Properties

Label 273.2.bt.a.136.4
Level $273$
Weight $2$
Character 273.136
Analytic conductor $2.180$
Analytic rank $0$
Dimension $36$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bt (of order \(12\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(36\)
Relative dimension: \(9\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 136.4
Character \(\chi\) \(=\) 273.136
Dual form 273.2.bt.a.271.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.411775 + 0.411775i) q^{2} +(0.866025 - 0.500000i) q^{3} +1.66088i q^{4} +(-0.180309 + 0.672922i) q^{5} +(-0.150720 + 0.562494i) q^{6} +(2.60113 + 0.483875i) q^{7} +(-1.50746 - 1.50746i) q^{8} +(0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+(-0.411775 + 0.411775i) q^{2} +(0.866025 - 0.500000i) q^{3} +1.66088i q^{4} +(-0.180309 + 0.672922i) q^{5} +(-0.150720 + 0.562494i) q^{6} +(2.60113 + 0.483875i) q^{7} +(-1.50746 - 1.50746i) q^{8} +(0.500000 - 0.866025i) q^{9} +(-0.202846 - 0.351339i) q^{10} +(-0.230214 + 0.859171i) q^{11} +(0.830442 + 1.43837i) q^{12} +(0.659853 + 3.54466i) q^{13} +(-1.27033 + 0.871831i) q^{14} +(0.180309 + 0.672922i) q^{15} -2.08030 q^{16} -0.0460661 q^{17} +(0.150720 + 0.562494i) q^{18} +(-0.843398 + 0.225988i) q^{19} +(-1.11765 - 0.299472i) q^{20} +(2.49458 - 0.881516i) q^{21} +(-0.258989 - 0.448581i) q^{22} +3.19116i q^{23} +(-2.05923 - 0.551768i) q^{24} +(3.90981 + 2.25733i) q^{25} +(-1.73131 - 1.18789i) q^{26} -1.00000i q^{27} +(-0.803659 + 4.32017i) q^{28} +(4.08244 - 7.07099i) q^{29} +(-0.351339 - 0.202846i) q^{30} +(3.90039 - 1.04511i) q^{31} +(3.87153 - 3.87153i) q^{32} +(0.230214 + 0.859171i) q^{33} +(0.0189689 - 0.0189689i) q^{34} +(-0.794617 + 1.66311i) q^{35} +(1.43837 + 0.830442i) q^{36} +(-4.97904 - 4.97904i) q^{37} +(0.254234 - 0.440346i) q^{38} +(2.34378 + 2.73984i) q^{39} +(1.28621 - 0.742594i) q^{40} +(-8.56284 + 2.29441i) q^{41} +(-0.664219 + 1.39019i) q^{42} +(1.29226 - 0.746085i) q^{43} +(-1.42698 - 0.382359i) q^{44} +(0.492613 + 0.492613i) q^{45} +(-1.31404 - 1.31404i) q^{46} +(-12.1286 - 3.24985i) q^{47} +(-1.80159 + 1.04015i) q^{48} +(6.53173 + 2.51724i) q^{49} +(-2.53947 + 0.680450i) q^{50} +(-0.0398944 + 0.0230331i) q^{51} +(-5.88726 + 1.09594i) q^{52} +(4.89224 - 8.47362i) q^{53} +(0.411775 + 0.411775i) q^{54} +(-0.536646 - 0.309833i) q^{55} +(-3.19167 - 4.65051i) q^{56} +(-0.617410 + 0.617410i) q^{57} +(1.23061 + 4.59270i) q^{58} +(6.25586 - 6.25586i) q^{59} +(-1.11765 + 0.299472i) q^{60} +(0.877507 + 0.506629i) q^{61} +(-1.17573 + 2.03643i) q^{62} +(1.71961 - 2.01071i) q^{63} -0.972206i q^{64} +(-2.50426 - 0.195103i) q^{65} +(-0.448581 - 0.258989i) q^{66} +(2.42048 + 0.648566i) q^{67} -0.0765105i q^{68} +(1.59558 + 2.76363i) q^{69} +(-0.357623 - 1.01203i) q^{70} +(-0.798336 - 0.213913i) q^{71} +(-2.05923 + 0.551768i) q^{72} +(-4.09226 - 15.2725i) q^{73} +4.10048 q^{74} +4.51466 q^{75} +(-0.375340 - 1.40079i) q^{76} +(-1.01455 + 2.12342i) q^{77} +(-2.09330 - 0.163087i) q^{78} +(-4.73655 - 8.20394i) q^{79} +(0.375097 - 1.39988i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(2.58118 - 4.47074i) q^{82} +(-3.50364 - 3.50364i) q^{83} +(1.46410 + 4.14321i) q^{84} +(0.00830614 - 0.0309989i) q^{85} +(-0.224900 + 0.839337i) q^{86} -8.16487i q^{87} +(1.64220 - 0.948127i) q^{88} +(-3.69759 + 3.69759i) q^{89} -0.405691 q^{90} +(0.00119323 + 9.53939i) q^{91} -5.30014 q^{92} +(2.85528 - 2.85528i) q^{93} +(6.33246 - 3.65605i) q^{94} -0.608289i q^{95} +(1.41708 - 5.28861i) q^{96} +(-0.288642 + 1.07723i) q^{97} +(-3.72614 + 1.65306i) q^{98} +(0.628957 + 0.628957i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36q + 6q^{7} + 18q^{9} + O(q^{10}) \) \( 36q + 6q^{7} + 18q^{9} - 8q^{11} - 16q^{12} + 42q^{14} - 24q^{16} - 8q^{17} - 18q^{19} + 14q^{20} - 4q^{21} + 4q^{22} + 18q^{24} + 24q^{25} - 50q^{26} + 34q^{28} + 8q^{29} + 6q^{31} - 50q^{32} + 8q^{33} - 24q^{34} + 14q^{35} - 14q^{37} - 8q^{38} - 2q^{39} - 30q^{40} + 34q^{41} - 18q^{42} + 30q^{43} + 28q^{44} - 32q^{46} - 10q^{47} + 24q^{48} + 6q^{49} - 20q^{50} - 24q^{51} + 4q^{52} - 8q^{53} - 30q^{55} - 92q^{56} - 24q^{57} + 72q^{58} - 70q^{59} + 14q^{60} - 60q^{61} - 48q^{62} + 6q^{63} - 44q^{65} + 18q^{66} - 46q^{67} + 4q^{69} + 80q^{70} + 42q^{71} + 18q^{72} - 56q^{73} + 40q^{74} - 20q^{75} + 12q^{76} + 24q^{77} - 16q^{78} + 170q^{80} - 18q^{81} + 24q^{82} - 60q^{83} + 2q^{85} + 12q^{86} + 84q^{88} + 64q^{89} - 86q^{91} - 100q^{92} + 12q^{93} - 66q^{94} + 46q^{96} + 36q^{97} - 22q^{98} - 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.411775 + 0.411775i −0.291169 + 0.291169i −0.837542 0.546373i \(-0.816008\pi\)
0.546373 + 0.837542i \(0.316008\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 1.66088i 0.830442i
\(5\) −0.180309 + 0.672922i −0.0806367 + 0.300940i −0.994452 0.105189i \(-0.966455\pi\)
0.913816 + 0.406129i \(0.133122\pi\)
\(6\) −0.150720 + 0.562494i −0.0615312 + 0.229637i
\(7\) 2.60113 + 0.483875i 0.983134 + 0.182887i
\(8\) −1.50746 1.50746i −0.532967 0.532967i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) −0.202846 0.351339i −0.0641454 0.111103i
\(11\) −0.230214 + 0.859171i −0.0694122 + 0.259050i −0.991908 0.126957i \(-0.959479\pi\)
0.922496 + 0.386007i \(0.126146\pi\)
\(12\) 0.830442 + 1.43837i 0.239728 + 0.415221i
\(13\) 0.659853 + 3.54466i 0.183010 + 0.983111i
\(14\) −1.27033 + 0.871831i −0.339509 + 0.233007i
\(15\) 0.180309 + 0.672922i 0.0465556 + 0.173748i
\(16\) −2.08030 −0.520075
\(17\) −0.0460661 −0.0111727 −0.00558634 0.999984i \(-0.501778\pi\)
−0.00558634 + 0.999984i \(0.501778\pi\)
\(18\) 0.150720 + 0.562494i 0.0355250 + 0.132581i
\(19\) −0.843398 + 0.225988i −0.193489 + 0.0518452i −0.354262 0.935146i \(-0.615268\pi\)
0.160773 + 0.986991i \(0.448601\pi\)
\(20\) −1.11765 0.299472i −0.249913 0.0669640i
\(21\) 2.49458 0.881516i 0.544362 0.192363i
\(22\) −0.258989 0.448581i −0.0552165 0.0956379i
\(23\) 3.19116i 0.665403i 0.943032 + 0.332701i \(0.107960\pi\)
−0.943032 + 0.332701i \(0.892040\pi\)
\(24\) −2.05923 0.551768i −0.420338 0.112629i
\(25\) 3.90981 + 2.25733i 0.781963 + 0.451466i
\(26\) −1.73131 1.18789i −0.339538 0.232964i
\(27\) 1.00000i 0.192450i
\(28\) −0.803659 + 4.32017i −0.151877 + 0.816435i
\(29\) 4.08244 7.07099i 0.758090 1.31305i −0.185734 0.982600i \(-0.559466\pi\)
0.943824 0.330450i \(-0.107200\pi\)
