1.14821i
$$339$$ 5.92505i 0.321804i
$$340$$ 12.5390 + 3.35982i 0.680023 + 0.182212i
$$341$$ −3.09022 + 1.78414i −0.167345 + 0.0966165i
$$342$$ −4.13833 + 7.16781i −0.223775 + 0.387591i
$$343$$ 6.27632 + 17.4243i 0.338890 + 0.940826i
$$344$$ 9.62778 + 35.9314i 0.519095 + 1.93729i
$$345$$ 1.31316 0.351860i 0.0706981 0.0189435i
$$346$$ −18.6471 + 18.6471i −1.00247 + 1.00247i
$$347$$ 1.58494 2.74519i 0.0850839 0.147370i −0.820343 0.571872i $$-0.806218\pi$$
0.905427 + 0.424502i $$0.139551\pi$$
$$348$$ −0.753196 1.30457i −0.0403755 0.0699325i
$$349$$ 26.0697 + 6.98534i 1.39548 + 0.373917i 0.876718 0.481004i $$-0.159728\pi$$
0.518758 + 0.854921i $$0.326395\pi$$
$$350$$ 10.7903 + 27.2489i 0.576766 + 1.45652i
$$351$$ 1.70127 + 3.17894i 0.0908072 + 0.169679i
$$352$$ 0.362757 0.0193350
$$353$$ 1.36374 5.08954i 0.0725845 0.270889i −0.920090 0.391706i $$-0.871885\pi$$
0.992675 + 0.120817i $$0.0385516\pi$$
$$354$$ −4.91447 8.51210i −0.261201 0.452413i
$$355$$ −2.86893 + 4.96913i −0.152267 + 0.263734i
$$356$$ 52.0533 + 52.0533i 2.75882 + 2.75882i
$$357$$ −7.17167 9.65558i −0.379565 0.511027i
$$358$$ 23.6824 6.34567i 1.25165 0.335379i
$$359$$ 17.8470 + 17.8470i 0.941927 + 0.941927i 0.998404 0.0564767i $$-0.0179867\pi$$
−0.0564767 + 0.998404i $$0.517987\pi$$
$$360$$ 3.07997 + 1.77822i 0.162329 + 0.0937206i
$$361$$ −6.65034 + 3.83958i −0.350018 + 0.202083i
$$362$$ 9.42133 + 2.52444i 0.495174 + 0.132682i
$$363$$ −10.4920 −0.550685
$$364$$ −31.7495 + 22.0315i −1.66413 + 1.15476i
$$365$$ −0.606988 −0.0317712
$$366$$ 27.6342 + 7.40456i 1.44446 + 0.387042i
$$367$$ −28.6206 + 16.5241i −1.49398 + 0.862551i −0.999976 0.00690739i $$-0.997801\pi$$
−0.494006 + 0.869458i $$0.664468\pi$$
$$368$$ −7.19723 4.15532i −0.375181 0.216611i
$$369$$ 8.52353 + 8.52353i 0.443717 + 0.443717i
$$370$$ −3.53149 + 0.946261i −0.183594 + 0.0491938i
$$371$$ 10.5713 7.85179i 0.548832 0.407645i
$$372$$ 14.3405 + 14.3405i 0.743523 + 0.743523i
$$373$$ 13.8983 24.0726i 0.719627 1.24643i −0.241521 0.970396i $$-0.577646\pi$$
0.961148 0.276035i $$-0.0890204\pi$$
$$374$$ −3.98532 6.90278i −0.206076 0.356934i
$$375$$ −1.73373 + 6.47039i −0.0895297 + 0.334129i
$$376$$ 25.3944 1.30962
$$377$$ 1.13891 + 0.707411i 0.0586567 + 0.0364335i
$$378$$ −2.39618 6.05110i −0.123246 0.311235i
$$379$$ 14.6943 + 3.93733i 0.754797 + 0.202247i 0.615645 0.788024i $$-0.288896\pi$$
0.139152 + 0.990271i $$0.455562\pi$$
$$380$$ −4.80395 8.32069i −0.246438 0.426843i
$$381$$ 10.0556 17.4169i 0.515165 0.892293i
$$382$$ −31.9314 + 31.9314i −1.63375 + 1.63375i
$$383$$ −8.30637 + 2.22568i −0.424436 + 0.113727i −0.464713 0.885461i $$-0.653842\pi$$
0.0402774 + 0.999189i $$0.487176\pi$$
$$384$$ 4.95322 + 18.4857i 0.252768 + 0.943344i
$$385$$ −0.527855 + 1.21998i −0.0269020 + 0.0621759i
$$386$$ 20.1864 34.9639i 1.02746 1.77962i
$$387$$ 6.38504 3.68640i 0.324570 0.187390i
$$388$$ −35.3987 9.48505i −1.79710 0.481530i
$$389$$ 11.3461i 0.575268i 0.957740 + 0.287634i $$0.0928686\pi$$
−0.957740 + 0.287634i $$0.907131\pi$$
$$390$$ −6.24859 0.201358i −0.316410 0.0101961i
$$391$$ 8.76766i 0.443400i
