Properties

Label 273.2.bt.b
Level 273273
Weight 22
Character orbit 273.bt
Analytic conductor 2.1802.180
Analytic rank 00
Dimension 4040
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [273,2,Mod(136,273)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(273, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("273.136"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 273=3713 273 = 3 \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 273.bt (of order 1212, degree 44, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 2.179915975182.17991597518
Analytic rank: 00
Dimension: 4040
Relative dimension: 1010 over Q(ζ12)\Q(\zeta_{12})
Twist minimal: yes
Sato-Tate group: SU(2)[C12]\mathrm{SU}(2)[C_{12}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 40q2q7+20q98q11+24q1218q1464q16+8q1714q1914q208q21+4q22+18q2424q2510q262q28+8q298q31+10q32+4q99+O(q100) 40 q - 2 q^{7} + 20 q^{9} - 8 q^{11} + 24 q^{12} - 18 q^{14} - 64 q^{16} + 8 q^{17} - 14 q^{19} - 14 q^{20} - 8 q^{21} + 4 q^{22} + 18 q^{24} - 24 q^{25} - 10 q^{26} - 2 q^{28} + 8 q^{29} - 8 q^{31} + 10 q^{32}+ \cdots - 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
136.1 −1.75053 + 1.75053i −0.866025 + 0.500000i 4.12868i −0.286571 + 1.06950i 0.640737 2.39126i 1.02891 2.43749i 3.72630 + 3.72630i 0.500000 0.866025i −1.37053 2.37383i
136.2 −1.59737 + 1.59737i −0.866025 + 0.500000i 3.10321i 0.609466 2.27456i 0.584679 2.18205i 1.40839 + 2.23974i 1.76223 + 1.76223i 0.500000 0.866025i 2.65977 + 4.60686i
136.3 −1.03264 + 1.03264i −0.866025 + 0.500000i 0.132693i 0.456824 1.70489i 0.377973 1.41061i −2.58707 + 0.554121i −1.92826 1.92826i 0.500000 0.866025i 1.28880 + 2.23227i
136.4 −0.783932 + 0.783932i −0.866025 + 0.500000i 0.770902i −0.994915 + 3.71307i 0.286939 1.07087i 0.0389254 + 2.64546i −2.17220 2.17220i 0.500000 0.866025i −2.13085 3.69074i
136.5 −0.326747 + 0.326747i −0.866025 + 0.500000i 1.78647i −0.562238 + 2.09830i 0.119598 0.446344i 2.25993 1.37576i −1.23722 1.23722i 0.500000 0.866025i −0.501904 0.869322i
136.6 −0.184060 + 0.184060i −0.866025 + 0.500000i 1.93224i 0.900201 3.35960i 0.0673706 0.251431i 0.939961 2.47315i −0.723769 0.723769i 0.500000 0.866025i 0.452676 + 0.784058i
136.7 1.07562 1.07562i −0.866025 + 0.500000i 0.313900i −0.962166 + 3.59085i −0.393703 + 1.46932i −2.21486 1.44721i 1.81360 + 1.81360i 0.500000 0.866025i 2.82746 + 4.89730i
136.8 1.09526 1.09526i −0.866025 + 0.500000i 0.399185i 0.128983 0.481371i −0.400893 + 1.49615i 2.51963 + 0.807124i 1.75331 + 1.75331i 0.500000 0.866025i −0.385956 0.668496i
136.9 1.57115 1.57115i −0.866025 + 0.500000i 2.93701i 0.922649 3.44337i −0.575080 + 2.14623i −2.64488 + 0.0678683i −1.47218 1.47218i 0.500000 0.866025i −3.96043 6.85967i
136.10 1.93326 1.93326i −0.866025 + 0.500000i 5.47495i −0.212233 + 0.792066i −0.707621 + 2.64088i 2.21517 1.44673i −6.71797 6.71797i 0.500000 0.866025i 1.12096 + 1.94157i