\(30\) −0.351339 0.202846i −0.0641454 0.0370344i
\(31\) 3.90039 1.04511i 0.700531 0.187707i 0.109063 0.994035i \(-0.465215\pi\)
0.591468 + 0.806328i \(0.298548\pi\)
\(32\) 3.87153 3.87153i 0.684397 0.684397i
\(33\) 0.230214 + 0.859171i 0.0400752 + 0.149563i
\(34\) 0.0189689 0.0189689i 0.00325313 0.00325313i
\(35\) −0.794617 + 1.66311i −0.134315 + 0.281117i
\(36\) 1.43837 + 0.830442i 0.239728 + 0.138407i
\(37\) −4.97904 4.97904i −0.818549 0.818549i 0.167349 0.985898i \(-0.446479\pi\)
−0.985898 + 0.167349i \(0.946479\pi\)
\(38\) 0.254234 0.440346i 0.0412422 0.0714335i
\(39\) 2.34378 + 2.73984i 0.375305 + 0.438725i
\(40\) 1.28621 0.742594i 0.203368 0.117414i
\(41\) −8.56284 + 2.29441i −1.33729 + 0.358326i −0.855429 0.517921i \(-0.826706\pi\)
−0.481863 + 0.876247i \(0.660040\pi\)
\(42\) −0.664219 + 1.39019i −0.102491 + 0.214511i
\(43\) 1.29226 0.746085i 0.197067 0.113777i −0.398219 0.917290i \(-0.630372\pi\)
0.595287 + 0.803513i \(0.297038\pi\)
\(44\) −1.42698 0.382359i −0.215126 0.0576428i
\(45\) 0.492613 + 0.492613i 0.0734345 + 0.0734345i
\(46\) −1.31404 1.31404i −0.193744 0.193744i
\(47\) −12.1286 3.24985i −1.76914 0.474039i −0.780604 0.625026i \(-0.785088\pi\)
−0.988536 + 0.150987i \(0.951755\pi\)
\(48\) −1.80159 + 1.04015i −0.260038 + 0.150133i
\(49\) 6.53173 + 2.51724i 0.933104 + 0.359606i
\(50\) −2.53947 + 0.680450i −0.359136 + 0.0962301i
\(51\) −0.0398944 + 0.0230331i −0.00558634 + 0.00322527i
\(52\) −5.88726 + 1.09594i −0.816416 + 0.151979i
\(53\) 4.89224 8.47362i 0.672001 1.16394i −0.305334 0.952245i \(-0.598768\pi\)
0.977336 0.211695i \(-0.0678985\pi\)
\(54\) 0.411775 + 0.411775i 0.0560354 + 0.0560354i
\(55\) −0.536646 0.309833i −0.0723613 0.0417778i
\(56\) −3.19167 4.65051i −0.426505 0.621451i
\(57\) −0.617410 + 0.617410i −0.0817780 + 0.0817780i
\(58\) 1.23061 + 4.59270i 0.161587 + 0.603051i
\(59\) 6.25586 6.25586i 0.814444 0.814444i −0.170853 0.985297i \(-0.554652\pi\)
0.985297 + 0.170853i \(0.0546522\pi\)
\(60\) −1.11765 + 0.299472i −0.144287 + 0.0386617i
\(61\) 0.877507 + 0.506629i 0.112353 + 0.0648672i 0.555124 0.831768i \(-0.312671\pi\)
−0.442770 + 0.896635i \(0.646004\pi\)
\(62\) −1.17573 + 2.03643i −0.149318 + 0.258627i
\(63\) 1.71961 2.01071i 0.216651 0.253325i
\(64\) 0.972206i 0.121526i
\(65\) −2.50426 0.195103i −0.310615 0.0241996i
\(66\) −0.448581 0.258989i −0.0552165 0.0318793i
\(67\) 2.42048 + 0.648566i 0.295709 + 0.0792350i 0.403623 0.914925i \(-0.367751\pi\)
−0.107915 + 0.994160i \(0.534417\pi\)
\(68\) 0.0765105i 0.00927826i
\(69\) 1.59558 + 2.76363i 0.192085 + 0.332701i
\(70\) −0.357623 1.01203i −0.0427442 0.120961i
\(71\) −0.798336 0.213913i −0.0947450 0.0253869i 0.211135 0.977457i \(-0.432284\pi\)
−0.305880 + 0.952070i \(0.598951\pi\)
\(72\) −2.05923 + 0.551768i −0.242682 + 0.0650265i
\(73\) −4.09226 15.2725i −0.478963 1.78751i −0.605830 0.795594i \(-0.707159\pi\)
0.126867 0.991920i \(-0.459508\pi\)
\(74\) 4.10048 0.476672
\(75\) 4.51466 0.521308
\(76\) −0.375340 1.40079i −0.0430544 0.160681i
\(77\) −1.01455 + 2.12342i −0.115618 + 0.241986i
\(78\) −2.09330 0.163087i −0.237020 0.0184659i
\(79\) −4.73655 8.20394i −0.532903 0.923016i −0.999262 0.0384199i \(-0.987768\pi\)
0.466358 0.884596i \(-0.345566\pi\)
\(80\) 0.375097 1.39988i 0.0419371 0.156511i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 2.58118 4.47074i 0.285044 0.493711i
\(83\) −3.50364 3.50364i −0.384574 0.384574i 0.488173 0.872747i \(-0.337664\pi\)
−0.872747 + 0.488173i \(0.837664\pi\)
\(84\) 1.46410 + 4.14321i 0.159746 + 0.452061i
\(85\) 0.00830614 0.0309989i 0.000900927 0.00336231i
\(86\) −0.224900 + 0.839337i −0.0242516 + 0.0905081i
\(87\) 8.16487i 0.875366i
\(88\) 1.64220 0.948127i 0.175060 0.101071i
\(89\) −3.69759 + 3.69759i −0.391944 + 0.391944i −0.875380 0.483436i \(-0.839389\pi\)
0.483436 + 0.875380i \(0.339389\pi\)
\(90\) −0.405691 −0.0427636
\(91\) 0.00119323 + 9.53939i 0.000125084 + 1.00000i
\(92\) −5.30014 −0.552578
\(93\) 2.85528 2.85528i 0.296079 0.296079i
\(94\) 6.33246 3.65605i 0.653143 0.377092i
\(95\) 0.608289i 0.0624092i
\(96\) 1.41708 5.28861i 0.144630 0.539767i
\(97\) −0.288642 + 1.07723i −0.0293071 + 0.109376i −0.979030 0.203716i \(-0.934698\pi\)
0.949723 + 0.313092i \(0.101365\pi\)
\(98\) −3.72614 + 1.65306i −0.376396 + 0.166985i
\(99\) 0.628957 + 0.628957i 0.0632126 + 0.0632126i
\(100\) −3.74917 + 6.49375i −0.374917 + 0.649375i
\(101\) 7.30376 + 12.6505i 0.726752 + 1.25877i 0.958249 + 0.285935i \(0.0923042\pi\)
−0.231497 + 0.972836i \(0.574362\pi\)
\(102\) 0.00694308 0.0259119i 0.000687468 0.00256566i
\(103\) −6.34652 10.9925i −0.625342 1.08312i −0.988475 0.151386i \(-0.951626\pi\)
0.363133 0.931737i \(-0.381707\pi\)
\(104\) 4.34872 6.33812i 0.426427 0.621504i
\(105\) 0.143397 + 1.83760i 0.0139941 + 0.179332i
\(106\) 1.47472 + 5.50372i 0.143237 + 0.534569i
\(107\) 11.7922 1.14000 0.569999 0.821645i \(-0.306944\pi\)
0.569999 + 0.821645i \(0.306944\pi\)
\(108\) 1.66088 0.159819
\(109\) 0.888593 + 3.31627i 0.0851118 + 0.317641i 0.995335 0.0964758i \(-0.0307570\pi\)
−0.910224 + 0.414117i \(0.864090\pi\)
\(110\) 0.348558 0.0933959i 0.0332337 0.00890495i
\(111\) −6.80150 1.82246i −0.645569 0.172980i
\(112\) −5.41113 1.00661i −0.511304 0.0951152i
\(113\) 7.53468 + 13.0504i 0.708803 + 1.22768i 0.965301 + 0.261138i \(0.0840978\pi\)
−0.256498 + 0.966545i \(0.582569\pi\)
\(114\) 0.508468i 0.0476224i
\(115\) −2.14740 0.575395i −0.200246 0.0536559i
\(116\) 11.7441 + 6.78045i 1.09041 + 0.629549i
\(117\) 3.39969 + 1.20088i 0.314301 + 0.111021i
\(118\) 5.15201i 0.474281i
\(119\) −0.119824 0.0222902i −0.0109842 0.00204334i
\(120\) 0.742594 1.28621i 0.0677893 0.117414i
\(121\) 8.84110 + 5.10441i 0.803737 + 0.464038i
\(122\) −0.569952 + 0.152718i −0.0516010 + 0.0138265i
\(123\) −6.26844 + 6.26844i −0.565206 + 0.565206i
\(124\) 1.73580 + 6.47810i 0.155879 + 0.581750i
\(125\) −4.68705 + 4.68705i −0.419223 + 0.419223i
\(126\) 0.119865 + 1.53605i 0.0106784 + 0.136842i
\(127\) −6.17582 3.56561i −0.548016 0.316397i 0.200306 0.979733i \(-0.435806\pi\)
−0.748321 + 0.663337i \(0.769140\pi\)
\(128\) 8.14339 + 8.14339i 0.719781 + 0.719781i
\(129\) 0.746085 1.29226i 0.0656891 0.113777i
\(130\) 1.11153 0.950851i 0.0974874 0.0833951i
\(131\) −11.8790 + 6.85837i −1.03788 + 0.599219i −0.919231 0.393718i \(-0.871189\pi\)
