Properties

Label 273.2.bh.a.131.17
Level $273$
Weight $2$
Character 273.131
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 131.17
Character \(\chi\) \(=\) 273.131
Dual form 273.2.bh.a.248.17

$q$-expansion

\(f(q)\) \(=\) \(q+(0.0408006 + 0.0235563i) q^{2} +(-1.15590 - 1.28992i) q^{3} +(-0.998890 - 1.73013i) q^{4} +(-0.697336 + 1.20782i) q^{5} +(-0.0167755 - 0.0798583i) q^{6} +(0.623634 - 2.57120i) q^{7} -0.188345i q^{8} +(-0.327806 + 2.98204i) q^{9} +O(q^{10})\) \(q+(0.0408006 + 0.0235563i) q^{2} +(-1.15590 - 1.28992i) q^{3} +(-0.998890 - 1.73013i) q^{4} +(-0.697336 + 1.20782i) q^{5} +(-0.0167755 - 0.0798583i) q^{6} +(0.623634 - 2.57120i) q^{7} -0.188345i q^{8} +(-0.327806 + 2.98204i) q^{9} +(-0.0569035 + 0.0328532i) q^{10} +(-5.15885 + 2.97846i) q^{11} +(-1.07712 + 3.28834i) q^{12} -1.00000i q^{13} +(0.0860125 - 0.0902162i) q^{14} +(2.36405 - 0.496606i) q^{15} +(-1.99334 + 3.45257i) q^{16} +(-0.255100 - 0.441847i) q^{17} +(-0.0836203 + 0.113947i) q^{18} +(-3.26922 - 1.88748i) q^{19} +2.78625 q^{20} +(-4.03751 + 2.16760i) q^{21} -0.280646 q^{22} +(-6.05965 - 3.49854i) q^{23} +(-0.242951 + 0.217708i) q^{24} +(1.52745 + 2.64561i) q^{25} +(0.0235563 - 0.0408006i) q^{26} +(4.22551 - 3.02408i) q^{27} +(-5.07145 + 1.48938i) q^{28} -2.11360i q^{29} +(0.108153 + 0.0354262i) q^{30} +(1.48020 - 0.854596i) q^{31} +(-0.488883 + 0.282257i) q^{32} +(9.80508 + 3.21173i) q^{33} -0.0240368i q^{34} +(2.67067 + 2.54623i) q^{35} +(5.48675 - 2.41158i) q^{36} +(3.33819 - 5.78191i) q^{37} +(-0.0889241 - 0.154021i) q^{38} +(-1.28992 + 1.15590i) q^{39} +(0.227488 + 0.131340i) q^{40} +5.70663 q^{41} +(-0.215794 - 0.00666900i) q^{42} -8.94548 q^{43} +(10.3062 + 5.95031i) q^{44} +(-3.37318 - 2.47541i) q^{45} +(-0.164825 - 0.285485i) q^{46} +(5.67842 - 9.83531i) q^{47} +(6.75765 - 1.41956i) q^{48} +(-6.22216 - 3.20698i) q^{49} +0.143924i q^{50} +(-0.275079 + 0.839789i) q^{51} +(-1.73013 + 0.998890i) q^{52} +(-3.31629 + 1.91466i) q^{53} +(0.243639 - 0.0238472i) q^{54} -8.30796i q^{55} +(-0.484274 - 0.117459i) q^{56} +(1.34417 + 6.39878i) q^{57} +(0.0497885 - 0.0862362i) q^{58} +(-3.17081 - 5.49200i) q^{59} +(-3.22062 - 3.59405i) q^{60} +(-4.85718 - 2.80429i) q^{61} +0.0805244 q^{62} +(7.46299 + 2.70255i) q^{63} +7.94678 q^{64} +(1.20782 + 0.697336i) q^{65} +(0.324397 + 0.362011i) q^{66} +(3.53248 + 6.11844i) q^{67} +(-0.509634 + 0.882712i) q^{68} +(2.49148 + 11.8604i) q^{69} +(0.0489854 + 0.166799i) q^{70} -7.65396i q^{71} +(0.561653 + 0.0617408i) q^{72} +(8.58793 - 4.95824i) q^{73} +(0.272400 - 0.157270i) q^{74} +(1.64707 - 5.02834i) q^{75} +7.54156i q^{76} +(4.44100 + 15.1219i) q^{77} +(-0.0798583 + 0.0167755i) q^{78} +(-6.18461 + 10.7121i) q^{79} +(-2.78006 - 4.81521i) q^{80} +(-8.78509 - 1.95506i) q^{81} +(0.232834 + 0.134427i) q^{82} +0.936995 q^{83} +(7.78326 + 4.82021i) q^{84} +0.711562 q^{85} +(-0.364981 - 0.210722i) q^{86} +(-2.72638 + 2.44310i) q^{87} +(0.560980 + 0.971645i) q^{88} +(1.42346 - 2.46551i) q^{89} +(-0.0793163 - 0.180458i) q^{90} +(-2.57120 - 0.623634i) q^{91} +13.9786i q^{92} +(-2.81333 - 0.921526i) q^{93} +(0.463366 - 0.267525i) q^{94} +(4.55949 - 2.63242i) q^{95} +(0.929188 + 0.304362i) q^{96} +9.56933i q^{97} +(-0.178324 - 0.277417i) q^{98} +(-7.19078 - 16.3602i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{4} - 4q^{7} - 4q^{9} + O(q^{10}) \) \( 64q + 32q^{4} - 4q^{7} - 4q^{9} - 12q^{10} - 30q^{12} + 12q^{15} - 16q^{16} - 10q^{18} + 10q^{21} - 8q^{22} + 36q^{24} - 36q^{25} - 20q^{28} - 22q^{30} + 12q^{31} + 36q^{36} - 36q^{40} + 48q^{42} - 32q^{43} - 6q^{45} - 48q^{46} + 36q^{49} - 16q^{51} - 54q^{54} - 8q^{57} - 12q^{58} + 16q^{60} - 72q^{61} - 86q^{63} - 48q^{64} - 78q^{66} + 32q^{67} - 4q^{70} + 62q^{72} + 48q^{73} + 48q^{75} - 20q^{78} - 64q^{79} + 28q^{81} + 72q^{82} - 18q^{84} + 64q^{85} + 60q^{87} + 44q^{88} + 8q^{91} - 38q^{93} + 72q^{94} + 66q^{96} - 68q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0408006 + 0.0235563i 0.0288504 + 0.0166568i 0.514356 0.857577i \(-0.328031\pi\)
−0.485505 + 0.874234i \(0.661364\pi\)
\(3\) −1.15590 1.28992i −0.667357 0.744738i
\(4\) −0.998890 1.73013i −0.499445 0.865064i
\(5\) −0.697336 + 1.20782i −0.311858 + 0.540154i −0.978765 0.204987i \(-0.934285\pi\)
0.666907 + 0.745141i \(0.267618\pi\)
\(6\) −0.0167755 0.0798583i −0.00684858 0.0326020i
\(7\) 0.623634 2.57120i 0.235711 0.971823i
\(8\) 0.188345i 0.0665902i
\(9\) −0.327806 + 2.98204i −0.109269 + 0.994012i
\(10\) −0.0569035 + 0.0328532i −0.0179945 + 0.0103891i
\(11\) −5.15885 + 2.97846i −1.55545 + 0.898040i −0.557769 + 0.829996i \(0.688342\pi\)
−0.997682 + 0.0680438i \(0.978324\pi\)
\(12\) −1.07712 + 3.28834i −0.310938 + 0.949263i
\(13\) 1.00000i 0.277350i