$$392$$ 31.1240 16.6929i 1.57200 0.843116i
$$393$$ 6.03982 + 10.4613i 0.304669 + 0.527702i
$$394$$ 12.5614 + 7.25232i 0.632833 + 0.365366i
$$395$$ 4.89228 + 4.89228i 0.246157 + 0.246157i
$$396$$ −0.747332 2.78908i −0.0375549 0.140157i
$$397$$ 4.16966 + 15.5614i 0.209269 + 0.781003i 0.988106 + 0.153776i $$0.0491435\pi$$
−0.778836 + 0.627227i $$0.784190\pi$$
$$398$$ 33.4482 33.4482i 1.67661 1.67661i
$$399$$ −1.29996 + 8.80659i −0.0650794 + 0.440881i
$$400$$ 16.8045 9.70209i 0.840226 0.485105i
$$401$$ −9.35796 + 34.9244i −0.467314 + 1.74404i 0.181787 + 0.983338i $$0.441812\pi$$
−0.649101 + 0.760702i $$0.724855\pi$$
$$402$$ 32.0548 1.59875
$$403$$ −17.2757 5.23087i −0.860562 0.260568i
$$404$$ 54.8801i 2.73039i
$$405$$ 0.182438 0.680869i 0.00906543 0.0338326i
$$406$$ −1.89670 1.50314i −0.0941314 0.0745994i
$$407$$ 1.30154 + 0.751444i 0.0645149 + 0.0372477i
$$408$$ −16.2185 + 16.2185i −0.802937 + 0.802937i
$$409$$ −13.9857 + 3.74745i −0.691547 + 0.185300i −0.587441 0.809267i $$-0.699865\pi$$
−0.104106 + 0.994566i $$0.533198\pi$$
$$410$$ −20.1890 + 5.40962i −0.997062 + 0.267162i
$$411$$ 10.2402 10.2402i 0.505110 0.505110i
$$412$$ −57.7350 33.3333i −2.84440 1.64221i
$$413$$ −8.28522 6.56606i −0.407689 0.323095i
$$414$$ −1.22791 + 4.58262i −0.0603485 + 0.225224i
$$415$$ 2.24744i 0.110322i
$$416$$ 1.25509 + 1.33867i 0.0615357 + 0.0656337i
$$417$$ −8.03264 −0.393360
$$418$$ −1.52686 + 5.69832i −0.0746812 + 0.278714i
$$419$$ −19.0889 + 11.0210i −0.932553 + 0.538410i −0.887618 0.460580i $$-0.847641\pi$$
−0.0449347 + 0.998990i $$0.514308\pi$$
$$420$$ 7.47408 + 1.10327i 0.364698 + 0.0538339i
$$421$$ −7.69603 + 7.69603i −0.375082 + 0.375082i −0.869324 0.494243i $$-0.835445\pi$$
0.494243 + 0.869324i $$0.335445\pi$$
$$422$$ −5.88179 21.9511i −0.286321 1.06856i
$$423$$ −1.30268 4.86166i −0.0633384 0.236382i
$$424$$ −17.7566 17.7566i −0.862338 0.862338i
$$425$$ −17.7286 10.2356i −0.859965 0.496501i
$$426$$ −10.0119 17.3411i −0.485078 0.840179i
$$427$$ 30.5665 3.53832i 1.47921 0.171232i
$$428$$ 67.7206i 3.27340i
$$429$$ 1.75774 + 1.87479i 0.0848643 + 0.0905158i
$$430$$ 12.7840i 0.616502i
$$431$$ −26.2932 7.04525i −1.26650 0.339358i −0.437812 0.899067i $$-0.644246\pi$$
−0.828689 + 0.559709i $$0.810913\pi$$
$$432$$ −3.73174 + 2.15452i −0.179543 + 0.103659i
$$433$$ 6.55214 11.3486i 0.314876 0.545381i −0.664535 0.747257i $$-0.731371\pi$$
0.979411 + 0.201876i $$0.0647038\pi$$
$$434$$ 29.9029 + 12.9382i 1.43538 + 0.621054i
$$435$$ −0.0678396 0.253181i −0.00325266 0.0121391i
$$436$$ 9.83747 2.63594i 0.471129 0.126239i
$$437$$ 4.58858 4.58858i 0.219502 0.219502i
$$438$$ 1.05912 1.83446i 0.0506069 0.0876537i
$$439$$ −19.9333 34.5255i −0.951364 1.64781i −0.742477 0.669872i $$-0.766349\pi$$
−0.208887 0.977940i $$-0.566984\pi$$
$$440$$ 2.44854 + 0.656085i 0.116730 + 0.0312776i
$$441$$ −4.79238 5.10227i −0.228208 0.242965i
$$442$$ 11.6845 38.5896i 0.555773 1.83552i
$$443$$ 23.0066 1.09308 0.546539 0.837433i $$-0.315945\pi$$
0.546539 + 0.837433i $$0.315945\pi$$
$$444$$ 2.21078 8.25074i 0.104919 0.391563i
$$445$$ 6.40446 + 11.0928i 0.303600 + 0.525851i