−0.118646 + 0.992937i \(0.537855\pi\)
\(132\) −1.42698 + 0.382359i −0.124203 + 0.0332801i
\(133\) −2.30314 + 0.179724i −0.199707 + 0.0155841i
\(134\) −1.26376 + 0.729630i −0.109172 + 0.0630304i
\(135\) 0.672922 + 0.180309i 0.0579159 + 0.0155185i
\(136\) 0.0694428 + 0.0694428i 0.00595467 + 0.00595467i
\(137\) 8.25603 + 8.25603i 0.705361 + 0.705361i 0.965556 0.260195i \(-0.0837870\pi\)
−0.260195 + 0.965556i \(0.583787\pi\)
\(138\) −1.79501 0.480971i −0.152801 0.0409430i
\(139\) −0.834941 + 0.482054i −0.0708188 + 0.0408873i −0.534991 0.844858i \(-0.679685\pi\)
0.464172 + 0.885745i \(0.346352\pi\)
\(140\) −2.76223 1.31977i −0.233451 0.111541i
\(141\) −12.1286 + 3.24985i −1.02141 + 0.273687i
\(142\) 0.416818 0.240650i 0.0349786 0.0201949i
\(143\) −3.19738 0.249103i −0.267378 0.0208311i
\(144\) −1.04015 + 1.80159i −0.0866792 + 0.150133i
\(145\) 4.02213 + 4.02213i 0.334019 + 0.334019i
\(146\) 7.97393 + 4.60375i 0.659927 + 0.381009i
\(147\) 6.91526 1.08587i 0.570361 0.0895612i
\(148\) 8.26961 8.26961i 0.679757 0.679757i
\(149\) 0.600793 + 2.24219i 0.0492189 + 0.183687i 0.986159 0.165803i \(-0.0530215\pi\)
−0.936940 + 0.349490i \(0.886355\pi\)
\(150\) −1.85902 + 1.85902i −0.151789 + 0.151789i
\(151\) −13.1629 + 3.52700i −1.07118 + 0.287023i −0.750980 0.660325i \(-0.770418\pi\)
−0.320205 + 0.947348i \(0.603752\pi\)
\(152\) 1.61206 + 0.930720i 0.130755 + 0.0754914i
\(153\) −0.0230331 + 0.0398944i −0.00186211 + 0.00322527i
\(154\) −0.456605 1.29214i −0.0367943 0.104123i
\(155\) 2.81310i 0.225954i
\(156\) −4.55055 + 3.89274i −0.364336 + 0.311669i
\(157\) 3.81144 + 2.20054i 0.304186 + 0.175622i 0.644322 0.764754i \(-0.277140\pi\)
−0.340136 + 0.940376i \(0.610473\pi\)
\(158\) 5.32857 + 1.42778i 0.423918 + 0.113588i
\(159\) 9.78449i 0.775960i
\(160\) 1.90717 + 3.30331i 0.150775 + 0.261150i
\(161\) −1.54412 + 8.30061i −0.121694 + 0.654180i
\(162\) 0.562494 + 0.150720i 0.0441937 + 0.0118417i
\(163\) −0.294730 + 0.0789727i −0.0230850 + 0.00618562i −0.270343 0.962764i \(-0.587137\pi\)
0.247258 + 0.968950i \(0.420470\pi\)
\(164\) −3.81074 14.2219i −0.297569 1.11054i
\(165\) −0.619666 −0.0482409
\(166\) 2.88542 0.223952
\(167\) 0.106108 + 0.396000i 0.00821087 + 0.0306434i 0.969910 0.243465i \(-0.0782840\pi\)
−0.961699 + 0.274108i \(0.911617\pi\)
\(168\) −5.08932 2.43163i −0.392650 0.187604i
\(169\) −12.1292 + 4.67791i −0.933014 + 0.359839i
\(170\) 0.00934431 + 0.0161848i 0.000716676 + 0.00124132i
\(171\) −0.225988 + 0.843398i −0.0172817 + 0.0644963i
\(172\) 1.23916 + 2.14629i 0.0944851 + 0.163653i
\(173\) −1.03796 + 1.79781i −0.0789149 + 0.136685i −0.902782 0.430098i \(-0.858479\pi\)
0.823867 + 0.566783i \(0.191812\pi\)
\(174\) 3.36209 + 3.36209i 0.254879 + 0.254879i
\(175\) 9.07766 + 7.76347i 0.686207 + 0.586863i
\(176\) 0.478915 1.78734i 0.0360996 0.134725i
\(177\) 2.28980 8.54567i 0.172112 0.642332i
\(178\) 3.04514i 0.228243i
\(179\) 11.6148 6.70581i 0.868131 0.501216i 0.00140439 0.999999i \(-0.499553\pi\)
0.866727 + 0.498783i \(0.166220\pi\)
\(180\) −0.818174 + 0.818174i −0.0609831 + 0.0609831i
\(181\) −2.32661 −0.172935 −0.0864677 0.996255i \(-0.527558\pi\)
−0.0864677 + 0.996255i \(0.527558\pi\)
\(182\) −3.92857 3.92759i −0.291205 0.291132i
\(183\) 1.01326 0.0749022
\(184\) 4.81054 4.81054i 0.354638 0.354638i
\(185\) 4.24827 2.45274i 0.312339 0.180329i
\(186\) 2.35147i 0.172418i
\(187\) 0.0106051 0.0395787i 0.000775520 0.00289428i
\(188\) 5.39762 20.1442i 0.393662 1.46917i
\(189\) 0.483875 2.60113i 0.0351967 0.189204i
\(190\) 0.250478 + 0.250478i 0.0181716 + 0.0181716i
\(191\) −11.4976 + 19.9143i −0.831934 + 1.44095i 0.0645691 + 0.997913i \(0.479433\pi\)
−0.896503 + 0.443038i \(0.853901\pi\)
\(192\) −0.486103 0.841955i −0.0350815 0.0607629i
\(193\) 1.74638 6.51759i 0.125707 0.469146i −0.874157 0.485644i \(-0.838585\pi\)
0.999864 + 0.0164980i \(0.00525171\pi\)
\(194\) −0.324719 0.562430i −0.0233135 0.0403801i
\(195\) −2.26630 + 1.08316i −0.162293 + 0.0775670i
\(196\) −4.18084 + 10.8484i −0.298632 + 0.774889i
\(197\) 3.30495 + 12.3342i 0.235468 + 0.878778i 0.977937 + 0.208898i \(0.0669876\pi\)
−0.742470 + 0.669880i \(0.766346\pi\)
\(198\) −0.517977 −0.0368110
\(199\) 0.830455 0.0588694 0.0294347 0.999567i \(-0.490629\pi\)
0.0294347 + 0.999567i \(0.490629\pi\)
\(200\) −2.49105 9.29672i −0.176144 0.657377i
\(201\) 2.42048 0.648566i 0.170728 0.0457463i
\(202\) −8.21665 2.20165i −0.578122 0.154907i
\(203\) 14.0404 16.4172i 0.985444 1.15226i
\(204\) −0.0382552 0.0662600i −0.00267840 0.00463913i
\(205\) 6.17583i 0.431339i
\(206\) 7.13977 + 1.91310i 0.497451 + 0.133292i
\(207\) 2.76363 + 1.59558i 0.192085 + 0.110900i
\(208\) −1.37269 7.37395i −0.0951792 0.511292i
\(209\) 0.776649i 0.0537220i
\(210\) −0.815726 0.697631i −0.0562904 0.0481411i
\(211\) 11.5683 20.0368i 0.796392 1.37939i −0.125560 0.992086i \(-0.540073\pi\)
0.921952 0.387305i \(-0.126594\pi\)
\(212\) 14.0737 + 8.12545i 0.966585 + 0.558058i
\(213\) −0.798336 + 0.213913i −0.0547011 + 0.0146571i
\(214\) −4.85574 + 4.85574i −0.331931 + 0.331931i
\(215\) 0.269052 + 1.00411i 0.0183492 + 0.0684801i
\(216\) −1.50746 + 1.50746i −0.102570 + 0.102570i
\(217\) 10.6511 0.831155i 0.723045 0.0564225i
\(218\) −1.73146 0.999657i −0.117269 0.0677053i
\(219\) −11.1803 11.1803i −0.755492 0.755492i
\(220\) 0.514596 0.891307i 0.0346941 0.0600919i
\(221\) −0.0303969 0.163289i −0.00204472 0.0109840i
\(222\) 3.55112 2.05024i 0.238336 0.137603i
\(223\) −13.8755 + 3.71792i −0.929171 + 0.248971i −0.691501 0.722375i \(-0.743050\pi\)
−0.237670 + 0.971346i \(0.576384\pi\)
\(224\) 11.9437 8.19701i 0.798021 0.547686i
\(225\) 3.90981 2.25733i 0.260654 0.150489i
\(226\) −8.47643 2.27125i −0.563844 0.151081i
\(227\) −14.5357 14.5357i −0.964765 0.964765i 0.0346350 0.999400i \(-0.488973\pi\)
−0.999400 + 0.0346350i \(0.988973\pi\)
\(228\) −1.02545 1.02545i −0.0679119 0.0679119i
\(229\) 3.99397 + 1.07018i 0.263929 + 0.0707196i 0.388357 0.921509i \(-0.373043\pi\)
−0.124428 + 0.992229i \(0.539709\pi\)
\(230\) 1.12118 0.647313i 0.0739283 0.0426826i
\(231\) 0.183085 + 2.34621i 0.0120461 + 0.154369i
\(232\) −16.8133 + 4.50512i −1.10385 + 0.295775i
\(233\) −1.72269 + 0.994594i −0.112857 + 0.0651580i −0.555366 0.831606i \(-0.687422\pi\)
0.442509 + 0.896764i \(0.354088\pi\)