\(14\) 0.0860125 0.0902162i 0.0229878 0.0241113i
\(15\) 2.36405 0.496606i 0.610394 0.128223i
\(16\) −1.99334 + 3.45257i −0.498336 + 0.863143i
\(17\) −0.255100 0.441847i −0.0618709 0.107164i 0.833431 0.552624i \(-0.186373\pi\)
−0.895302 + 0.445460i \(0.853040\pi\)
\(18\) −0.0836203 + 0.113947i −0.0197095 + 0.0268576i
\(19\) −3.26922 1.88748i −0.750010 0.433019i 0.0756875 0.997132i \(-0.475885\pi\)
−0.825698 + 0.564113i \(0.809218\pi\)
\(20\) 2.78625 0.623024
\(21\) −4.03751 + 2.16760i −0.881057 + 0.473010i
\(22\) −0.280646 −0.0598338
\(23\) −6.05965 3.49854i −1.26352 0.729496i −0.289770 0.957096i \(-0.593579\pi\)
−0.973755 + 0.227600i \(0.926912\pi\)
\(24\) −0.242951 + 0.217708i −0.0495922 + 0.0444394i
\(25\) 1.52745 + 2.64561i 0.305489 + 0.529122i
\(26\) 0.0235563 0.0408006i 0.00461976 0.00800166i
\(27\) 4.22551 3.02408i 0.813200 0.581985i
\(28\) −5.07145 + 1.48938i −0.958414 + 0.281467i
\(29\) 2.11360i 0.392486i −0.980555 0.196243i \(-0.937126\pi\)
0.980555 0.196243i \(-0.0628741\pi\)
\(30\) 0.108153 + 0.0354262i 0.0197459 + 0.00646791i
\(31\) 1.48020 0.854596i 0.265853 0.153490i −0.361149 0.932508i \(-0.617615\pi\)
0.627001 + 0.779018i \(0.284282\pi\)
\(32\) −0.488883 + 0.282257i −0.0864232 + 0.0498964i
\(33\) 9.80508 + 3.21173i 1.70685 + 0.559090i
\(34\) 0.0240368i 0.00412228i
\(35\) 2.67067 + 2.54623i 0.451426 + 0.430391i
\(36\) 5.48675 2.41158i 0.914458 0.401930i
\(37\) 3.33819 5.78191i 0.548795 0.950540i −0.449563 0.893249i \(-0.648420\pi\)
0.998358 0.0572914i \(-0.0182464\pi\)
\(38\) −0.0889241 0.154021i −0.0144254 0.0249855i
\(39\) −1.28992 + 1.15590i −0.206553 + 0.185092i
\(40\) 0.227488 + 0.131340i 0.0359690 + 0.0207667i
\(41\) 5.70663 0.891226 0.445613 0.895226i \(-0.352986\pi\)
0.445613 + 0.895226i \(0.352986\pi\)
\(42\) −0.215794 0.00666900i −0.0332977 0.00102905i
\(43\) −8.94548 −1.36417 −0.682087 0.731271i \(-0.738927\pi\)
−0.682087 + 0.731271i \(0.738927\pi\)
\(44\) 10.3062 + 5.95031i 1.55372 + 0.897044i
\(45\) −3.37318 2.47541i −0.502844 0.369013i
\(46\) −0.164825 0.285485i −0.0243021 0.0420925i
\(47\) 5.67842 9.83531i 0.828283 1.43463i −0.0711020 0.997469i \(-0.522652\pi\)
0.899385 0.437158i \(-0.144015\pi\)
\(48\) 6.75765 1.41956i 0.975383 0.204895i
\(49\) −6.22216 3.20698i −0.888880 0.458139i
\(50\) 0.143924i 0.0203539i
\(51\) −0.275079 + 0.839789i −0.0385187 + 0.117594i
\(52\) −1.73013 + 0.998890i −0.239926 + 0.138521i
\(53\) −3.31629 + 1.91466i −0.455528 + 0.262999i −0.710162 0.704038i \(-0.751378\pi\)
0.254634 + 0.967037i \(0.418045\pi\)
\(54\) 0.243639 0.0238472i 0.0331551 0.00324520i
\(55\) 8.30796i 1.12024i
\(56\) −0.484274 0.117459i −0.0647139 0.0156961i
\(57\) 1.34417 + 6.39878i 0.178039 + 0.847539i
\(58\) 0.0497885 0.0862362i 0.00653755 0.0113234i
\(59\) −3.17081 5.49200i −0.412804 0.714998i 0.582391 0.812909i \(-0.302117\pi\)
−0.995195 + 0.0979111i \(0.968784\pi\)
\(60\) −3.22062 3.59405i −0.415780 0.463990i
\(61\) −4.85718 2.80429i −0.621898 0.359053i 0.155709 0.987803i \(-0.450234\pi\)
−0.777608 + 0.628750i \(0.783567\pi\)
\(62\) 0.0805244 0.0102266
\(63\) 7.46299 + 2.70255i 0.940248 + 0.340490i
\(64\) 7.94678 0.993347
\(65\) 1.20782 + 0.697336i 0.149812 + 0.0864939i
\(66\) 0.324397 + 0.362011i 0.0399305 + 0.0445605i
\(67\) 3.53248 + 6.11844i 0.431561 + 0.747486i 0.997008 0.0772989i \(-0.0246296\pi\)
−0.565447 + 0.824785i \(0.691296\pi\)
\(68\) −0.509634 + 0.882712i −0.0618022 + 0.107045i
\(69\) 2.49148 + 11.8604i 0.299939 + 1.42783i
\(70\) 0.0489854 + 0.166799i 0.00585488 + 0.0199363i
\(71\) 7.65396i 0.908358i −0.890910 0.454179i \(-0.849933\pi\)
0.890910 0.454179i \(-0.150067\pi\)
\(72\) 0.561653 + 0.0617408i 0.0661914 + 0.00727622i
\(73\) 8.58793 4.95824i 1.00514 0.580318i 0.0953756 0.995441i \(-0.469595\pi\)
0.909765 + 0.415123i \(0.136261\pi\)
\(74\) 0.272400 0.157270i 0.0316659 0.0182823i
\(75\) 1.64707 5.02834i 0.190187 0.580623i
\(76\) 7.54156i 0.865076i
\(77\) 4.44100 + 15.1219i 0.506099 + 1.72330i
\(78\) −0.0798583 + 0.0167755i −0.00904217 + 0.00189946i
\(79\) −6.18461 + 10.7121i −0.695823 + 1.20520i 0.274079 + 0.961707i \(0.411627\pi\)
−0.969902 + 0.243494i \(0.921706\pi\)
\(80\) −2.78006 4.81521i −0.310820 0.538356i
\(81\) −8.78509 1.95506i −0.976121 0.217229i
\(82\) 0.232834 + 0.134427i 0.0257122 + 0.0148450i
\(83\) 0.936995 0.102849 0.0514243 0.998677i \(-0.483624\pi\)
0.0514243 + 0.998677i \(0.483624\pi\)
\(84\) 7.78326 + 4.82021i 0.849224 + 0.525928i
\(85\) 0.711562 0.0771798
\(86\) −0.364981 0.210722i −0.0393569 0.0227227i
\(87\) −2.72638 + 2.44310i −0.292299 + 0.261928i
\(88\) 0.560980 + 0.971645i 0.0598006 + 0.103578i
\(89\) 1.42346 2.46551i 0.150887 0.261343i −0.780667 0.624947i \(-0.785121\pi\)
0.931554 + 0.363604i \(0.118454\pi\)
