Properties

Label 273.2.bv
Level $273$
Weight $2$
Character orbit 273.bv
Rep. character $\chi_{273}(2,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $132$
Newform subspaces $2$
Sturm bound $74$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bv (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 273 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 2 \)
Sturm bound: \(74\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(273, [\chi])\).

Total New Old
Modular forms 164 164 0
Cusp forms 132 132 0
Eisenstein series 32 32 0

Trace form

\( 132q + 2q^{3} - 4q^{6} - 8q^{7} + 2q^{9} + O(q^{10}) \) \( 132q + 2q^{3} - 4q^{6} - 8q^{7} + 2q^{9} - 12q^{10} + 36q^{12} - 16q^{13} - 6q^{15} - 80q^{16} - 2q^{18} - 20q^{19} - 6q^{21} - 8q^{22} + 2q^{24} - 40q^{27} + 68q^{28} + 18q^{30} + 42q^{31} - 16q^{33} - 48q^{34} - 60q^{36} + 14q^{37} + 10q^{39} + 44q^{40} + 2q^{42} - 108q^{43} - 2q^{45} - 24q^{46} - 64q^{48} - 56q^{49} - 36q^{51} + 40q^{52} + 14q^{54} - 16q^{55} + 10q^{57} + 44q^{58} - 58q^{60} + 20q^{61} + 20q^{63} - 34q^{66} - 52q^{67} - 54q^{69} - 104q^{70} + 46q^{72} - 82q^{73} + 116q^{76} + 82q^{78} - 24q^{79} + 6q^{81} + 36q^{82} + 172q^{84} + 56q^{85} + 4q^{87} + 132q^{88} + 24q^{91} + 46q^{93} - 16q^{94} - 90q^{96} + 62q^{97} - 10q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(273, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
273.2.bv.a \(4\) \(2.180\) \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) \(0\) \(0\) \(0\) \(8\) \(q+(\zeta_{12}-2\zeta_{12}^{3})q^{3}-2\zeta_{12}^{3}q^{4}+(1+\cdots)q^{7}+\cdots\)
273.2.bv.b \(128\) \(2.180\) None \(0\) \(2\) \(0\) \(-16\)