\(234\) −1.89440 + 0.905414i −0.123841 + 0.0591888i
\(235\) 4.37380 7.57564i 0.285315 0.494180i
\(236\) 10.3903 + 10.3903i 0.676348 + 0.676348i
\(237\) −8.20394 4.73655i −0.532903 0.307672i
\(238\) 0.0585190 0.0401619i 0.00379322 0.00260331i
\(239\) 10.1339 10.1339i 0.655510 0.655510i −0.298805 0.954314i \(-0.596588\pi\)
0.954314 + 0.298805i \(0.0965879\pi\)
\(240\) −0.375097 1.39988i −0.0242124 0.0903620i
\(241\) −19.5579 + 19.5579i −1.25984 + 1.25984i −0.308664 + 0.951171i \(0.599882\pi\)
−0.951171 + 0.308664i \(0.900118\pi\)
\(242\) −5.74241 + 1.53867i −0.369136 + 0.0989097i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −0.841452 + 1.45744i −0.0538684 + 0.0933029i
\(245\) −2.87164 + 3.94147i −0.183462 + 0.251811i
\(246\) 5.16236i 0.329140i
\(247\) −1.35757 2.84044i −0.0863800 0.180733i
\(248\) −7.45513 4.30422i −0.473401 0.273318i
\(249\) −4.78606 1.28242i −0.303304 0.0812701i
\(250\) 3.86002i 0.244129i
\(251\) −3.92297 6.79478i −0.247616 0.428883i 0.715248 0.698871i \(-0.246314\pi\)
−0.962864 + 0.269988i \(0.912980\pi\)
\(252\) 3.33955 + 2.85607i 0.210372 + 0.179916i
\(253\) −2.74175 0.734651i −0.172373 0.0461871i
\(254\) 4.01127 1.07482i 0.251690 0.0674401i
\(255\) −0.00830614 0.0309989i −0.000520151 0.00194123i
\(256\) −4.76207 −0.297629
\(257\) −0.363807 −0.0226936 −0.0113468 0.999936i \(-0.503612\pi\)
−0.0113468 + 0.999936i \(0.503612\pi\)
\(258\) 0.224900 + 0.839337i 0.0140017 + 0.0522549i
\(259\) −10.5419 15.3604i −0.655041 0.954446i
\(260\) 0.324044 4.15928i 0.0200964 0.257948i
\(261\) −4.08244 7.07099i −0.252697 0.437683i
\(262\) 2.06739 7.71559i 0.127724 0.476671i
\(263\) −11.1731 19.3524i −0.688963 1.19332i −0.972174 0.234261i \(-0.924733\pi\)
0.283211 0.959058i \(-0.408600\pi\)
\(264\) 0.948127 1.64220i 0.0583532 0.101071i
\(265\) 4.81997 + 4.81997i 0.296088 + 0.296088i
\(266\) 0.874367 1.02238i 0.0536109 0.0626861i
\(267\) −1.35341 + 5.05100i −0.0828274 + 0.309116i
\(268\) −1.07719 + 4.02014i −0.0658000 + 0.245569i
\(269\) 26.2941i 1.60318i 0.597874 + 0.801590i \(0.296012\pi\)
−0.597874 + 0.801590i \(0.703988\pi\)
\(270\) −0.351339 + 0.202846i −0.0213818 + 0.0123448i
\(271\) 0.167050 0.167050i 0.0101476 0.0101476i −0.702015 0.712162i \(-0.747716\pi\)
0.712162 + 0.702015i \(0.247716\pi\)
\(272\) 0.0958314 0.00581063
\(273\) 4.77073 + 8.26076i 0.288738 + 0.499964i
\(274\) −6.79925 −0.410758
\(275\) −2.83953 + 2.83953i −0.171230 + 0.171230i
\(276\) −4.59006 + 2.65007i −0.276289 + 0.159516i
\(277\) 1.88689i 0.113372i 0.998392 + 0.0566860i \(0.0180534\pi\)
−0.998392 + 0.0566860i \(0.981947\pi\)
\(278\) 0.145310 0.542305i 0.00871513 0.0325253i
\(279\) 1.04511 3.90039i 0.0625689 0.233510i
\(280\) 3.70492 1.30922i 0.221411 0.0782407i
\(281\) 14.2823 + 14.2823i 0.852011 + 0.852011i 0.990381 0.138370i \(-0.0441863\pi\)
−0.138370 + 0.990381i \(0.544186\pi\)
\(282\) 3.65605 6.33246i 0.217714 0.377092i
\(283\) 8.56272 + 14.8311i 0.509001 + 0.881615i 0.999946 + 0.0104246i \(0.00331831\pi\)
−0.490945 + 0.871191i \(0.663348\pi\)
\(284\) 0.355285 1.32594i 0.0210823 0.0786802i
\(285\) −0.304145 0.526794i −0.0180160 0.0312046i
\(286\) 1.41917 1.21402i 0.0839174 0.0717867i
\(287\) −23.3833 + 1.82470i −1.38027 + 0.107709i
\(288\) −1.41708 5.28861i −0.0835022 0.311634i
\(289\) −16.9979 −0.999875
\(290\) −3.31242 −0.194512
\(291\) 0.288642 + 1.07723i 0.0169205 + 0.0631481i
\(292\) 25.3659 6.79677i 1.48443 0.397751i
\(293\) −0.0551536 0.0147783i −0.00322210 0.000863360i 0.257208 0.966356i \(-0.417198\pi\)
−0.260430 + 0.965493i \(0.583864\pi\)
\(294\) −2.40040 + 3.29466i −0.139994 + 0.192149i
\(295\) 3.08172 + 5.33770i 0.179425 + 0.310773i
\(296\) 15.0114i 0.872519i
\(297\) 0.859171 + 0.230214i 0.0498542 + 0.0133584i
\(298\) −1.17067 0.675886i −0.0678150 0.0391530i
\(299\) −11.3116 + 2.10570i −0.654165 + 0.121776i
\(300\) 7.49833i 0.432916i
\(301\) 3.72234 1.31537i 0.214552 0.0758168i
\(302\) 3.96783 6.87249i 0.228323 0.395467i
\(303\) 12.6505 + 7.30376i 0.726752 + 0.419590i
\(304\) 1.75452 0.470123i 0.100629 0.0269634i
\(305\) −0.499145 + 0.499145i −0.0285809 + 0.0285809i
\(306\) −0.00694308 0.0259119i −0.000396910 0.00148129i
\(307\) 17.7169 17.7169i 1.01116 1.01116i 0.0112203 0.999937i \(-0.496428\pi\)
0.999937 0.0112203i \(-0.00357162\pi\)
\(308\) −3.52675 1.68505i −0.200955 0.0960144i
\(309\) −10.9925 6.34652i −0.625342 0.361041i
\(310\) −1.15836 1.15836i −0.0657907 0.0657907i
\(311\) −9.52232 + 16.4931i −0.539961 + 0.935240i 0.458944 + 0.888465i \(0.348228\pi\)
−0.998905 + 0.0467749i \(0.985106\pi\)
\(312\) 0.597041 7.66334i 0.0338008 0.433851i
\(313\) −2.59097 + 1.49590i −0.146450 + 0.0845530i −0.571435 0.820648i \(-0.693613\pi\)
0.424984 + 0.905201i \(0.360280\pi\)
\(314\) −2.47558 + 0.663329i −0.139705 + 0.0374338i
\(315\) 1.04299 + 1.51971i 0.0587657 + 0.0856262i
\(316\) 13.6258 7.86686i 0.766511 0.442545i
\(317\) 0.683930 + 0.183258i 0.0384133 + 0.0102928i 0.277975 0.960588i \(-0.410337\pi\)
−0.239561 + 0.970881i \(0.577004\pi\)
\(318\) 4.02900 + 4.02900i 0.225935 + 0.225935i
\(319\) 5.13536 + 5.13536i 0.287525 + 0.287525i
\(320\) 0.654219 + 0.175298i 0.0365720 + 0.00979943i
\(321\) 10.2124 5.89611i 0.569999 0.329089i
\(322\) −2.78215 4.05381i −0.155043 0.225910i
\(323\) 0.0388521 0.0104104i 0.00216179 0.000579249i
\(324\) 1.43837 0.830442i 0.0799093 0.0461357i
\(325\) −5.42156 + 15.3485i −0.300734 + 0.851379i
\(326\) 0.0888434 0.153881i 0.00492058 0.00852269i
\(327\) 2.42768 + 2.42768i 0.134251 + 0.134251i
\(328\) 16.3669 + 9.44941i 0.903708 + 0.521756i
\(329\) −29.9755 14.3220i −1.65261 0.789598i
\(330\) 0.255162 0.255162i 0.0140462 0.0140462i
\(331\) −2.45661 9.16821i −0.135028 0.503930i −0.999998 0.00210683i \(-0.999329\pi\)
0.864970 0.501823i \(-0.167337\pi\)
\(332\) 5.81913 5.81913i 0.319366 0.319366i
\(333\) −6.80150 + 1.82246i −0.372720 + 0.0998699i
\(334\) −0.206755 0.119370i −0.0113131 0.00653164i
\(335\) −0.872869 + 1.51185i −0.0476899 + 0.0826014i
\(336\) −5.18948 + 1.83382i −0.283109 + 0.100043i
\(337\) 28.3561i 1.54465i −0.635226 0.772327i \(-0.719093\pi\)
0.635226 0.772327i \(-0.280907\pi\)
\(338\) 3.06825 6.92073i 0.166891 0.376438i
\(339\) 13.0504 + 7.53468i 0.708803 + 0.409228i
\(340\) 0.0514856 + 0.0137955i 0.00279220 + 0.000748167i
\(341\) 3.59170i 0.194502i