\(90\) −0.0793163 0.180458i −0.00836067 0.0190219i
\(91\) −2.57120 0.623634i −0.269535 0.0653746i
\(92\) 13.9786i 1.45737i
\(93\) −2.81333 0.921526i −0.291728 0.0955578i
\(94\) 0.463366 0.267525i 0.0477926 0.0275930i
\(95\) 4.55949 2.63242i 0.467793 0.270081i
\(96\) 0.929188 + 0.304362i 0.0948349 + 0.0310638i
\(97\) 9.56933i 0.971619i 0.874065 + 0.485809i \(0.161475\pi\)
−0.874065 + 0.485809i \(0.838525\pi\)
\(98\) −0.178324 0.277417i −0.0180134 0.0280234i
\(99\) −7.19078 16.3602i −0.722701 1.64427i
\(100\) 3.05150 5.28535i 0.305150 0.528535i
\(101\) −9.41087 16.3001i −0.936416 1.62192i −0.772089 0.635515i \(-0.780788\pi\)
−0.164327 0.986406i \(-0.552545\pi\)
\(102\) −0.0310057 + 0.0277841i −0.00307002 + 0.00275103i
\(103\) −8.09092 4.67129i −0.797222 0.460276i 0.0452770 0.998974i \(-0.485583\pi\)
−0.842499 + 0.538698i \(0.818916\pi\)
\(104\) −0.188345 −0.0184688
\(105\) 0.197423 6.38814i 0.0192665 0.623419i
\(106\) −0.180409 −0.0175229
\(107\) 1.63019 + 0.941191i 0.157597 + 0.0909884i 0.576724 0.816939i \(-0.304331\pi\)
−0.419128 + 0.907927i \(0.637664\pi\)
\(108\) −9.45287 4.28995i −0.909603 0.412801i
\(109\) 0.661161 + 1.14516i 0.0633277 + 0.109687i 0.895951 0.444153i \(-0.146495\pi\)
−0.832623 + 0.553840i \(0.813162\pi\)
\(110\) 0.195704 0.338970i 0.0186597 0.0323195i
\(111\) −11.3168 + 2.37728i −1.07415 + 0.225642i
\(112\) 7.63415 + 7.27843i 0.721359 + 0.687747i
\(113\) 12.0329i 1.13196i 0.824420 + 0.565978i \(0.191501\pi\)
−0.824420 + 0.565978i \(0.808499\pi\)
\(114\) −0.0958883 + 0.292738i −0.00898076 + 0.0274174i
\(115\) 8.45123 4.87932i 0.788081 0.454999i
\(116\) −3.65680 + 2.11125i −0.339525 + 0.196025i
\(117\) 2.98204 + 0.327806i 0.275689 + 0.0303057i
\(118\) 0.298769i 0.0275040i
\(119\) −1.29517 + 0.380364i −0.118728 + 0.0348679i
\(120\) −0.0935336 0.445257i −0.00853841 0.0406462i
\(121\) 12.2425 21.2046i 1.11295 1.92769i
\(122\) −0.132117 0.228834i −0.0119613 0.0207176i
\(123\) −6.59628 7.36112i −0.594766 0.663730i
\(124\) −2.95712 1.70730i −0.265558 0.153320i
\(125\) −11.2339 −1.00479
\(126\) 0.240833 + 0.286066i 0.0214551 + 0.0254848i
\(127\) 9.81825 0.871229 0.435614 0.900133i \(-0.356531\pi\)
0.435614 + 0.900133i \(0.356531\pi\)
\(128\) 1.30200 + 0.751710i 0.115082 + 0.0664424i
\(129\) 10.3401 + 11.5390i 0.910391 + 1.01595i
\(130\) 0.0328532 + 0.0569035i 0.00288142 + 0.00499077i
\(131\) 1.61775 2.80202i 0.141343 0.244814i −0.786659 0.617387i \(-0.788191\pi\)
0.928003 + 0.372573i \(0.121525\pi\)
\(132\) −4.23750 20.1722i −0.368827 1.75577i
\(133\) −6.89190 + 7.22872i −0.597603 + 0.626810i
\(134\) 0.332848i 0.0287537i
\(135\) 0.705950 + 7.21246i 0.0607585 + 0.620750i
\(136\) −0.0832198 + 0.0480470i −0.00713604 + 0.00411999i
\(137\) −13.5607 + 7.82928i −1.15857 + 0.668900i −0.950961 0.309311i \(-0.899901\pi\)
−0.207609 + 0.978212i \(0.566568\pi\)
\(138\) −0.177734 + 0.542603i −0.0151297 + 0.0461895i
\(139\) 10.8590i 0.921051i 0.887646 + 0.460525i \(0.152339\pi\)
−0.887646 + 0.460525i \(0.847661\pi\)
\(140\) 1.73760 7.16401i 0.146854 0.605469i
\(141\) −19.2505 + 4.04387i −1.62118 + 0.340556i
\(142\) 0.180299 0.312286i 0.0151303 0.0262065i
\(143\) 2.97846 + 5.15885i 0.249072 + 0.431405i
\(144\) −9.64227 7.07600i −0.803522 0.589667i
\(145\) 2.55285 + 1.47389i 0.212003 + 0.122400i
\(146\) 0.467190 0.0386650
\(147\) 3.05542 + 11.7330i 0.252007 + 0.967725i
\(148\) −13.3379 −1.09637
\(149\) −0.798927 0.461261i −0.0654507 0.0377880i 0.466918 0.884301i \(-0.345364\pi\)
−0.532368 + 0.846513i \(0.678698\pi\)
\(150\) 0.185650 0.166361i 0.0151583 0.0135833i
\(151\) 0.280490 + 0.485822i 0.0228259 + 0.0395357i 0.877213 0.480102i \(-0.159400\pi\)
−0.854387 + 0.519638i \(0.826067\pi\)
\(152\) −0.355499 + 0.615742i −0.0288348 + 0.0499433i
\(153\) 1.40123 0.615878i 0.113282 0.0497908i
\(154\) −0.175020 + 0.721597i −0.0141035 + 0.0581479i
\(155\) 2.38376i 0.191468i
\(156\) 3.28834 + 1.07712i 0.263278 + 0.0862386i
\(157\) −0.524784 + 0.302984i −0.0418823 + 0.0241808i −0.520795 0.853682i \(-0.674364\pi\)
0.478913 + 0.877863i \(0.341031\pi\)
\(158\) −0.504672 + 0.291373i −0.0401496 + 0.0231804i
\(159\) 6.30306 + 2.06461i 0.499865 + 0.163734i
\(160\) 0.787311i 0.0622424i
\(161\) −12.7745 + 13.3988i −1.00677 + 1.05597i
\(162\) −0.312383 0.286711i −0.0245431 0.0225262i
\(163\) 5.37199 9.30455i 0.420766 0.728789i −0.575248 0.817979i \(-0.695095\pi\)
0.996015 + 0.0891901i \(0.0284279\pi\)
\(164\) −5.70030 9.87321i −0.445118 0.770968i
\(165\) −10.7166 + 9.60314i −0.834288 + 0.747603i
\(166\) 0.0382300 + 0.0220721i 0.00296722 + 0.00171313i
\(167\) 20.7092 1.60253 0.801264 0.598311i \(-0.204161\pi\)
0.801264 + 0.598311i \(0.204161\pi\)
\(168\) 0.408258 + 0.760447i 0.0314978 + 0.0586697i
\(169\) −1.00000 −0.0769231