145.1 −1.96855 + 1.96855i 0.866025 + 0.500000i 5.75037i −1.75415 + 0.470023i −2.68909 + 0.720539i 2.27503 + 1.35065i 7.38279 + 7.38279i 0.500000 + 0.866025i 2.52787 4.37840i
145.2 −1.65256 + 1.65256i 0.866025 + 0.500000i 3.46192i 2.69306 0.721604i −2.25744 + 0.604879i −2.54381 0.727358i 2.41591 + 2.41591i 0.500000 + 0.866025i −3.25795 + 5.64294i
145.3 −1.22934 + 1.22934i 0.866025 + 0.500000i 1.02253i −1.95691 + 0.524353i −1.67930 + 0.449968i −1.82011 1.92021i −1.20163 1.20163i 0.500000 + 0.866025i 1.76110 3.05031i
145.4 −0.507981 + 0.507981i 0.866025 + 0.500000i 1.48391i 1.10096 0.295002i −0.693915 + 0.185934i 0.718657 + 2.54628i −1.76976 1.76976i 0.500000 + 0.866025i −0.409414 + 0.709125i
145.5 −0.240784 + 0.240784i 0.866025 + 0.500000i 1.88405i 2.06336 0.552877i −0.328916 + 0.0881329i 1.35855 2.27032i −0.935214 0.935214i 0.500000 + 0.866025i −0.363700 + 0.629948i
145.6 0.465913 0.465913i 0.866025 + 0.500000i 1.56585i −3.81958 + 1.02345i 0.636449 0.170536i −2.61148 + 0.424440i 1.66138 + 1.66138i 0.500000 + 0.866025i −1.30275 + 2.25643i
145.7 0.837153 0.837153i 0.866025 + 0.500000i 0.598351i −1.58368 + 0.424345i 1.14357 0.306419i 2.46703 + 0.955901i 2.17522 + 2.17522i 0.500000 + 0.866025i −0.970539 + 1.68102i
145.8 0.884731 0.884731i 0.866025 + 0.500000i 0.434503i 3.68041 0.986163i 1.20856 0.323834i −2.53212 0.767050i 2.15388 + 2.15388i 0.500000 + 0.866025i 2.38368 4.12866i
145.9 1.55234 1.55234i 0.866025 + 0.500000i 2.81950i −0.926472 + 0.248247i 2.12053 0.568195i 0.619609 2.57218i −1.27214 1.27214i 0.500000 + 0.866025i −1.05283 + 1.82356i
145.10 1.85908 1.85908i 0.866025 + 0.500000i 4.91234i 0.502992 0.134776i 2.53955 0.680470i −1.89546 + 1.84587i −5.41427 5.41427i 0.500000 + 0.866025i 0.684542 1.18566i
See all 40 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 136.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
91.ba even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 273.2.bt.b 40
3.b odd 2 1 819.2.et.d 40
7.d odd 6 1 273.2.cg.b yes 40
13.f odd 12 1 273.2.cg.b yes 40
21.g even 6 1 819.2.gh.d 40
39.k even 12 1 819.2.gh.d 40
91.ba even 12 1 inner 273.2.bt.b 40
273.bs odd 12 1 819.2.et.d 40
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.bt.b 40 1.a even 1 1 trivial
273.2.bt.b 40 91.ba even 12 1 inner
273.2.cg.b yes 40 7.d odd 6 1
273.2.cg.b yes 40 13.f odd 12 1
819.2.et.d 40 3.b odd 2 1
819.2.et.d 40 273.bs odd 12 1
819.2.gh.d 40 21.g even 6 1
819.2.gh.d 40 39.k even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T240+168T2362T235+8T233+10786T232308T231++59049 T_{2}^{40} + 168 T_{2}^{36} - 2 T_{2}^{35} + 8 T_{2}^{33} + 10786 T_{2}^{32} - 308 T_{2}^{31} + \cdots + 59049 acting on S2new(273,[χ])S_{2}^{\mathrm{new}}(273, [\chi]). Copy content Toggle raw display