\(342\) −0.254234 0.440346i −0.0137474 0.0238112i
\(343\) 15.7718 + 9.70820i 0.851599 + 0.524194i
\(344\) −3.07272 0.823332i −0.165670 0.0443911i
\(345\) −2.14740 + 0.575395i −0.115612 + 0.0309782i
\(346\) −0.312884 1.16770i −0.0168207 0.0627758i
\(347\) −22.3797 −1.20140 −0.600702 0.799473i \(-0.705112\pi\)
−0.600702 + 0.799473i \(0.705112\pi\)
\(348\) 13.5609 0.726941
\(349\) −2.36174 8.81412i −0.126421 0.471809i 0.873465 0.486886i \(-0.161867\pi\)
−0.999886 + 0.0150770i \(0.995201\pi\)
\(350\) −6.93475 + 0.541150i −0.370678 + 0.0289257i
\(351\) 3.54466 0.659853i 0.189200 0.0352204i
\(352\) 2.43503 + 4.21759i 0.129787 + 0.224798i
\(353\) 0.743912 2.77632i 0.0395945 0.147769i −0.943299 0.331945i \(-0.892295\pi\)
0.982893 + 0.184177i \(0.0589618\pi\)
\(354\) 2.57600 + 4.46177i 0.136913 + 0.237140i
\(355\) 0.287894 0.498648i 0.0152798 0.0264655i
\(356\) −6.14126 6.14126i −0.325486 0.325486i
\(357\) −0.114916 + 0.0406080i −0.00608198 + 0.00214920i
\(358\) −2.02140 + 7.54396i −0.106834 + 0.398711i
\(359\) 2.08854 7.79454i 0.110229 0.411380i −0.888657 0.458573i \(-0.848361\pi\)
0.998886 + 0.0471928i \(0.0150275\pi\)
\(360\) 1.48519i 0.0782763i
\(361\) −15.7942 + 9.11880i −0.831275 + 0.479937i
\(362\) 0.958038 0.958038i 0.0503534 0.0503534i
\(363\) 10.2088 0.535824
\(364\) −15.8438 + 0.00198181i −0.830442 + 0.000103875i
\(365\) 11.0151 0.576557
\(366\) −0.417234 + 0.417234i −0.0218092 + 0.0218092i
\(367\) −1.45417 + 0.839564i −0.0759069 + 0.0438249i −0.537473 0.843281i \(-0.680621\pi\)
0.461566 + 0.887106i \(0.347288\pi\)
\(368\) 6.63857i 0.346060i
\(369\) −2.29441 + 8.56284i −0.119442 + 0.445764i
\(370\) −0.739354 + 2.75931i −0.0384372 + 0.143450i
\(371\) 16.8255 19.6737i 0.873537 1.02141i
\(372\) 4.74230 + 4.74230i 0.245877 + 0.245877i
\(373\) 16.1379 27.9516i 0.835587 1.44728i −0.0579649 0.998319i \(-0.518461\pi\)
0.893552 0.448960i \(-0.148206\pi\)
\(374\) 0.0119306 + 0.0206644i 0.000616916 + 0.00106853i
\(375\) −1.71558 + 6.40263i −0.0885922 + 0.330630i
\(376\) 13.3844 + 23.1824i 0.690246 + 1.19554i
\(377\) 27.7580 + 9.80502i 1.42961 + 0.504984i
\(378\) 0.871831 + 1.27033i 0.0448421 + 0.0653385i
\(379\) 5.38351 + 20.0915i 0.276532 + 1.03203i 0.954808 + 0.297224i \(0.0960609\pi\)
−0.678276 + 0.734808i \(0.737272\pi\)
\(380\) 1.01030 0.0518272
\(381\) −7.13122 −0.365344
\(382\) −3.46582 12.9346i −0.177327 0.661793i
\(383\) −27.1672 + 7.27943i −1.38818 + 0.371962i −0.874086 0.485772i \(-0.838539\pi\)
−0.514094 + 0.857734i \(0.671872\pi\)
\(384\) 11.1241 + 2.98069i 0.567673 + 0.152108i
\(385\) −1.24596 1.06558i −0.0635002 0.0543072i
\(386\) 1.96466 + 3.40289i 0.0999986 + 0.173203i
\(387\) 1.49217i 0.0758513i
\(388\) −1.78915 0.479401i −0.0908302 0.0243379i
\(389\) −9.23904 5.33416i −0.468438 0.270453i 0.247148 0.968978i \(-0.420507\pi\)
−0.715586 + 0.698525i \(0.753840\pi\)
\(390\) 0.487186 1.37922i 0.0246696 0.0698398i
\(391\) 0.147004i 0.00743433i
\(392\) −6.05168 13.6409i −0.305656 0.688972i
\(393\) −6.85837 + 11.8790i −0.345959 + 0.599219i
\(394\) −6.43981 3.71803i −0.324433 0.187312i
\(395\) 6.37466 1.70809i 0.320744 0.0859431i
\(396\) −1.04462 + 1.04462i −0.0524944 + 0.0524944i
\(397\) −0.614054 2.29168i −0.0308185 0.115016i 0.948803 0.315868i \(-0.102296\pi\)
−0.979622 + 0.200852i \(0.935629\pi\)
\(398\) −0.341960 + 0.341960i −0.0171409 + 0.0171409i
\(399\) −1.90471 + 1.30721i −0.0953549 + 0.0654426i
\(400\) −8.13359 4.69593i −0.406679 0.234797i
\(401\) 22.0398 + 22.0398i 1.10061 + 1.10061i 0.994336 + 0.106278i \(0.0338933\pi\)
0.106278 + 0.994336i \(0.466107\pi\)
\(402\) −0.729630 + 1.26376i −0.0363906 + 0.0630304i
\(403\) 6.27823 + 13.1359i 0.312741 + 0.654347i
\(404\) −21.0110 + 12.1307i −1.04534 + 0.603525i
\(405\) 0.672922 0.180309i 0.0334378 0.00895963i
\(406\) 0.978682 + 12.5416i 0.0485712 + 0.622432i
\(407\) 5.42410 3.13160i 0.268862 0.155228i
\(408\) 0.0948606 + 0.0254178i 0.00469630 + 0.00125837i
\(409\) 16.2736 + 16.2736i 0.804679 + 0.804679i 0.983823 0.179144i \(-0.0573328\pi\)
−0.179144 + 0.983823i \(0.557333\pi\)
\(410\) 2.54305 + 2.54305i 0.125592 + 0.125592i
\(411\) 11.2780 + 3.02192i 0.556300 + 0.149060i
\(412\) 18.2573 10.5408i 0.899471 0.519310i
\(413\) 19.2994 13.2452i 0.949659 0.651756i
\(414\) −1.79501 + 0.480971i −0.0882199 + 0.0236385i
\(415\) 2.98941 1.72594i 0.146745 0.0847230i
\(416\) 16.2779 + 11.1686i 0.798090 + 0.547586i
\(417\) −0.482054 + 0.834941i −0.0236063 + 0.0408873i
\(418\) 0.319804 + 0.319804i 0.0156421 + 0.0156421i
\(419\) 15.0030 + 8.66198i 0.732944 + 0.423166i 0.819498 0.573082i \(-0.194252\pi\)
−0.0865540 + 0.996247i \(0.527586\pi\)
\(420\) −3.05205 + 0.238165i −0.148925 + 0.0116213i
\(421\) −28.4825 + 28.4825i −1.38815 + 1.38815i −0.558947 + 0.829203i \(0.688794\pi\)
−0.829203 + 0.558947i \(0.811206\pi\)
\(422\) 3.48714 + 13.0142i 0.169751 + 0.633520i
\(423\) −8.87876 + 8.87876i −0.431700 + 0.431700i
\(424\) −20.1485 + 5.39877i −0.978497 + 0.262187i
\(425\) −0.180110 0.103987i −0.00873662 0.00504409i
\(426\) 0.240650 0.416818i 0.0116595 0.0201949i
\(427\) 2.03736 + 1.74241i 0.0985949 + 0.0843211i
\(428\) 19.5855i 0.946702i
\(429\) −2.89356 + 1.38296i −0.139702 + 0.0667698i
\(430\) −0.524258 0.302680i −0.0252819 0.0145965i
\(431\) −32.7297 8.76990i −1.57653 0.422431i −0.638683 0.769470i \(-0.720521\pi\)
−0.937851 + 0.347039i \(0.887187\pi\)
\(432\) 2.08030i 0.100089i
\(433\) 15.2303 + 26.3796i 0.731921 + 1.26772i 0.956061 + 0.293167i \(0.0947091\pi\)
−0.224141 + 0.974557i \(0.571958\pi\)
\(434\) −4.04361 + 4.72811i −0.194099 + 0.226956i
\(435\) 5.49433 + 1.47220i 0.263433 + 0.0705866i
\(436\) −5.50794 + 1.47585i −0.263783 + 0.0706804i
\(437\) −0.721163 2.69142i −0.0344979 0.128748i
\(438\) 9.20750 0.439951
\(439\) −2.72571 −0.130091 −0.0650455 0.997882i \(-0.520719\pi\)
−0.0650455 + 0.997882i \(0.520719\pi\)
\(440\) 0.341912 + 1.27603i 0.0163000 + 0.0608324i
\(441\) 5.44586 4.39802i 0.259327 0.209430i
\(442\) 0.0797547 + 0.0547214i 0.00379355 + 0.00260283i
\(443\) −17.3901 30.1206i −0.826229 1.43107i −0.900976 0.433869i \(-0.857148\pi\)
0.0747467 0.997203i \(-0.476185\pi\)
\(444\) 3.02689 11.2965i 0.143650 0.536108i
\(445\) −1.82148 3.15490i −0.0863465 0.149557i
\(446\) 4.18262 7.24452i 0.198053 0.343038i
\(447\) 1.64140 + 1.64140i 0.0776355 + 0.0776355i