\(170\) 0.0290322 + 0.0167617i 0.00222667 + 0.00128557i
\(171\) 6.70022 9.13020i 0.512378 0.698204i
\(172\) 8.93555 + 15.4768i 0.681330 + 1.18010i
\(173\) −7.06681 + 12.2401i −0.537279 + 0.930595i 0.461770 + 0.887000i \(0.347215\pi\)
−0.999049 + 0.0435953i \(0.986119\pi\)
\(174\) −0.168788 + 0.0354568i −0.0127958 + 0.00268797i
\(175\) 7.75497 2.27748i 0.586221 0.172161i
\(176\) 23.7484i 1.79010i
\(177\) −3.41914 + 10.4383i −0.256998 + 0.784590i
\(178\) 0.116156 0.0670628i 0.00870628 0.00502657i
\(179\) 6.72527 3.88284i 0.502671 0.290217i −0.227145 0.973861i \(-0.572939\pi\)
0.729816 + 0.683644i \(0.239606\pi\)
\(180\) −0.913349 + 8.30870i −0.0680770 + 0.619294i
\(181\) 8.95701i 0.665769i 0.942968 + 0.332885i \(0.108022\pi\)
−0.942968 + 0.332885i \(0.891978\pi\)
\(182\) −0.0902162 0.0860125i −0.00668727 0.00637567i
\(183\) 1.99707 + 9.50687i 0.147628 + 0.702768i
\(184\) −0.658934 + 1.14131i −0.0485773 + 0.0841383i
\(185\) 4.65568 + 8.06387i 0.342292 + 0.592867i
\(186\) −0.0930778 0.103870i −0.00682480 0.00761614i
\(187\) 2.63205 + 1.51961i 0.192474 + 0.111125i
\(188\) −22.6885 −1.65473
\(189\) −5.14036 12.7506i −0.373906 0.927467i
\(190\) 0.248040 0.0179947
\(191\) −11.3877 6.57469i −0.823985 0.475728i 0.0278039 0.999613i \(-0.491149\pi\)
−0.851789 + 0.523886i \(0.824482\pi\)
\(192\) −9.18566 10.2507i −0.662918 0.739783i
\(193\) −6.10661 10.5770i −0.439563 0.761346i 0.558092 0.829779i \(-0.311533\pi\)
−0.997656 + 0.0684328i \(0.978200\pi\)
\(194\) −0.225418 + 0.390435i −0.0161840 + 0.0280316i
\(195\) −0.496606 2.36405i −0.0355627 0.169293i
\(196\) 0.666776 + 13.9686i 0.0476269 + 0.997754i
\(197\) 17.5933i 1.25347i −0.779232 0.626736i \(-0.784390\pi\)
0.779232 0.626736i \(-0.215610\pi\)
\(198\) 0.0919973 0.836896i 0.00653796 0.0594756i
\(199\) 10.7669 6.21627i 0.763244 0.440659i −0.0672150 0.997739i \(-0.521411\pi\)
0.830459 + 0.557079i \(0.188078\pi\)
\(200\) 0.498289 0.287687i 0.0352344 0.0203426i
\(201\) 3.80913 11.6289i 0.268675 0.820240i
\(202\) 0.886739i 0.0623907i
\(203\) −5.43449 1.31811i −0.381427 0.0925133i
\(204\) 1.72772 0.362935i 0.120964 0.0254105i
\(205\) −3.97944 + 6.89259i −0.277936 + 0.481399i
\(206\) −0.220076 0.381183i −0.0153334 0.0265583i
\(207\) 12.4192 16.9233i 0.863192 1.17625i
\(208\) 3.45257 + 1.99334i 0.239393 + 0.138214i
\(209\) 22.4872 1.55547
\(210\) 0.158536 0.255990i 0.0109400 0.0176650i
\(211\) −3.36287 −0.231510 −0.115755 0.993278i \(-0.536929\pi\)
−0.115755 + 0.993278i \(0.536929\pi\)
\(212\) 6.62522 + 3.82507i 0.455022 + 0.262707i
\(213\) −9.87303 + 8.84719i −0.676489 + 0.606200i
\(214\) 0.0443419 + 0.0768024i 0.00303115 + 0.00525010i
\(215\) 6.23801 10.8045i 0.425429 0.736864i
\(216\) −0.569572 0.795855i −0.0387545 0.0541511i
\(217\) −1.27424 4.33886i −0.0865007 0.294541i
\(218\) 0.0622979i 0.00421935i
\(219\) −16.3225 5.34656i −1.10297 0.361287i
\(220\) −14.3738 + 8.29874i −0.969084 + 0.559501i
\(221\) −0.441847 + 0.255100i −0.0297218 + 0.0171599i
\(222\) −0.517733 0.169587i −0.0347480 0.0113819i
\(223\) 4.62898i 0.309979i 0.987916 + 0.154990i \(0.0495344\pi\)
−0.987916 + 0.154990i \(0.950466\pi\)
\(224\) 0.420855 + 1.43304i 0.0281196 + 0.0957492i
\(225\) −8.39002 + 3.68765i −0.559335 + 0.245843i
\(226\) −0.283449 + 0.490948i −0.0188548 + 0.0326574i
\(227\) 12.2312 + 21.1851i 0.811813 + 1.40610i 0.911594 + 0.411092i \(0.134853\pi\)
−0.0997806 + 0.995009i \(0.531814\pi\)
\(228\) 9.72803 8.71726i 0.644255 0.577315i
\(229\) 0.339161 + 0.195815i 0.0224124 + 0.0129398i 0.511164 0.859483i \(-0.329214\pi\)
−0.488752 + 0.872423i \(0.662548\pi\)
\(230\) 0.459754 0.0303153
\(231\) 14.3728 23.2079i 0.945659 1.52697i
\(232\) −0.398087 −0.0261357
\(233\) 12.3209 + 7.11345i 0.807167 + 0.466018i 0.845971 0.533229i \(-0.179022\pi\)
−0.0388043 + 0.999247i \(0.512355\pi\)
\(234\) 0.113947 + 0.0836203i 0.00744895 + 0.00546643i
\(235\) 7.91953 + 13.7170i 0.516613 + 0.894800i
\(236\) −6.33458 + 10.9718i −0.412346 + 0.714204i
\(237\) 20.9665 4.40436i 1.36192 0.286094i
\(238\) −0.0618035 0.0149902i −0.00400613 0.000971668i
\(239\) 11.9836i 0.775155i 0.921837 + 0.387578i \(0.126688\pi\)
−0.921837 + 0.387578i \(0.873312\pi\)
\(240\) −2.99779 + 9.15195i −0.193506 + 0.590756i
\(241\) −13.4671 + 7.77526i −0.867495 + 0.500848i −0.866515 0.499151i \(-0.833645\pi\)
−0.000979872 1.00000i \(0.500312\pi\)
\(242\) 0.999001 0.576774i 0.0642182 0.0370764i
\(243\) 7.63277 + 13.5919i 0.489643 + 0.871923i
\(244\) 11.2047i 0.717309i
\(245\) 8.21239 5.27892i 0.524670 0.337258i
\(246\) −0.0957318 0.455722i −0.00610364 0.0290558i
\(247\) −1.88748 + 3.26922i −0.120098 + 0.208015i
\(248\) −0.160959 0.278790i −0.0102209 0.0177032i
\(249\) −1.08307 1.20865i −0.0686367 0.0765952i