$$446$$ −2.29221 + 3.97023i −0.108539 + 0.187996i
$$447$$ 5.82815 + 5.82815i 0.275662 + 0.275662i
$$448$$ 11.6206 + 15.6455i 0.549024 + 0.739178i
$$449$$ 15.6281 4.18754i 0.737536 0.197622i 0.129553 0.991572i $$-0.458646\pi$$
0.607983 + 0.793950i $$0.291979\pi$$
$$450$$ −7.83278 7.83278i −0.369241 0.369241i
$$451$$ 7.44068 + 4.29588i 0.350368 + 0.202285i
$$452$$ −20.7870 + 12.0014i −0.977739 + 0.564498i
$$453$$ 5.67310 + 1.52010i 0.266546 + 0.0714207i
$$454$$ −13.7047 −0.643194
$$455$$ −6.32836 + 2.27303i −0.296678 + 0.106561i
$$456$$ 16.9760 0.794976
$$457$$ 0.658952 + 0.176566i 0.0308245 + 0.00825939i 0.274198 0.961673i $$-0.411588\pi$$
−0.243374 + 0.969933i $$0.578254\pi$$
$$458$$ −0.461383 + 0.266380i −0.0215590 + 0.0124471i
$$459$$ 3.93695 + 2.27300i 0.183761 + 0.106095i
$$460$$ −3.89429 3.89429i −0.181572 0.181572i
$$461$$ −8.08252 + 2.16570i −0.376440 + 0.100867i −0.442078 0.896977i $$-0.645759\pi$$
0.0656375 + 0.997844i $$0.479092\pi$$
$$462$$ −2.76601 3.72402i −0.128687 0.173257i
$$463$$ 22.3879 + 22.3879i 1.04045 + 1.04045i 0.999146 + 0.0413082i $$0.0131525\pi$$
0.0413082 + 0.999146i $$0.486847\pi$$
$$464$$ −0.801158 + 1.38765i −0.0371928 + 0.0644199i
$$465$$ 1.76441 + 3.05605i 0.0818227 + 0.141721i
$$466$$ 12.5947 47.0041i 0.583438 2.17742i
$$467$$ 13.5832 0.628554 0.314277 0.949331i $$-0.398238\pi$$
0.314277 + 0.949331i $$0.398238\pi$$
$$468$$ 7.70680 12.4077i 0.356247 0.573546i
$$469$$ 32.0550 12.6935i 1.48016 0.586130i
$$470$$ 8.42986 + 2.25877i 0.388840 + 0.104189i
$$471$$ 7.30813 + 12.6581i 0.336741 + 0.583253i
$$472$$ −10.0799 + 17.4589i −0.463966 + 0.803613i
$$473$$ 3.71591 3.71591i 0.170858 0.170858i
$$474$$ −23.3220 + 6.24912i −1.07122 + 0.287032i
$$475$$ 3.92148 + 14.6352i 0.179930 + 0.671508i
$$476$$ −19.3485 + 44.7183i −0.886836 + 2.04966i
$$477$$ −2.48856 + 4.31031i −0.113943 + 0.197356i
$$478$$ −1.91884 + 1.10784i −0.0877656 + 0.0506715i
$$479$$ 4.03229 + 1.08045i 0.184240 + 0.0493669i 0.349759 0.936840i $$-0.386263\pi$$
−0.165519 + 0.986207i $$0.552930\pi$$
$$480$$ 0.358746i 0.0163745i
$$481$$ 1.73011 + 7.40292i 0.0788863 + 0.337544i
$$482$$ 49.0896i 2.23597i
$$483$$ 0.586766 + 5.06889i 0.0266988 + 0.230642i
$$484$$ 21.2518 + 36.8093i 0.965993 + 1.67315i
$$485$$ −5.52235 3.18833i −0.250757 0.144775i
$$486$$ 1.73941 + 1.73941i 0.0789011 + 0.0789011i
$$487$$ 4.28159 + 15.9791i 0.194018 + 0.724083i 0.992519 + 0.122090i $$0.0389598\pi$$
−0.798501 + 0.601993i $$0.794374\pi$$
$$488$$ −15.1873 56.6797i −0.687496 2.56577i
$$489$$ −5.38200 + 5.38200i −0.243383 + 0.243383i
$$490$$ 11.8166 2.77291i 0.533821 0.125267i
$$491$$ 27.7156 16.0016i 1.25079 0.722143i 0.279523 0.960139i $$-0.409824\pi$$
0.971266 + 0.237996i $$0.0764905\pi$$
$$492$$ 12.6387 47.1681i 0.569795 2.12650i
$$493$$ 1.69043 0.0761332
$$494$$ −26.3111 + 14.0809i −1.18379 + 0.633528i
$$495$$ 0.502420i 0.0225821i
$$496$$ 5.58326 20.8370i 0.250696 0.935609i
$$497$$ −16.8789 13.3766i −0.757121 0.600021i
$$498$$ −6.79228 3.92152i −0.304369 0.175728i
$$499$$ −14.4246 + 14.4246i −0.645734 + 0.645734i −0.951959 0.306225i $$-0.900934\pi$$