\(448\) 0.470426 2.52883i 0.0222255 0.119476i
\(449\) 9.41298 35.1297i 0.444226 1.65787i −0.273746 0.961802i \(-0.588263\pi\)
0.717972 0.696072i \(-0.245070\pi\)
\(450\) −0.680450 + 2.53947i −0.0320767 + 0.119712i
\(451\) 7.88516i 0.371298i
\(452\) −21.6753 + 12.5142i −1.01952 + 0.588620i
\(453\) −9.63593 + 9.63593i −0.452736 + 0.452736i
\(454\) 11.9708 0.561818
\(455\) −6.41949 1.71924i −0.300950 0.0805990i
\(456\) 1.86144 0.0871700
\(457\) 22.5125 22.5125i 1.05309 1.05309i 0.0545801 0.998509i \(-0.482618\pi\)
0.998509 0.0545801i \(-0.0173820\pi\)
\(458\) −2.08529 + 1.20394i −0.0974392 + 0.0562566i
\(459\) 0.0460661i 0.00215018i
\(460\) 0.955664 3.56659i 0.0445581 0.166293i
\(461\) −4.67038 + 17.4301i −0.217521 + 0.811800i 0.767743 + 0.640758i \(0.221380\pi\)
−0.985264 + 0.171042i \(0.945287\pi\)
\(462\) −1.04150 0.890719i −0.0484549 0.0414400i
\(463\) 16.2446 + 16.2446i 0.754951 + 0.754951i 0.975399 0.220448i \(-0.0707518\pi\)
−0.220448 + 0.975399i \(0.570752\pi\)
\(464\) −8.49270 + 14.7098i −0.394264 + 0.682885i
\(465\) 1.40655 + 2.43622i 0.0652273 + 0.112977i
\(466\) 0.299810 1.11891i 0.0138884 0.0518323i
\(467\) −18.7401 32.4588i −0.867188 1.50201i −0.864859 0.502016i \(-0.832592\pi\)
−0.00232895 0.999997i \(-0.500741\pi\)
\(468\) −1.99452 + 5.64649i −0.0921967 + 0.261009i
\(469\) 5.98216 + 2.85821i 0.276230 + 0.131980i
\(470\) 1.31844 + 4.92047i 0.0608149 + 0.226964i
\(471\) 4.40107 0.202791
\(472\) −18.8609 −0.868144
\(473\) 0.343519 + 1.28203i 0.0157950 + 0.0589478i
\(474\) 5.32857 1.42778i 0.244749 0.0655803i
\(475\) −3.80766 1.02026i −0.174707 0.0468127i
\(476\) 0.0370215 0.199013i 0.00169688 0.00912177i
\(477\) −4.89224 8.47362i −0.224000 0.387980i
\(478\) 8.34579i 0.381728i
\(479\) 25.8166 + 6.91755i 1.17959 + 0.316071i 0.794765 0.606918i \(-0.207594\pi\)
0.384828 + 0.922988i \(0.374261\pi\)
\(480\) 3.30331 + 1.90717i 0.150775 + 0.0870499i
\(481\) 14.3636 20.9344i 0.654922 0.954528i
\(482\) 16.1069i 0.733649i
\(483\) 2.81306 + 7.96060i 0.127999 + 0.362220i
\(484\) −8.47784 + 14.6840i −0.385356 + 0.667456i
\(485\) −0.672845 0.388467i −0.0305523 0.0176394i
\(486\) 0.562494 0.150720i 0.0255153 0.00683679i
\(487\) −17.5241 + 17.5241i −0.794093 + 0.794093i −0.982157 0.188064i \(-0.939779\pi\)
0.188064 + 0.982157i \(0.439779\pi\)
\(488\) −0.559083 2.08653i −0.0253085 0.0944527i
\(489\) −0.215757 + 0.215757i −0.00975689 + 0.00975689i
\(490\) −0.440529 2.80546i −0.0199011 0.126738i
\(491\) 9.62086 + 5.55460i 0.434183 + 0.250676i 0.701127 0.713036i \(-0.252681\pi\)
−0.266944 + 0.963712i \(0.586014\pi\)
\(492\) −10.4111 10.4111i −0.469371 0.469371i
\(493\) −0.188062 + 0.325733i −0.00846989 + 0.0146703i
\(494\) 1.72863 + 0.610608i 0.0777748 + 0.0274726i
\(495\) −0.536646 + 0.309833i −0.0241204 + 0.0139259i
\(496\) −8.11399 + 2.17414i −0.364329 + 0.0976216i
\(497\) −1.97307 0.942711i −0.0885041 0.0422863i
\(498\) 2.49884 1.44271i 0.111976 0.0646493i
\(499\) −0.179598 0.0481231i −0.00803990 0.00215428i 0.254797 0.966995i \(-0.417991\pi\)
−0.262837 + 0.964840i \(0.584658\pi\)
\(500\) −7.78465 7.78465i −0.348140 0.348140i
\(501\) 0.289892 + 0.289892i 0.0129514 + 0.0129514i
\(502\) 4.41330 + 1.18254i 0.196975 + 0.0527793i
\(503\) 0.488766 0.282189i 0.0217930 0.0125822i −0.489064 0.872248i \(-0.662662\pi\)
0.510857 + 0.859666i \(0.329328\pi\)
\(504\) −5.62330 + 0.438812i −0.250482 + 0.0195462i
\(505\) −9.82973 + 2.63387i −0.437417 + 0.117206i
\(506\) 1.43149 0.826474i 0.0636377 0.0367412i
\(507\) −8.16523 + 10.1158i −0.362631 + 0.449258i
\(508\) 5.92207 10.2573i 0.262749 0.455095i
\(509\) 16.1364 + 16.1364i 0.715235 + 0.715235i 0.967625 0.252390i \(-0.0812167\pi\)
−0.252390 + 0.967625i \(0.581217\pi\)
\(510\) 0.0161848 + 0.00934431i 0.000716676 + 0.000413773i
\(511\) −3.25450 41.7059i −0.143971 1.84496i
\(512\) −14.3259 + 14.3259i −0.633121 + 0.633121i
\(513\) 0.225988 + 0.843398i 0.00997761 + 0.0372369i
\(514\) 0.149806 0.149806i 0.00660767 0.00660767i
\(515\) 8.54144 2.28867i 0.376381 0.100851i
\(516\) 2.14629 + 1.23916i 0.0944851 + 0.0545510i
\(517\) 5.58436 9.67239i 0.245600 0.425391i
\(518\) 10.6659 + 1.98412i 0.468632 + 0.0871772i
\(519\) 2.07593i 0.0911231i
\(520\) 3.48095 + 4.06917i 0.152650 + 0.178445i
\(521\) 20.6918 + 11.9464i 0.906523 + 0.523381i 0.879311 0.476249i \(-0.158004\pi\)
0.0272119 + 0.999630i \(0.491337\pi\)
\(522\) 4.59270 + 1.23061i 0.201017 + 0.0538623i
\(523\) 32.7387i 1.43156i 0.698324 + 0.715782i \(0.253929\pi\)
−0.698324 + 0.715782i \(0.746071\pi\)
\(524\) −11.3910 19.7297i −0.497616 0.861897i
\(525\) 11.7432 + 2.18453i 0.512516 + 0.0953408i
\(526\) 12.5696 + 3.36802i 0.548061 + 0.146853i
\(527\) −0.179676 + 0.0481440i −0.00782680 + 0.00209719i
\(528\) −0.478915 1.78734i −0.0208421 0.0777838i
\(529\) 12.8165 0.557239
\(530\) −3.96948 −0.172423
\(531\) −2.28980 8.54567i −0.0993691 0.370850i
\(532\) −0.298501 3.82524i −0.0129417 0.165845i
\(533\) −13.7831 28.8384i −0.597013 1.24913i
\(534\) −1.52257 2.63717i −0.0658881 0.114122i
\(535\) −2.12625 + 7.93526i −0.0919256 + 0.343071i
\(536\) −2.67109 4.62646i −0.115373 0.199833i
\(537\) 6.70581 11.6148i 0.289377 0.501216i
\(538\) −10.8272 10.8272i −0.466796 0.466796i
\(539\) −3.66644 + 5.03237i −0.157925 + 0.216760i
\(540\) −0.299472 + 1.11765i −0.0128872 + 0.0480958i
\(541\) −4.57076 + 17.0583i −0.196512 + 0.733394i 0.795358 + 0.606140i \(0.207283\pi\)
−0.991870 + 0.127254i \(0.959384\pi\)
\(542\) 0.137574i 0.00590931i
\(543\) −2.01490 + 1.16330i −0.0864677 + 0.0499222i
\(544\) −0.178346 + 0.178346i −0.00764654 + 0.00764654i
\(545\) −2.39182 −0.102454
\(546\) −5.36603 1.43711i −0.229645 0.0615024i
\(547\) 24.8672 1.06324 0.531621 0.846982i \(-0.321583\pi\)
0.531621 + 0.846982i \(0.321583\pi\)
\(548\) −13.7123 + 13.7123i −0.585761 + 0.585761i
\(549\) 0.877507 0.506629i 0.0374511 0.0216224i
\(550\) 2.33849i 0.0997136i
\(551\) −1.84516 + 6.88624i −0.0786066 + 0.293364i
\(552\) 1.76078 6.57132i 0.0749438 0.279694i
\(553\) −8.35069 23.6314i −0.355107 1.00491i
\(554\) −0.776972 0.776972i −0.0330104 0.0330104i
\(555\) 2.45274 4.24827i 0.104113 0.180329i
\(556\) −0.800635 1.38674i −0.0339545 0.0588109i
\(557\) 9.42880 35.1888i 0.399511 1.49100i −0.414448 0.910073i \(-0.636025\pi\)
0.813959 0.580922i \(-0.197308\pi\)