\(250\) −0.458351 0.264629i −0.0289887 0.0167366i
\(251\) 3.43050 0.216531 0.108266 0.994122i \(-0.465470\pi\)
0.108266 + 0.994122i \(0.465470\pi\)
\(252\) −2.77894 15.6115i −0.175057 0.983431i
\(253\) 41.6811 2.62047
\(254\) 0.400591 + 0.231281i 0.0251353 + 0.0145119i
\(255\) −0.822492 0.917861i −0.0515065 0.0574787i
\(256\) −7.91136 13.7029i −0.494460 0.856430i
\(257\) 2.75251 4.76749i 0.171697 0.297388i −0.767316 0.641269i \(-0.778408\pi\)
0.939013 + 0.343881i \(0.111742\pi\)
\(258\) 0.150065 + 0.714371i 0.00934266 + 0.0444748i
\(259\) −12.7847 12.1889i −0.794400 0.757384i
\(260\) 2.78625i 0.172796i
\(261\) 6.30283 + 0.692851i 0.390136 + 0.0428864i
\(262\) 0.132010 0.0762162i 0.00815562 0.00470865i
\(263\) 16.2877 9.40369i 1.00434 0.579857i 0.0948112 0.995495i \(-0.469775\pi\)
0.909530 + 0.415639i \(0.136442\pi\)
\(264\) 0.604914 1.84674i 0.0372299 0.113659i
\(265\) 5.34065i 0.328074i
\(266\) −0.451475 + 0.132589i −0.0276817 + 0.00812956i
\(267\) −4.82569 + 1.01372i −0.295327 + 0.0620384i
\(268\) 7.05712 12.2233i 0.431082 0.746656i
\(269\) 13.2097 + 22.8799i 0.805410 + 1.39501i 0.916014 + 0.401147i \(0.131388\pi\)
−0.110604 + 0.993865i \(0.535278\pi\)
\(270\) −0.141095 + 0.310902i −0.00858679 + 0.0189209i
\(271\) 4.91099 + 2.83536i 0.298321 + 0.172236i 0.641689 0.766965i \(-0.278234\pi\)
−0.343367 + 0.939201i \(0.611568\pi\)
\(272\) 2.03401 0.123330
\(273\) 2.16760 + 4.03751i 0.131189 + 0.244361i
\(274\) −0.737714 −0.0445669
\(275\) −15.7597 9.09887i −0.950346 0.548683i
\(276\) 18.0314 16.1579i 1.08536 0.972589i
\(277\) 7.83627 + 13.5728i 0.470836 + 0.815512i 0.999444 0.0333546i \(-0.0106191\pi\)
−0.528608 + 0.848866i \(0.677286\pi\)
\(278\) −0.255798 + 0.443055i −0.0153417 + 0.0265727i
\(279\) 2.06322 + 4.69417i 0.123522 + 0.281032i
\(280\) 0.479571 0.503009i 0.0286598 0.0300605i
\(281\) 21.8321i 1.30239i −0.758908 0.651197i \(-0.774267\pi\)
0.758908 0.651197i \(-0.225733\pi\)
\(282\) −0.880689 0.288476i −0.0524443 0.0171785i
\(283\) −10.5400 + 6.08526i −0.626537 + 0.361731i −0.779410 0.626515i \(-0.784481\pi\)
0.152873 + 0.988246i \(0.451147\pi\)
\(284\) −13.2423 + 7.64547i −0.785788 + 0.453675i
\(285\) −8.66592 2.83858i −0.513325 0.168143i
\(286\) 0.280646i 0.0165949i
\(287\) 3.55885 14.6729i 0.210072 0.866114i
\(288\) −0.681441 1.55039i −0.0401543 0.0913578i
\(289\) 8.36985 14.4970i 0.492344 0.852765i
\(290\) 0.0694386 + 0.120271i 0.00407758 + 0.00706257i
\(291\) 12.3437 11.0612i 0.723601 0.648417i
\(292\) −17.1568 9.90548i −1.00403 0.579674i
\(293\) −1.17555 −0.0686761 −0.0343381 0.999410i \(-0.510932\pi\)
−0.0343381 + 0.999410i \(0.510932\pi\)
\(294\) −0.151723 + 0.550690i −0.00884869 + 0.0321169i
\(295\) 8.84448 0.514945
\(296\) −1.08900 0.628732i −0.0632966 0.0365443i
\(297\) −12.7916 + 28.1863i −0.742247 + 1.63553i
\(298\) −0.0217311 0.0376395i −0.00125885 0.00218039i
\(299\) −3.49854 + 6.05965i −0.202326 + 0.350439i
\(300\) −10.3449 + 2.17312i −0.597264 + 0.125465i
\(301\) −5.57870 + 23.0006i −0.321551 + 1.32574i
\(302\) 0.0264291i 0.00152083i
\(303\) −10.1479 + 30.9805i −0.582981 + 1.77978i
\(304\) 13.0334 7.52481i 0.747514 0.431577i
\(305\) 6.77417 3.91107i 0.387888 0.223947i
\(306\) 0.0716787 + 0.00787941i 0.00409760 + 0.000450436i
\(307\) 27.8692i 1.59058i −0.606229 0.795290i \(-0.707318\pi\)
0.606229 0.795290i \(-0.292682\pi\)
\(308\) 21.7268 22.7886i 1.23800 1.29850i
\(309\) 3.32665 + 15.8362i 0.189247 + 0.900890i
\(310\) −0.0561525 + 0.0972590i −0.00318925 + 0.00552394i
\(311\) −4.11692 7.13071i −0.233449 0.404345i 0.725372 0.688357i \(-0.241668\pi\)
−0.958821 + 0.284012i \(0.908334\pi\)
\(312\) 0.217708 + 0.242951i 0.0123253 + 0.0137544i
\(313\) −25.1480 14.5192i −1.42145 0.820675i −0.425028 0.905180i \(-0.639736\pi\)
−0.996423 + 0.0845047i \(0.973069\pi\)
\(314\) −0.0285487 −0.00161109
\(315\) −8.46841 + 7.12937i −0.477141 + 0.401694i
\(316\) 24.7110 1.39010
\(317\) 9.95440 + 5.74717i 0.559095 + 0.322793i 0.752782 0.658270i \(-0.228711\pi\)
−0.193687 + 0.981063i \(0.562045\pi\)
\(318\) 0.208534 + 0.232714i 0.0116940 + 0.0130499i
\(319\) 6.29528 + 10.9037i 0.352468 + 0.610492i
\(320\) −5.54158 + 9.59829i −0.309783 + 0.536561i
\(321\) −0.670268 3.19074i −0.0374107 0.178090i
\(322\) −0.836831 + 0.245760i −0.0466348 + 0.0136957i
\(323\) 1.92599i 0.107165i
\(324\) 5.39283 + 17.1522i 0.299602 + 0.952901i
\(325\) 2.64561 1.52745i 0.146752 0.0847274i
\(326\) 0.438361 0.253088i 0.0242786 0.0140172i
\(327\) 0.712941 2.17654i 0.0394257 0.120363i
\(328\) 1.07482i 0.0593469i
\(329\) −21.7473 20.7340i −1.19897 1.14310i
\(330\) −0.663459 + 0.139370i −0.0365222 + 0.00767209i
\(331\) −3.40247 + 5.89325i −0.187017 + 0.323922i −0.944254 0.329217i \(-0.893215\pi\)