0.306225 + 0.951959i $$0.400934\pi$$
$$500$$ 26.2120 7.02348i 1.17224 0.314100i
$$501$$ 7.60079 2.03663i 0.339578 0.0909898i
$$502$$ 48.7220 48.7220i 2.17457 2.17457i
$$503$$ −23.6349 13.6456i −1.05383 0.608427i −0.130109 0.991500i $$-0.541533\pi$$
−0.923718 + 0.383072i $$0.874866\pi$$
$$504$$ −8.29109 + 10.4619i −0.369314 + 0.466010i
$$505$$ −2.47150 + 9.22376i −0.109980 + 0.410452i
$$506$$ 3.38157i 0.150329i
$$507$$ −0.836968 + 12.9730i −0.0371710 + 0.576152i
$$508$$ −81.4721 −3.61474
$$509$$ −8.17110 + 30.4949i −0.362177 + 1.35166i 0.509030 + 0.860749i $$0.330004\pi$$
−0.871207 + 0.490916i $$0.836662\pi$$
$$510$$ −6.82647 + 3.94126i −0.302281 + 0.174522i
$$511$$ 0.332699 2.25387i 0.0147177 0.0997054i
$$512$$ 29.1956 29.1956i 1.29027 1.29027i
$$513$$ −0.870835 3.25000i −0.0384483 0.143491i
$$514$$ −5.75519 21.4787i −0.253851 0.947383i
$$515$$ −8.20244 8.20244i −0.361443 0.361443i
$$516$$ −25.8662 14.9339i −1.13870 0.657428i
$$517$$ −1.79374 3.10684i −0.0788884 0.136639i
$$518$$ −1.57800 13.6318i −0.0693332 0.598948i
$$519$$ 10.7204i 0.470572i
$$520$$ 6.05048 + 11.3057i 0.265331 + 0.495790i
$$521$$ 13.1042i 0.574107i −0.957915 0.287054i $$-0.907324\pi$$
0.957915 0.287054i $$-0.0926758\pi$$
$$522$$ 0.883543 + 0.236745i 0.0386716 + 0.0103620i
$$523$$ −7.44365 + 4.29760i −0.325488 + 0.187921i −0.653836 0.756636i $$-0.726841\pi$$
0.328348 + 0.944557i $$0.393508\pi$$
$$524$$ 24.4678 42.3794i 1.06888 1.85135i
$$525$$ −10.9345 4.73110i −0.477223 0.206482i
$$526$$ −14.8436 55.3971i −0.647212 2.41543i
$$527$$ −21.9829 + 5.89029i −0.957589 + 0.256585i
$$528$$ −2.17177 + 2.17177i −0.0945140 + 0.0945140i
$$529$$ −9.64015 + 16.6972i −0.419137 + 0.725966i
$$530$$ −4.31503 7.47385i −0.187433 0.324643i
$$531$$ 3.85953 + 1.03416i 0.167489 + 0.0448786i
$$532$$ 33.5295 13.2774i 1.45369 0.575647i
$$533$$ 9.89076 + 42.3213i 0.428417 + 1.83314i
$$534$$ −44.7002 −1.93437
$$535$$ −3.04977 + 11.3819i −0.131853 + 0.492082i
$$536$$ −32.8734 56.9384i −1.41991 2.45936i
$$537$$ −4.98351 + 8.63169i −0.215054 + 0.372485i
$$538$$ 50.1269 + 50.1269i 2.16112 + 2.16112i
$$539$$ −4.24071 2.62872i −0.182660 0.113227i
$$540$$ −2.75825 + 0.739070i −0.118696 + 0.0318045i
$$541$$ 6.09190 + 6.09190i 0.261911 + 0.261911i 0.825830 0.563919i $$-0.190707\pi$$
−0.563919 + 0.825830i $$0.690707\pi$$
$$542$$ 26.2469 + 15.1537i 1.12740 + 0.650905i
$$543$$ −3.43386 + 1.98254i −0.147361 + 0.0850790i
$$544$$ 2.23482 + 0.598817i 0.0958169 + 0.0256741i
$$545$$ 1.77210 0.0759086
$$546$$ 4.17262 23.0919i 0.178572 0.988243i
$$547$$ 30.2438 1.29313 0.646566 0.762858i $$-0.276205\pi$$
0.646566 + 0.762858i $$0.276205\pi$$
$$548$$ −56.6677 15.1841i −2.42072 0.648631i
$$549$$ −10.0720 + 5.81509i −0.429864 + 0.248182i
$$550$$ −6.83769 3.94774i −0.291560 0.168332i
$$551$$ −0.884692 0.884692i −0.0376892 0.0376892i
$$552$$ 9.39929 2.51853i 0.400060 0.107196i
$$553$$ −20.8476 + 15.4845i −0.886528 + 0.658468i
$$554$$ −24.8971 24.8971i −1.05778 1.05778i
$$555$$ 0.743136 1.28715i 0.0315444 0.0546365i
$$556$$ 16.2704 + 28.1812i 0.690019 + 1.19515i