\(558\) 1.17573 + 2.03643i 0.0497728 + 0.0862090i
\(559\) 3.49732 + 4.08830i 0.147921 + 0.172917i
\(560\) 1.65304 3.45977i 0.0698538 0.146202i
\(561\) −0.0106051 0.0395787i −0.000447747 0.00167101i
\(562\) −11.7622 −0.496157
\(563\) −39.9539 −1.68386 −0.841928 0.539590i \(-0.818579\pi\)
−0.841928 + 0.539590i \(0.818579\pi\)
\(564\) −5.39762 20.1442i −0.227281 0.848224i
\(565\) −10.1405 + 2.71714i −0.426614 + 0.114311i
\(566\) −9.63296 2.58114i −0.404904 0.108494i
\(567\) −0.881516 2.49458i −0.0370202 0.104763i
\(568\) 0.880992 + 1.52592i 0.0369656 + 0.0640263i
\(569\) 26.1438i 1.09600i −0.836477 0.548002i \(-0.815389\pi\)
0.836477 0.548002i \(-0.184611\pi\)
\(570\) 0.342159 + 0.0916813i 0.0143315 + 0.00384011i
\(571\) 20.3089 + 11.7254i 0.849902 + 0.490691i 0.860618 0.509251i \(-0.170078\pi\)
−0.0107157 + 0.999943i \(0.503411\pi\)
\(572\) 0.413732 5.31047i 0.0172990 0.222042i
\(573\) 22.9951i 0.960634i
\(574\) 8.87726 10.3800i 0.370530 0.433253i
\(575\) −7.20351 + 12.4768i −0.300407 + 0.520320i
\(576\) −0.841955 0.486103i −0.0350815 0.0202543i
\(577\) 15.6987 4.20645i 0.653544 0.175117i 0.0832134 0.996532i \(-0.473482\pi\)
0.570331 + 0.821415i \(0.306815\pi\)
\(578\) 6.99929 6.99929i 0.291132 0.291132i
\(579\) −1.74638 6.51759i −0.0725772 0.270862i
\(580\) −6.68028 + 6.68028i −0.277384 + 0.277384i
\(581\) −7.41809 10.8087i −0.307754 0.448422i
\(582\) −0.562430 0.324719i −0.0233135 0.0134600i
\(583\) 6.15402 + 6.15402i 0.254874 + 0.254874i
\(584\) −16.8538 + 29.1916i −0.697415 + 1.20796i
\(585\) −1.42109 + 2.07120i −0.0587550 + 0.0856335i
\(586\) 0.0287962 0.0166255i 0.00118956 0.000686792i
\(587\) 25.3256 6.78596i 1.04530 0.280087i 0.304991 0.952355i \(-0.401347\pi\)
0.740307 + 0.672269i \(0.234680\pi\)
\(588\) 1.80351 + 11.4854i 0.0743754 + 0.473652i
\(589\) −3.05340 + 1.76288i −0.125813 + 0.0726383i
\(590\) −3.46690 0.928954i −0.142730 0.0382444i
\(591\) 9.02928 + 9.02928i 0.371415 + 0.371415i
\(592\) 10.3579 + 10.3579i 0.425707 + 0.425707i
\(593\) 9.92038 + 2.65816i 0.407381 + 0.109157i 0.456690 0.889626i \(-0.349035\pi\)
−0.0493084 + 0.998784i \(0.515702\pi\)
\(594\) −0.448581 + 0.258989i −0.0184055 + 0.0106264i
\(595\) 0.0366049 0.0766130i 0.00150066 0.00314083i
\(596\) −3.72402 + 0.997848i −0.152542 + 0.0408734i
\(597\) 0.719195 0.415227i 0.0294347 0.0169941i
\(598\) 3.79074 5.52489i 0.155015 0.225929i
\(599\) 9.56265 16.5630i 0.390719 0.676746i −0.601825 0.798628i \(-0.705560\pi\)
0.992545 + 0.121882i \(0.0388930\pi\)
\(600\) −6.80567 6.80567i −0.277840 0.277840i
\(601\) −38.9868 22.5091i −1.59031 0.918164i −0.993254 0.115961i \(-0.963005\pi\)
−0.597052 0.802202i \(-0.703661\pi\)
\(602\) −0.991127 + 2.07440i −0.0403953 + 0.0845463i
\(603\) 1.77192 1.77192i 0.0721580 0.0721580i
\(604\) −5.85793 21.8621i −0.238356 0.889556i
\(605\) −5.02900 + 5.02900i −0.204458 + 0.204458i
\(606\) −8.21665 + 2.20165i −0.333779 + 0.0894357i
\(607\) −41.0361 23.6922i −1.66561 0.961638i −0.969964 0.243248i \(-0.921787\pi\)
−0.695641 0.718389i \(-0.744880\pi\)
\(608\) −2.39032 + 4.14016i −0.0969404 + 0.167906i
\(609\) 3.95078 21.2379i 0.160094 0.860602i
\(610\) 0.411070i 0.0166437i
\(611\) 3.51650 45.1362i 0.142262 1.82601i
\(612\) −0.0662600 0.0382552i −0.00267840 0.00154638i
\(613\) −38.9499 10.4366i −1.57317 0.421531i −0.636369 0.771385i \(-0.719564\pi\)
−0.936804 + 0.349854i \(0.886231\pi\)
\(614\) 14.5907i 0.588834i
\(615\) −3.08792 5.34843i −0.124517 0.215669i
\(616\) 4.73036 1.67158i 0.190591 0.0673498i
\(617\) −12.1180 3.24702i −0.487854 0.130720i 0.00650361 0.999979i \(-0.497930\pi\)
−0.494357 + 0.869259i \(0.664596\pi\)
\(618\) 7.13977 1.91310i 0.287204 0.0769560i
\(619\) −2.16855 8.09314i −0.0871614 0.325291i 0.908553 0.417769i \(-0.137188\pi\)
−0.995715 + 0.0924781i \(0.970521\pi\)
\(620\) −4.67224 −0.187642
\(621\) 3.19116 0.128057
\(622\) −2.87041 10.7125i −0.115093 0.429532i
\(623\) −11.4071 + 7.82873i −0.457014 + 0.313651i
\(624\) −4.87576 5.69968i −0.195187 0.228170i
\(625\) 8.97776 + 15.5499i 0.359110 + 0.621997i
\(626\) 0.450922 1.68287i 0.0180225 0.0672608i
\(627\) −0.388325 0.672598i −0.0155082 0.0268610i
\(628\) −3.65484 + 6.33036i −0.145844 + 0.252609i
\(629\) 0.229365 + 0.229365i 0.00914538 + 0.00914538i
\(630\) −1.05525 0.196304i −0.0420424 0.00782093i
\(631\) 3.60680 13.4608i 0.143584 0.535864i −0.856230 0.516595i \(-0.827199\pi\)
0.999814 0.0192694i \(-0.00613403\pi\)
\(632\) −5.22695 + 19.5073i −0.207917 + 0.775957i
\(633\) 23.1365i 0.919594i
\(634\) −0.357086 + 0.206164i −0.0141817 + 0.00818781i
\(635\) 3.51294 3.51294i 0.139407 0.139407i
\(636\) 16.2509 0.644390
\(637\) −4.61277 + 24.8138i −0.182764 + 0.983157i
\(638\) −4.22922 −0.167436
\(639\) −0.584422 + 0.584422i −0.0231194 + 0.0231194i
\(640\) −6.94820 + 4.01155i −0.274652 + 0.158570i
\(641\) 48.2934i 1.90747i 0.300644 + 0.953736i \(0.402798\pi\)
−0.300644 + 0.953736i \(0.597202\pi\)
\(642\) −1.77732 + 6.63306i −0.0701454 + 0.261786i
\(643\) 4.25643 15.8852i 0.167857 0.626451i −0.829801 0.558059i \(-0.811546\pi\)
0.997658 0.0683924i \(-0.0217870\pi\)
\(644\) −13.7864 2.56461i −0.543258 0.101060i
\(645\) 0.735063 + 0.735063i 0.0289431 + 0.0289431i
\(646\) −0.0117116 + 0.0202850i −0.000460785 + 0.000798104i
\(647\) −7.10098 12.2993i −0.279168 0.483533i 0.692010 0.721888i \(-0.256725\pi\)
−0.971178 + 0.238354i \(0.923392\pi\)
\(648\) −0.551768 + 2.05923i −0.0216755 + 0.0808941i
\(649\) 3.93467 + 6.81505i 0.154449 + 0.267514i
\(650\) −4.08764 8.55256i −0.160330 0.335459i
\(651\) 8.80856 6.04536i 0.345235 0.236936i
\(652\) −0.131164 0.489512i −0.00513680 0.0191708i
\(653\) −9.98626 −0.390793 −0.195396 0.980724i \(-0.562599\pi\)
−0.195396 + 0.980724i \(0.562599\pi\)
\(654\) −1.99931 −0.0781794
\(655\) −2.47325 9.23031i −0.0966380 0.360658i
\(656\) 17.8133 4.77306i 0.695492 0.186357i
\(657\) −15.2725 4.09226i −0.595838 0.159654i
\(658\) 18.2406 6.44573i 0.711093 0.251281i
\(659\) 12.1444 + 21.0347i 0.473079 + 0.819397i 0.999525 0.0308117i \(-0.00980923\pi\)
−0.526446 + 0.850208i \(0.676476\pi\)
\(660\) 1.02919i 0.0400613i
\(661\) 23.2228 + 6.22253i 0.903262 + 0.242028i 0.680416 0.732826i \(-0.261799\pi\)
0.222845 + 0.974854i \(0.428466\pi\)
\(662\) 4.78681 + 2.76366i 0.186044 + 0.107413i
\(663\) −0.107969 0.126214i −0.00419316 0.00490173i