0.757238 + 0.653139i \(0.226548\pi\)
\(332\) −0.935955 1.62112i −0.0513672 0.0889706i
\(333\) 16.1476 + 11.8499i 0.884882 + 0.649373i
\(334\) 0.844949 + 0.487832i 0.0462336 + 0.0266930i
\(335\) −9.85330 −0.538343
\(336\) 0.564335 18.2606i 0.0307870 0.996196i
\(337\) −0.0340775 −0.00185632 −0.000928159 1.00000i \(-0.500295\pi\)
−0.000928159 1.00000i \(0.500295\pi\)
\(338\) −0.0408006 0.0235563i −0.00221926 0.00128129i
\(339\) 15.5215 13.9087i 0.843011 0.755419i
\(340\) −0.710773 1.23109i −0.0385471 0.0667655i
\(341\) −5.09077 + 8.81747i −0.275680 + 0.477493i
\(342\) 0.488446 0.214686i 0.0264121 0.0116089i
\(343\) −12.1261 + 13.9985i −0.654750 + 0.755846i
\(344\) 1.68484i 0.0908405i
\(345\) −16.0627 5.26145i −0.864786 0.283267i
\(346\) −0.576660 + 0.332935i −0.0310014 + 0.0178987i
\(347\) −18.0074 + 10.3966i −0.966686 + 0.558117i −0.898224 0.439537i \(-0.855142\pi\)
−0.0684619 + 0.997654i \(0.521809\pi\)
\(348\) 6.95024 + 2.27660i 0.372572 + 0.122039i
\(349\) 32.6374i 1.74704i −0.486786 0.873521i \(-0.661831\pi\)
0.486786 0.873521i \(-0.338169\pi\)
\(350\) 0.370056 + 0.0897555i 0.0197804 + 0.00479764i
\(351\) −3.02408 4.22551i −0.161414 0.225541i
\(352\) 1.68138 2.91224i 0.0896180 0.155223i
\(353\) 9.54834 + 16.5382i 0.508207 + 0.880240i 0.999955 + 0.00950230i \(0.00302472\pi\)
−0.491748 + 0.870737i \(0.663642\pi\)
\(354\) −0.385390 + 0.345347i −0.0204832 + 0.0183550i
\(355\) 9.24462 + 5.33738i 0.490654 + 0.283279i
\(356\) −5.68753 −0.301438
\(357\) 1.98772 + 1.23100i 0.105201 + 0.0651516i
\(358\) 0.365860 0.0193363
\(359\) 3.32321 + 1.91866i 0.175392 + 0.101263i 0.585126 0.810942i \(-0.301045\pi\)
−0.409734 + 0.912205i \(0.634378\pi\)
\(360\) −0.466233 + 0.635322i −0.0245726 + 0.0334844i
\(361\) −2.37481 4.11329i −0.124990 0.216489i
\(362\) −0.210994 + 0.365452i −0.0110896 + 0.0192077i
\(363\) −41.5033 + 8.71845i −2.17836 + 0.457600i
\(364\) 1.48938 + 5.07145i 0.0780649 + 0.265816i
\(365\) 13.8302i 0.723908i
\(366\) −0.142464 + 0.434930i −0.00744673 + 0.0227341i
\(367\) −23.2384 + 13.4167i −1.21304 + 0.700346i −0.963419 0.267998i \(-0.913638\pi\)
−0.249616 + 0.968345i \(0.580304\pi\)
\(368\) 24.1579 13.9476i 1.25932 0.727069i
\(369\) −1.87067 + 17.0174i −0.0973831 + 0.885890i
\(370\) 0.438681i 0.0228059i
\(371\) 2.85483 + 9.72090i 0.148216 + 0.504684i
\(372\) 1.21585 + 5.78792i 0.0630388 + 0.300090i
\(373\) 5.83099 10.0996i 0.301917 0.522936i −0.674653 0.738135i \(-0.735707\pi\)
0.976570 + 0.215199i \(0.0690400\pi\)
\(374\) 0.0715928 + 0.124002i 0.00370197 + 0.00641201i
\(375\) 12.9853 + 14.4909i 0.670556 + 0.748307i
\(376\) −1.85244 1.06950i −0.0955321 0.0551555i
\(377\) −2.11360 −0.108856
\(378\) 0.0906256 0.641318i 0.00466128 0.0329859i
\(379\) −30.1532 −1.54886 −0.774432 0.632657i \(-0.781964\pi\)
−0.774432 + 0.632657i \(0.781964\pi\)
\(380\) −9.10885 5.25900i −0.467274 0.269781i
\(381\) −11.3489 12.6648i −0.581421 0.648837i
\(382\) −0.309750 0.536503i −0.0158482 0.0274499i
\(383\) 12.8829 22.3138i 0.658284 1.14018i −0.322775 0.946476i \(-0.604616\pi\)
0.981060 0.193706i \(-0.0620509\pi\)
\(384\) −0.535329 2.54838i −0.0273184 0.130046i
\(385\) −21.3614 5.18112i −1.08868 0.264054i
\(386\) 0.575395i 0.0292868i
\(387\) 2.93238 26.6758i 0.149061 1.35600i
\(388\) 16.5562 9.55871i 0.840513 0.485270i
\(389\) −8.93634 + 5.15940i −0.453091 + 0.261592i −0.709135 0.705073i \(-0.750914\pi\)
0.256044 + 0.966665i \(0.417581\pi\)
\(390\) 0.0354262 0.108153i 0.00179388 0.00547653i
\(391\) 3.56992i 0.180538i
\(392\) −0.604019 + 1.17192i −0.0305076 + 0.0591907i
\(393\) −5.48434 + 1.15208i −0.276649 + 0.0581145i
\(394\) 0.414433 0.717818i 0.0208788 0.0361632i
\(395\) −8.62551 14.9398i −0.433996 0.751704i
\(396\) −21.1225 + 28.7831i −1.06145 + 1.44640i
\(397\) −5.77444 3.33387i −0.289811 0.167322i 0.348046 0.937478i \(-0.386845\pi\)
−0.637857 + 0.770155i \(0.720179\pi\)
\(398\) 0.585728 0.0293599
\(399\) 17.2908 + 0.534365i 0.865624 + 0.0267517i
\(400\) −12.1789 −0.608945
\(401\) −22.1362 12.7803i −1.10543 0.638220i −0.167787 0.985823i \(-0.553662\pi\)
−0.937642 + 0.347604i \(0.886995\pi\)
\(402\) 0.429348 0.384738i 0.0214140 0.0191890i
\(403\) −0.854596 1.48020i −0.0425705 0.0737342i
\(404\) −18.8008 + 32.5640i −0.935377 + 1.62012i
\(405\) 8.48752 9.24748i 0.421748 0.459511i
\(406\) −0.190681 0.181796i −0.00946334 0.00902239i
\(407\) 39.7707i 1.97136i
\(408\) 0.158170 + 0.0518098i 0.00783060 + 0.00256497i
\(409\) −4.09676 + 2.36527i −0.202572 + 0.116955i −0.597855 0.801605i \(-0.703980\pi\)
0.395283 + 0.918560i \(0.370647\pi\)
\(410\) −0.324727 + 0.187481i −0.0160371 + 0.00925904i
\(411\) 25.7740 + 8.44244i 1.27134 + 0.416435i
\(412\) 18.6644i 0.919531i
\(413\) −16.0985 + 4.72779i −0.792154 + 0.232640i