$$557$$ −11.7586 + 43.8837i −0.498228 + 1.85941i 0.0129131 + 0.999917i $$0.495890\pi$$
−0.511141 + 0.859497i $$0.670777\pi$$
$$558$$ −12.3148 −0.521327
$$559$$ 26.5692 + 0.856180i 1.12376 + 0.0362126i
$$560$$ −2.95871 7.47168i −0.125028 0.315736i
$$561$$ 3.12983 + 0.838636i 0.132142 + 0.0354072i
$$562$$ −18.7657 32.5031i −0.791583 1.37106i
$$563$$ 12.5992 21.8224i 0.530992 0.919704i −0.468354 0.883541i $$-0.655153\pi$$
0.999346 0.0361636i $$-0.0115137\pi$$
$$564$$ −14.4177 + 14.4177i −0.607095 + 0.607095i
$$565$$ −4.03418 + 1.08095i −0.169719 + 0.0454761i
$$566$$ 8.87415 + 33.1188i 0.373009 + 1.39209i
$$567$$ 2.42821 + 1.05062i 0.101975 + 0.0441221i
$$568$$ −20.5351 + 35.5679i −0.861634 + 1.49239i
$$569$$ 13.9572 8.05819i 0.585116 0.337817i −0.178048 0.984022i $$-0.556978\pi$$
0.763164 + 0.646205i $$0.223645\pi$$
$$570$$ 5.63532 + 1.50998i 0.236038 + 0.0632461i
$$571$$ 13.5825i 0.568409i −0.958764 0.284204i $$-0.908271\pi$$
0.958764 0.284204i $$-0.0917294\pi$$
$$572$$ 3.01703 9.96418i 0.126149 0.416623i
$$573$$ 18.3576i 0.766900i
$$574$$ −9.02115 77.9308i −0.376535 3.25277i
$$575$$ 4.34249 + 7.52142i 0.181094 + 0.313665i
$$576$$ −6.37926 3.68307i −0.265803 0.153461i
$$577$$ −33.5657 33.5657i −1.39736 1.39736i −0.807528 0.589829i $$-0.799195\pi$$
−0.589829 0.807528i $$-0.700805\pi$$
$$578$$ −2.33411 8.71103i −0.0970863 0.362331i
$$579$$ 4.24786 + 15.8532i 0.176535 + 0.658837i
$$580$$ −0.750831 + 0.750831i −0.0311766 + 0.0311766i
$$581$$ −8.34520 1.23185i −0.346217 0.0511059i
$$582$$ 19.2717 11.1265i 0.798838 0.461209i
$$583$$ −0.918168 + 3.42665i −0.0380266 + 0.141917i
$$584$$ −4.34468 −0.179784
$$585$$ 1.85406 1.73830i 0.0766562 0.0718700i
$$586$$ 42.6820i 1.76318i
$$587$$ 6.29368 23.4883i 0.259768 0.969467i −0.705607 0.708603i $$-0.749326\pi$$
0.965375 0.260864i $$-0.0840076\pi$$
$$588$$ −8.19330 + 27.1481i −0.337886 + 1.11957i
$$589$$ 14.5875 + 8.42210i 0.601067 + 0.347026i
$$590$$ −4.89904 + 4.89904i −0.201690 + 0.201690i
$$591$$ −5.69553 + 1.52611i −0.234283 + 0.0627759i
$$592$$ −8.77613 + 2.35156i −0.360697 + 0.0966484i
$$593$$ 10.0628 10.0628i 0.413231 0.413231i −0.469631 0.882863i $$-0.655613\pi$$
0.882863 + 0.469631i $$0.155613\pi$$
$$594$$ 1.51843 + 0.876665i 0.0623019 + 0.0359700i
$$595$$ −5.26579 + 6.64451i −0.215876 + 0.272398i
$$596$$ 8.64195 32.2522i 0.353988 1.32110i
$$597$$ 19.2297i 0.787018i
$$598$$ −12.4789 + 11.6997i −0.510299 + 0.478438i
$$599$$ 15.7719 0.644422 0.322211 0.946668i $$-0.395574\pi$$
0.322211 + 0.946668i $$0.395574\pi$$
$$600$$ −5.88042 + 21.9460i −0.240067 + 0.895942i
$$601$$ −18.2565 + 10.5404i −0.744698 + 0.429952i −0.823775 0.566917i $$-0.808136\pi$$
0.0790767 + 0.996869i $$0.474803\pi$$
$$602$$ −47.4698 7.00712i −1.93472 0.285589i
$$603$$ −9.21430 + 9.21430i −0.375235 + 0.375235i
$$604$$ −6.15805 22.9821i −0.250567 0.935130i
$$605$$ 1.91413 + 7.14365i 0.0778206 + 0.290431i
$$606$$ −23.5638 23.5638i −0.957215 0.957215i
$$607$$ 14.6360 + 8.45008i 0.594056 + 0.342978i 0.766700 0.642006i $$-0.221898\pi$$
−0.172644 + 0.984984i $$0.555231\pi$$
$$608$$ −0.856205 1.48299i −0.0347237 0.0601432i
$$609$$ 0.977297 0.113130i 0.0396021 0.00458427i