\(664\) 10.5632i 0.409931i
\(665\) 0.294336 1.58224i 0.0114139 0.0613566i
\(666\) 2.05024 3.55112i 0.0794453 0.137603i
\(667\) 22.5647 + 13.0277i 0.873707 + 0.504435i
\(668\) −0.657709 + 0.176233i −0.0254475 + 0.00681865i
\(669\) −10.1576 + 10.1576i −0.392714 + 0.392714i
\(670\) −0.263118 0.981968i −0.0101651 0.0379367i
\(671\) −0.637296 + 0.637296i −0.0246025 + 0.0246025i
\(672\) 6.24503 13.0707i 0.240907 0.504212i
\(673\) −18.1748 10.4933i −0.700589 0.404485i 0.106978 0.994261i \(-0.465883\pi\)
−0.807567 + 0.589776i \(0.799216\pi\)
\(674\) 11.6763 + 11.6763i 0.449754 + 0.449754i
\(675\) 2.25733 3.90981i 0.0868847 0.150489i
\(676\) −7.76946 20.1452i −0.298825 0.774814i
\(677\) 42.3269 24.4375i 1.62676 0.939208i 0.641705 0.766952i \(-0.278228\pi\)
0.985052 0.172256i \(-0.0551058\pi\)
\(678\) −8.47643 + 2.27125i −0.325535 + 0.0872269i
\(679\) −1.27204 + 2.66234i −0.0488163 + 0.102171i
\(680\) −0.0592508 + 0.0342084i −0.00227216 + 0.00131183i
\(681\) −19.8561 5.32042i −0.760886 0.203879i
\(682\) −1.47897 1.47897i −0.0566328 0.0566328i
\(683\) 28.8168 + 28.8168i 1.10264 + 1.10264i 0.994091 + 0.108553i \(0.0346218\pi\)
0.108553 + 0.994091i \(0.465378\pi\)
\(684\) −1.40079 0.375340i −0.0535604 0.0143515i
\(685\) −7.04431 + 4.06703i −0.269149 + 0.155393i
\(686\) −10.4920 + 2.49685i −0.400588 + 0.0953302i
\(687\) 3.99397 1.07018i 0.152380 0.0408300i
\(688\) −2.68828 + 1.55208i −0.102490 + 0.0591726i
\(689\) 33.2642 + 11.7500i 1.26727 + 0.447639i
\(690\) 0.647313 1.12118i 0.0246428 0.0426826i
\(691\) 2.28413 + 2.28413i 0.0868923 + 0.0868923i 0.749217 0.662325i \(-0.230430\pi\)
−0.662325 + 0.749217i \(0.730430\pi\)
\(692\) −2.98595 1.72394i −0.113509 0.0655342i
\(693\) 1.33166 + 1.94033i 0.0505856 + 0.0737072i
\(694\) 9.21538 9.21538i 0.349811 0.349811i
\(695\) −0.173837 0.648769i −0.00659402 0.0246092i
\(696\) −12.3082 + 12.3082i −0.466541 + 0.466541i
\(697\) 0.394457 0.105694i 0.0149411 0.00400346i
\(698\) 4.60193 + 2.65693i 0.174186 + 0.100566i
\(699\) −0.994594 + 1.72269i −0.0376190 + 0.0651580i
\(700\) −12.8942 + 15.0769i −0.487356 + 0.569855i
\(701\) 8.12097i 0.306725i −0.988170 0.153362i \(-0.950990\pi\)
0.988170 0.153362i \(-0.0490102\pi\)
\(702\) −1.18789 + 1.73131i −0.0448340 + 0.0653441i
\(703\) 5.32452 + 3.07411i 0.200818 + 0.115942i
\(704\) 0.835292 + 0.223816i 0.0314812 + 0.00843537i
\(705\) 8.74759i 0.329453i
\(706\) 0.836893 + 1.44954i 0.0314969 + 0.0545542i
\(707\) 12.8768 + 36.4396i 0.484281 + 1.37045i
\(708\) 14.1934 + 3.80310i 0.533419 + 0.142929i
\(709\) 13.1733 3.52976i 0.494732 0.132563i −0.00282213 0.999996i \(-0.500898\pi\)
0.497554 + 0.867433i \(0.334232\pi\)
\(710\) 0.0867828 + 0.323878i 0.00325690 + 0.0121549i
\(711\) −9.47310 −0.355269
\(712\) 11.1479 0.417786
\(713\) 3.33510 + 12.4468i 0.124901 + 0.466135i
\(714\) 0.0305980 0.0640407i 0.00114510 0.00239666i
\(715\) 0.744143 2.10667i 0.0278294 0.0787850i
\(716\) 11.1376 + 19.2908i 0.416230 + 0.720932i
\(717\) 3.70928 13.8432i 0.138525 0.516984i
\(718\) 2.34958 + 4.06960i 0.0876857 + 0.151876i
\(719\) −14.0292 + 24.2993i −0.523200 + 0.906210i 0.476435 + 0.879210i \(0.341929\pi\)
−0.999635 + 0.0270000i \(0.991405\pi\)
\(720\) −1.02478 1.02478i −0.0381915 0.0381915i
\(721\) −11.1891 31.6638i −0.416705 1.17922i
\(722\) 2.74877 10.2586i 0.102299 0.381784i
\(723\) −7.15869 + 26.7166i −0.266234 + 0.993601i
\(724\) 3.86423i 0.143613i
\(725\) 31.9231 18.4308i 1.18560 0.684504i
\(726\) −4.20373 + 4.20373i −0.156015 + 0.156015i
\(727\) −21.2410 −0.787785 −0.393893 0.919156i \(-0.628872\pi\)
−0.393893 + 0.919156i \(0.628872\pi\)
\(728\) 14.3784 14.3820i 0.532900 0.533034i
\(729\) −1.00000 −0.0370370
\(730\) −4.53574 + 4.53574i −0.167875 + 0.167875i
\(731\) −0.0595293 + 0.0343692i −0.00220177 + 0.00127119i
\(732\) 1.68290i 0.0622019i
\(733\) −2.19607 + 8.19585i −0.0811138 + 0.302721i −0.994550 0.104261i \(-0.966752\pi\)
0.913436 + 0.406982i \(0.133419\pi\)
\(734\) 0.253078 0.944500i 0.00934128 0.0348621i
\(735\) −0.516177 + 4.84923i −0.0190395 + 0.178867i
\(736\) 12.3547 + 12.3547i 0.455399 + 0.455399i
\(737\) −1.11446 + 1.93030i −0.0410516 + 0.0711035i
\(738\) −2.58118 4.47074i −0.0950146 0.164570i
\(739\) 5.71616 21.3330i 0.210272 0.784747i −0.777505 0.628877i \(-0.783515\pi\)
0.987777 0.155871i \(-0.0498183\pi\)
\(740\) 4.07372 + 7.05589i 0.149753 + 0.259380i
\(741\) −2.59591 1.78111i −0.0953631 0.0654306i
\(742\) 1.17282 + 15.0295i 0.0430555 + 0.551749i
\(743\) −7.10193 26.5048i −0.260544 0.972365i −0.964921 0.262539i \(-0.915440\pi\)
0.704377 0.709826i \(-0.251226\pi\)
\(744\) −8.60845 −0.315601
\(745\) −1.61715 −0.0592478
\(746\) 4.86459 + 18.1549i 0.178105 + 0.664699i
\(747\) −4.78606 + 1.28242i −0.175113 + 0.0469213i
\(748\) 0.0657356 + 0.0176138i 0.00240353 + 0.000644024i
\(749\) 30.6731 + 5.70596i 1.12077 + 0.208491i
\(750\) −1.93001 3.34287i −0.0704739 0.122064i
\(751\) 8.08325i 0.294962i −0.989065 0.147481i \(-0.952883\pi\)
0.989065 0.147481i \(-0.0471165\pi\)
\(752\) 25.2312 + 6.76067i 0.920086 + 0.246536i
\(753\) −6.79478 3.92297i −0.247616 0.142961i
\(754\) −15.4675 + 7.39259i −0.563294 + 0.269222i
\(755\) 9.49358i 0.345507i
\(756\) 4.32017 + 0.803659i 0.157123 + 0.0292288i
\(757\) −15.2508 + 26.4151i −0.554299 + 0.960074i 0.443659 + 0.896196i \(0.353680\pi\)
−0.997958 + 0.0638779i \(0.979653\pi\)
\(758\) −10.4900 6.05638i −0.381013 0.219978i
\(759\) −2.74175 + 0.734651i −0.0995194 + 0.0266661i
\(760\) −0.916971 + 0.916971i −0.0332620 + 0.0332620i
\(761\) −3.64361 13.5982i −0.132081 0.492933i 0.867912 0.496718i \(-0.165462\pi\)
−0.999993 + 0.00378550i \(0.998795\pi\)
\(762\) 2.93646 2.93646i 0.106377 0.106377i
\(763\) 0.706683 + 9.05602i 0.0255836 + 0.327850i
\(764\) −33.0754 19.0961i −1.19663 0.690872i
\(765\) −0.0226928 0.0226928i −0.000820460 0.000820460i
\(766\) 8.18928 14.1843i 0.295891 0.512498i
\(767\) 26.3028 + 18.0469i 0.949741 + 0.651637i
\(768\) −4.12408 + 2.38104i −0.148815 + 0.0859182i
\(769\) −3.42800 + 0.918529i −0.123617 + 0.0331230i −0.320097 0.947385i \(-0.603715\pi\)
0.196480 + 0.980508i \(0.437049\pi\)
\(770\) 0.951837 0.0742762i 0.0343018 0.00267673i
\(771\) −0.315066 + 0.181903i −0.0113468 + 0.00655109i
\(772\) 10.8250 + 2.90054i 0.389599 + 0.104393i
\(773\) −34.6723 34.6723i −1.24708 1.24708i −0.957005 0.290072<