\(414\) 0.905359 0.397931i 0.0444959 0.0195572i
\(415\) −0.653400 + 1.13172i −0.0320742 + 0.0555541i
\(416\) 0.282257 + 0.488883i 0.0138388 + 0.0239695i
\(417\) 14.0073 12.5519i 0.685941 0.614670i
\(418\) 0.917492 + 0.529714i 0.0448760 + 0.0259092i
\(419\) −34.1086 −1.66631 −0.833157 0.553037i \(-0.813469\pi\)
−0.833157 + 0.553037i \(0.813469\pi\)
\(420\) −11.2495 + 6.03948i −0.548920 + 0.294697i
\(421\) 19.6855 0.959411 0.479705 0.877430i \(-0.340744\pi\)
0.479705 + 0.877430i \(0.340744\pi\)
\(422\) −0.137207 0.0792166i −0.00667914 0.00385621i
\(423\) 27.4678 + 20.1573i 1.33553 + 0.980083i
\(424\) 0.360618 + 0.624608i 0.0175132 + 0.0303337i
\(425\) 0.779303 1.34979i 0.0378018 0.0654746i
\(426\) −0.611232 + 0.128399i −0.0296143 + 0.00622097i
\(427\) −10.2395 + 10.7399i −0.495525 + 0.519742i
\(428\) 3.76059i 0.181775i
\(429\) 3.21173 9.80508i 0.155064 0.473394i
\(430\) 0.509029 0.293888i 0.0245476 0.0141725i
\(431\) 5.51191 3.18230i 0.265499 0.153286i −0.361341 0.932434i \(-0.617681\pi\)
0.626841 + 0.779148i \(0.284348\pi\)
\(432\) 2.01797 + 20.6169i 0.0970895 + 0.991932i
\(433\) 34.2620i 1.64653i −0.567660 0.823263i \(-0.692151\pi\)
0.567660 0.823263i \(-0.307849\pi\)
\(434\) 0.0502177 0.207044i 0.00241053 0.00993845i
\(435\) −1.04963 4.99665i −0.0503258 0.239571i
\(436\) 1.32085 2.28779i 0.0632575 0.109565i
\(437\) 13.2069 + 22.8750i 0.631771 + 1.09426i
\(438\) −0.540024 0.602640i −0.0258033 0.0287953i
\(439\) −19.2073 11.0894i −0.916717 0.529267i −0.0341306 0.999417i \(-0.510866\pi\)
−0.882586 + 0.470151i \(0.844200\pi\)
\(440\) −1.56477 −0.0745973
\(441\) 11.6030 17.5035i 0.552523 0.833498i
\(442\) −0.0240368 −0.00114332
\(443\) −20.1068 11.6087i −0.955305 0.551546i −0.0605802 0.998163i \(-0.519295\pi\)
−0.894725 + 0.446618i \(0.852628\pi\)
\(444\) 15.4173 + 17.2049i 0.731671 + 0.816509i
\(445\) 1.98526 + 3.43857i 0.0941104 + 0.163004i
\(446\) −0.109041 + 0.188865i −0.00516326 + 0.00894303i
\(447\) 0.328486 + 1.56372i 0.0155369 + 0.0739616i
\(448\) 4.95588 20.4328i 0.234143 0.965358i
\(449\) 11.5322i 0.544240i 0.962263 + 0.272120i \(0.0877247\pi\)
−0.962263 + 0.272120i \(0.912275\pi\)
\(450\) −0.429185 0.0471790i −0.0202320 0.00222404i
\(451\) −29.4396 + 16.9970i −1.38626 + 0.800357i
\(452\) 20.8184 12.0195i 0.979215 0.565350i
\(453\) 0.302457 0.923370i 0.0142107 0.0433837i
\(454\) 1.15248i 0.0540888i
\(455\) 2.54623 2.67067i 0.119369 0.125203i
\(456\) 1.20518 0.253168i 0.0564378 0.0118557i
\(457\) 2.40598 4.16728i 0.112547 0.194937i −0.804249 0.594292i \(-0.797432\pi\)
0.916797 + 0.399355i \(0.130766\pi\)
\(458\) 0.00922531 + 0.0159787i 0.000431071 + 0.000746636i
\(459\) −2.41411 1.09558i −0.112681 0.0511374i
\(460\) −16.8837 9.74781i −0.787206 0.454494i
\(461\) −19.7845 −0.921455 −0.460728 0.887542i \(-0.652411\pi\)
−0.460728 + 0.887542i \(0.652411\pi\)
\(462\) 1.13311 0.608329i 0.0527170 0.0283020i
\(463\) 12.0040 0.557872 0.278936 0.960310i \(-0.410018\pi\)
0.278936 + 0.960310i \(0.410018\pi\)
\(464\) 7.29736 + 4.21313i 0.338771 + 0.195590i
\(465\) 3.07487 2.75538i 0.142594 0.127778i
\(466\) 0.335133 + 0.580467i 0.0155247 + 0.0268896i
\(467\) 10.2459 17.7464i 0.474124 0.821207i −0.525437 0.850832i \(-0.676098\pi\)
0.999561 + 0.0296256i \(0.00943150\pi\)
\(468\) −2.41158 5.48675i −0.111475 0.253625i
\(469\) 17.9347 5.26706i 0.828148 0.243210i
\(470\) 0.746218i 0.0344205i
\(471\) 0.997422 + 0.326713i 0.0459588 + 0.0150541i
\(472\) −1.03439 + 0.597207i −0.0476118 + 0.0274887i
\(473\) 46.1484 26.6438i 2.12190 1.22508i
\(474\) 0.959197 + 0.314192i 0.0440574 + 0.0144313i
\(475\) 11.5321i 0.529130i
\(476\) 1.95181 + 1.86086i 0.0894609 + 0.0852925i
\(477\) −4.62249 10.5169i −0.211649 0.481538i
\(478\) −0.282289 + 0.488939i −0.0129116 + 0.0223635i
\(479\) −4.02095 6.96449i −0.183722 0.318216i 0.759423 0.650597i \(-0.225481\pi\)
−0.943145 + 0.332381i \(0.892148\pi\)
\(480\) −1.01557 + 0.910051i −0.0463543 + 0.0415379i
\(481\) −5.78191 3.33819i −0.263632 0.152208i
\(482\) −0.732624 −0.0333701
\(483\) 32.0494 + 0.990471i 1.45830 + 0.0450680i
\(484\) −48.9156 −2.22343
\(485\) −11.5580 6.67304i −0.524824 0.303007i
\(486\) −0.00875311 + 0.734359i −0.000397049 + 0.0333112i
\(487\) −13.1627 22.7984i −0.596457 1.03309i −0.993339 0.115225i \(-0.963241\pi\)
0.396882 0.917869i \(-0.370092\pi\)
\(488\) −0.528176 + 0.914828i −0.0239094 + 0.0414123i
\(489\) −18.2116 + 3.82565i −0.823558 + 0.173002i
\(490\) 0.459422 0.0219301i 0.0207546 0.000990701i
\(491\) 40.4161i 1.82395i 0.410243 + 0.911976i \(0.365444\pi\)
−0.410243 + 0.911976i \(0.634556\pi\)
\(492\) −6.14673 + 18.7654i −0.277116 + 0.846008i
\(493\) −0.933887 + 0.539180i −0.0420602 + 0.0242834i
\(494\) −0.154021 + 0.0889241i −0.00692973 + 0.00400088i