$$610$$ 20.1661i 0.816502i
$$611$$ 5.25901 17.3686i 0.212757 0.702658i
$$612$$ 18.4162i 0.744430i
$$613$$ 17.4644 + 4.67958i 0.705381 + 0.189006i 0.593640 0.804731i $$-0.297690\pi$$
0.111742 + 0.993737i $$0.464357\pi$$
$$614$$ 43.7695 25.2703i 1.76639 1.01983i
$$615$$ 4.24839 7.35842i 0.171312 0.296720i
$$616$$ −3.77826 + 8.73233i −0.152230 + 0.351836i
$$617$$ 5.54500 + 20.6942i 0.223233 + 0.833118i 0.983105 + 0.183045i $$0.0585952\pi$$
−0.759871 + 0.650074i $$0.774738\pi$$
$$618$$ 39.1020 10.4773i 1.57291 0.421460i
$$619$$ −19.4756 + 19.4756i −0.782790 + 0.782790i −0.980301 0.197511i $$-0.936714\pi$$
0.197511 + 0.980301i $$0.436714\pi$$
$$620$$ 7.14777 12.3803i 0.287061 0.497205i
$$621$$ −0.964326 1.67026i −0.0386971 0.0670253i
$$622$$ −17.8892 4.79339i −0.717291 0.192197i
$$623$$ −44.7004 + 17.7009i −1.79088 + 0.709172i
$$624$$ −15.5284 0.500395i −0.621634 0.0200318i
$$625$$ −17.7939 −0.711756
$$626$$ 5.03421 18.7879i 0.201208 0.750917i
$$627$$ −1.19910 2.07691i −0.0478876 0.0829438i
$$628$$ 29.6058 51.2787i 1.18140 2.04624i
$$629$$ 6.77788 + 6.77788i 0.270252 + 0.270252i
$$630$$ −3.68285 + 2.73543i −0.146728 + 0.108982i
$$631$$ −20.8332 + 5.58224i −0.829356 + 0.222225i −0.648433 0.761272i $$-0.724575\pi$$
−0.180923 + 0.983497i $$0.557909\pi$$
$$632$$ 35.0178 + 35.0178i 1.39293 + 1.39293i
$$633$$ 8.00070 + 4.61920i 0.317999 + 0.183597i
$$634$$ 36.9357 21.3248i 1.46690 0.846916i
$$635$$ −13.6931 3.66906i −0.543395 0.145602i
$$636$$ 20.1627 0.799502
$$637$$ −4.97157 24.7444i −0.196981 0.980407i
$$638$$ 0.651976 0.0258120
$$639$$ 7.86274 + 2.10681i 0.311045 + 0.0833443i
$$640$$ 11.6827 6.74499i 0.461798 0.266619i
$$641$$ 25.3468 + 14.6340i 1.00114 + 0.578006i 0.908584 0.417701i $$-0.137164\pi$$
0.0925521 + 0.995708i $$0.470498\pi$$
$$642$$ −29.0772 29.0772i −1.14758 1.14758i
$$643$$ −12.4873 + 3.34595i −0.492449 + 0.131951i −0.496494 0.868040i $$-0.665379\pi$$
0.00404423 + 0.999992i $$0.498713\pi$$
$$644$$ 16.5948 12.3258i 0.653927 0.485704i
$$645$$ −3.67483 3.67483i −0.144696 0.144696i
$$646$$ −18.8129 + 32.5849i −0.740183 + 1.28203i
$$647$$ 18.8428 + 32.6368i 0.740788 + 1.28308i 0.952137 + 0.305672i $$0.0988813\pi$$
−0.211348 + 0.977411i $$0.567785\pi$$
$$648$$ 1.30585 4.87350i 0.0512986 0.191449i
$$649$$ 2.84798 0.111793
$$650$$ −9.08921 38.8915i −0.356508 1.52545i
$$651$$ −12.3149 + 4.87656i −0.482657 + 0.191127i
$$652$$ 29.7833 + 7.98041i 1.16640 + 0.312537i
$$653$$ −20.0158 34.6685i −0.783280 1.35668i −0.930021 0.367507i $$-0.880212\pi$$
0.146740 0.989175i $$-0.453122\pi$$
$$654$$ −3.09212 + 5.35570i −0.120911 + 0.209425i
$$655$$ 6.02086 6.02086i 0.235255 0.235255i
$$656$$ −50.1717 + 13.4435i −1.95888 + 0.524879i
$$657$$ 0.222873 + 0.831772i 0.00869509 + 0.0324505i
$$658$$ −13.0078 + 30.0637i −0.507097 + 1.17201i
$$659$$ 15.0023 25.9848i 0.584407 1.01222i −0.410542 0.911842i $$-0.634660\pi$$
0.994949 0.100381i $$-0.0320062\pi$$
$$660$$ −1.76266 + 1.01767i −0.0686113 + 0.0396128i
$$661$$ 19.0751 + 5.11115i 0.741934 + 0.198801i 0.609937 0.792450i $$-0.291195\pi$$
0.131996 + 0.991250i $$0.457861\pi$$
$$662$$ 12.1508i 0.472255i
$$663$$ 7.73399 + 14.4515i 0.300363 + 0.561249i
$$664$$ 16.0866i 0.624283i
$$665$$ 6.23329 0.721556i 0.241717 0.0279807i
$$666$$ 2.59337 + 4.49186i 0.100491 + 0.174056i
$$667$$ −0.621087 0.358585i −0.0240486 0.0138845i
$$668$$ −22.5408 22.5408i −0.872131 0.872131i
$$669$$ −0.482353 1.80016i −0.0186488 0.0695984i
$$670$$ −5.84803 21.8251i −0.225929 0.843178i
$$671$$ −5.86164 + 5.86164i −0.226286 + 0.226286i
$$672$$ 1.33210 + 0.196634i 0.0513868 + 0.00758533i
$$673$$ −39.4906 + 22.7999i −1.52225 + 0.878872i −0.522597 + 0.852580i $$0.675037\pi$$
−0.999654 + 0.0262924i $$0.991630\pi$$
$$674$$ −4.68348 + 17.4790i −0.180401 + 0.673265i
$$675$$ 4.50313 0.173326
$$676$$ 47.2090 23.3410i 1.81573 0.897730i
$$677$$ 6.55217i 0.251821i −0.992042 0.125910i $$-0.959815\pi$$
0.992042 0.125910i $$-0.0401851\pi$$
$$678$$ 3.77228 14.0783i 0.144874 0.540676i
$$679$$ 14.8658 18.7580i 0.570497 0.719867i
$$680$$ 14.0016 + 8.08381i 0.536936 + 0.310000i
$$681$$ 3.93948 3.93948i 0.150961 0.150961i
$$682$$ −8.47849 + 2.27180i −0.324658 + 0.0869919i
$$683$$ 42.6432 11.4262i 1.63170 0.437212i 0.677290 0.735716i $$-0.263154\pi$$
0.954408 + 0.298504i $$0.0964875\pi$$
$$684$$ −9.63816 + 9.63816i −0.368524 + 0.368524i
$$685$$ −8.84040 5.10401i −0.337774 0.195014i
$$686$$ 3.81950 + 45.3975i 0.145829 + 1.73328i
$$687$$ 0.0560546 0.209199i 0.00213862 0.00798143i
$$688$$ 31.7697i 1.21121i
$$689$$ −15.8220 + 8.46743i −0.602769 + 0.322584i
$$690$$ 3.34418 0.127311
$$691$$ −8.50701 + 31.7486i −0.323622 + 1.20777i 0.592068 + 0.805888i $$0.298312\pi$$
−0.915690 + 0.401885i $$0.868355\pi$$
$$692$$ −37.6106 + 21.7145i −1.42974 + 0.825462i
$$693$$ 1.86559 + 0.275384i 0.0708679 + 0.0104610i
$$694$$ 5.51370 5.51370i 0.209297 0.209297i
$$695$$ 1.46546 + 5.46917i 0.0555881 + 0.207457i
$$696$$ −0.485580 1.81221i −0.0184059 0.0686917i
$$697$$ 38.7480 + 38.7480i 1.46769 + 1.46769i
$$698$$ 57.4961 + 33.1954i 2.17626 + 1.25646i
$$699$$ 9.89112 + 17.1319i 0.374116 + 0.647989i
$$700$$ 5.55004 + 47.9450i 0.209772 + 1.81215i
$$701$$ 8.83206i 0.333582i 0.985992 + 0.166791i $$0.0533406\pi$$
−0.985992 + 0.166791i $$0.946659\pi$$
$$702$$ 2.01842 + 8.63655i 0.0761803 + 0.325965i
$$703$$ 7.09444i 0.267572i
$$704$$ −5.07144 1.35889i −0.191137 0.0512150i
$$705$$ −3.07249 + 1.77391i −0.115717 + 0.0668091i
$$706$$ 6.48069 11.2249i 0.243904 0.422454i
$$707$$ −32.8950 14.2329i −1.23715 0.535282i
$$708$$ −4.18944 15.6352i −0.157449 0.587607i
$$709$$ 28.7065 7.69188i 1.07809 0.288874i 0.324279 0.945961i $$-0.394878\pi$$
0.753815 + 0.657087i $$0.228212\pi$$
$$710$$ −9.98046 + 9.98046i −0.374560 + 0.374560i
$$711$$ 4.90769 8.50036i 0.184053 0.318788i
$$712$$ 45.8416 + 79.4000i 1.71799 + 2.97564i
$$713$$ 9.32628 + 2.49897i 0.349272 + 0.0935872i
$$714$$ −10.8930 27.5083i −0.407661 1.02947i
$$715$$ 0.955809 1.53882i 0.0357452 0.0575486i
$$716$$ 40.3771 1.50896
$$717$$ 0.233125 0.870032i 0.00870619 0.0324920i
$$718$$ 31.0431 + 53.7683i 1.15852 + 2.00662i
$$719$$ 18.6597 32.3196i 0.695890 1.20532i −0.273990 0.961733i $$-0.588343\pi$$
0.969880 0.243584i $$-0.0783233\pi$$
$$720$$ 2.14776 + 2.14776i 0.0800421 + 0.0800421i
$$721$$ 34.9532 25.9615i 1.30173 0.966855i
$$722$$ −18.2462 + 4.88907i −0.679055 + 0.181952i
$$723$$ −14.1110 14.1110i −0.524794 0.524794i
$$724$$ 13.9108 + 8.03142i 0.516992 + 0.298485i
$$725$$ 1.45015 0.837245i 0.0538573 0.0310945i
$$726$$ −24.9297 6.67989i −0.925227 0.247914i
$$727$$ 9.88660 0.366674 0.183337 0.983050i $$-0.441310\pi$$
0.183337 + 0.983050i $$0.441310\pi$$
$$728$$ −45.2969 + 16.2698i −1.67881 + 0.603001i
$$729$$ −1.00000 −0.0370370
$$730$$ −1.44225 0.386449i −0.0533800 0.0143031i
$$731$$ 29.0264 16.7584i 1.07358 0.619832i
$$732$$ 40.8025 + 23.5574i 1.50811 + 0.870705i
$$733$$ −14.5543 14.5543i −0.537577 0.537577i 0.385240 0.922817i $$-0.374119\pi$$
−0.922817 + 0.385240i $$0.874119\pi$$
$$734$$ −78.5250 + 21.0407i −2.89841 + 0.776626i
$$735$$ −2.59966 + 4.19383i −0.0958899 + 0.154692i
$$736$$ −0.694076 0.694076i −0.0255840 0.0255840i
$$737$$ −4.64403 + 8.04370i −0.171065 + 0.296293i
$$738$$ 14.8259 + 25.6792i 0.545749 + 0.945264i
$$739$$ 13.1964 49.2497i 0.485438 1.81168i −0.0926405 0.995700i $$-0.529531\pi$$
0.578079 0.815981i $$-0.303803\pi$$
$$740$$ −6.02100 −0.221336
$$741$$ 3.51562 11.6108i 0.129150 0.426535i
$$742$$ 30.1171 11.9261i 1.10563 0.437820i
$$743$$ −13.4007 3.59070i −0.491623 0.131730i 0.00448658 0.999990i $$-0.498572\pi$$
−0.496109 + 0.868260i $$0.665239\pi$$
$$744$$ 12.6293 + 21.8745i 0.463011 + 0.801959i
$$745$$ 2.90493 5.03148i 0.106428 0.184339i
$$746$$ 48.3496 48.3496i 1.77020 1.77020i
$$747$$ 3.07973 0.825211i 0.112681 0.0301929i
$$748$$ −3.39737 12.6792i −0.124220 0.463597i
$$749$$ −40.5916 17.5630i −1.48319 0.641737i
$$750$$ −8.23896 + 14.2703i −0.300844 + 0.521078i
$$751$$ −7.39608 + 4.27013i −0.269887 + 0.155819i −0.628836 0.777538i $$-0.716468\pi$$
0.358949 + 0.933357i $$0.383135\pi$$
$$752$$ 20.9491 + 5.61329i 0.763935 + 0.204696i
$$753$$ 28.0107i 1.02077i
$$754$$ 2.25574 + 2.40597i 0.0821494 + 0.0876201i
$$755$$ 4.13996i 0.150669i
$$756$$ −1.23248 10.6470i −0.0448250 0.387229i
$$757$$ −5.08375 8.80531i −0.184772 0.320034i 0.758728 0.651408i $$-0.225821\pi$$
−0.943500 + 0.331374i $$0.892488\pi$$
$$758$$ 32.4080 + 18.7108i 1.17711 + 0.679606i
$$759$$ −0.972046 0.972046i −0.0352830 0.0352830i
$$760$$ −3.09708 11.5585i −0.112343 0.419269i
$$761$$ −0.975866 3.64198i −0.0353751 0.132022i 0.945980 0.324225i $$-0.105103\pi$$
−0.981355 + 0.192203i $$0.938437\pi$$
$$762$$ 34.9816 34.9816i 1.26725 1.26725i
$$763$$ −0.971316 + 6.58019i −0.0351640 + 0.238219i
$$764$$ −64.4046 + 37.1840i −2.33008 + 1.34527i
$$765$$ 0.829364 3.09523i 0.0299857 0.111908i
$$766$$ −21.1536 −0.764309
$$767$$ 9.85363 + 10.5098i 0.355794 + 0.379488i
$$768$$ 32.3446i 1.16714i
$$769$$ 1.12134 4.18491i 0.0404367 0.150912i −0.942756 0.333484i $$-0.891776\pi$$
0.983192 + 0.182572i $$0.0584424\pi$$
$$770$$ −2.03094 + 2.56270i −0.0731901 + 0.0923531i
$$771$$ 7.82849 + 4.51978i 0.281936 + 0.162776i
$$772$$ 47.0142 47.0142i 1.69208 1.69208i
$$773$$ −14.9644 + 4.00970i −0.538233 + 0.144219i −0.517687 0.855570i $$-0.673207\pi$$
−0.0205453 +