\(495\) 24.7746 + 2.72340i 1.11354 + 0.122408i
\(496\) 6.81402i 0.305958i
\(497\) −19.6799 4.77327i −0.882764 0.214110i
\(498\) −0.0157186 0.0748268i −0.000704367 0.00335307i
\(499\) −0.749571 + 1.29829i −0.0335554 + 0.0581196i −0.882315 0.470659i \(-0.844016\pi\)
0.848760 + 0.528778i \(0.177350\pi\)
\(500\) 11.2215 + 19.4361i 0.501839 + 0.869211i
\(501\) −23.9377 26.7133i −1.06946 1.19346i
\(502\) 0.139967 + 0.0808098i 0.00624702 + 0.00360672i
\(503\) −8.23344 −0.367111 −0.183555 0.983009i \(-0.558761\pi\)
−0.183555 + 0.983009i \(0.558761\pi\)
\(504\) 0.509014 1.40562i 0.0226733 0.0626113i
\(505\) 26.2501 1.16812
\(506\) 1.70062 + 0.981851i 0.0756016 + 0.0436486i
\(507\) 1.15590 + 1.28992i 0.0513352 + 0.0572875i
\(508\) −9.80736 16.9868i −0.435131 0.753669i
\(509\) 10.1538 17.5869i 0.450060 0.779527i −0.548329 0.836263i \(-0.684736\pi\)
0.998389 + 0.0567355i \(0.0180692\pi\)
\(510\) −0.0119368 0.0568241i −0.000528572 0.00251622i
\(511\) −7.39292 25.1734i −0.327044 1.11361i
\(512\) 3.75229i 0.165829i
\(513\) −19.5220 + 1.91080i −0.861918 + 0.0843639i
\(514\) 0.224609 0.129678i 0.00990706 0.00571984i
\(515\) 11.2842 6.51492i 0.497240 0.287082i
\(516\) 9.63536 29.4158i 0.424173 1.29496i
\(517\) 67.6518i 2.97532i
\(518\) −0.234496 0.798475i −0.0103032 0.0350830i
\(519\) 23.9572 5.03261i 1.05161 0.220907i
\(520\) 0.131340 0.227488i 0.00575964 0.00997599i
\(521\) −10.8916 18.8648i −0.477170 0.826483i 0.522488 0.852647i \(-0.325004\pi\)
−0.999658 + 0.0261641i \(0.991671\pi\)
\(522\) 0.240839 + 0.176740i 0.0105412 + 0.00773569i
\(523\) 21.8027 + 12.5878i 0.953367 + 0.550427i 0.894125 0.447817i \(-0.147798\pi\)
0.0592415 + 0.998244i \(0.481132\pi\)
\(524\) −6.46381 −0.282373
\(525\) −11.9017 7.37079i −0.519433 0.321688i
\(526\) 0.886063 0.0386342
\(527\) −0.755201 0.436016i −0.0328971 0.0189931i
\(528\) −30.6336 + 27.4507i −1.33316 + 1.19464i
\(529\) 12.9796 + 22.4813i 0.564330 + 0.977449i
\(530\) 0.125806 0.217902i 0.00546465 0.00946505i
\(531\) 17.4168 7.65516i 0.755823 0.332205i
\(532\) 19.3909 + 4.70317i 0.840701 + 0.203908i
\(533\) 5.70663i 0.247182i
\(534\) −0.220770 0.0723150i −0.00955367 0.00312937i
\(535\) −2.27358 + 1.31265i −0.0982955 + 0.0567509i
\(536\) 1.15238 0.665327i 0.0497752 0.0287377i
\(537\) −12.7823 4.18693i −0.551596 0.180679i
\(538\) 1.24468i 0.0536622i
\(539\) 41.6510 1.98817i 1.79404 0.0856367i
\(540\) 11.7733 8.42584i 0.506643 0.362591i
\(541\) −3.28601 + 5.69153i −0.141277 + 0.244698i −0.927978 0.372636i \(-0.878454\pi\)
0.786701 + 0.617334i \(0.211787\pi\)
\(542\) 0.133581 + 0.231369i 0.00573779 + 0.00993815i
\(543\) 11.5539 10.3534i 0.495824 0.444306i
\(544\) 0.249428 + 0.144008i 0.0106942 + 0.00617427i
\(545\) −1.84421 −0.0789971
\(546\) −0.00666900 + 0.215794i −0.000285407 + 0.00923511i
\(547\) −29.0225 −1.24091 −0.620456 0.784241i \(-0.713052\pi\)
−0.620456 + 0.784241i \(0.713052\pi\)
\(548\) 27.0913 + 15.6412i 1.15728 + 0.668158i
\(549\) 9.95472 13.5650i 0.424857 0.578941i
\(550\) −0.428671 0.742480i −0.0182786 0.0316594i
\(551\) −3.98939 + 6.90982i −0.169954 + 0.294368i
\(552\) 2.23386 0.469259i 0.0950794 0.0199730i
\(553\) 23.6860 + 22.5823i 1.00723 + 0.960297i
\(554\) 0.738373i 0.0313704i
\(555\) 5.02029 15.3265i 0.213100 0.650572i
\(556\) 18.7875 10.8470i 0.796768 0.460014i
\(557\) −20.5511 + 11.8652i −0.870777 + 0.502743i −0.867606 0.497252i \(-0.834343\pi\)
−0.00317056 + 0.999995i \(0.501009\pi\)
\(558\) −0.0263964 + 0.240127i −0.00111745 + 0.0101654i
\(559\) 8.94548i 0.378354i
\(560\) −14.1146 + 4.14517i −0.596451 + 0.175166i
\(561\) −1.08219 5.15165i −0.0456901 0.217503i
\(562\) 0.514283 0.890764i 0.0216937 0.0375746i
\(563\) −7.56363 13.1006i −0.318769 0.552124i 0.661462 0.749978i \(-0.269936\pi\)
−0.980231 + 0.197854i \(0.936603\pi\)
\(564\) 26.2255 + 29.2664i 1.10429 + 1.23234i
\(565\) −14.5335 8.39095i −0.611431 0.353010i
\(566\) −0.573384 −0.0241011
\(567\) −10.5055 + 21.3690i −0.441191 + 0.897413i
\(568\) −1.44159 −0.0604877
\(569\) 30.2650 + 17.4735i 1.26877 + 0.732527i 0.974756 0.223273i \(-0.0716742\pi\)
0.294018 + 0.955800i \(0.405008\pi\)
\(570\) −0.286708 0.319952i −0.0120089 0.0134013i
\(571\) −1.05572 1.82856i −0.0441805 0.0765228i 0.843090 0.537773i \(-0.180734\pi\)
−0.887270 + 0.461250i \(0.847401\pi\)
\(572\) 5.95031 10.3062i 0.248795 0.430926i
\(573\) 4.68215 + 22.2889i 0.195600 + 0.931133i
\(574\) 0.490842 0.514831i 0.0204873 0.0214886i
\(575\) 21.3753i 0.891413i
\(576\) −2.60500 + 23.6976i −0.108542 + 0.987399i
\(577\) 20.9456 12.0929i 0.871975 0.503435i 0.00397109 0.999992i \(-0.498736\pi\)
0.868004 + 0.496557i \(0.165403\pi\)
\(578\) 0.682990 0.394324i 0.0284086 0.0164017i
\(579\) −6.58486 + 20.1029i −0.273657 + 0.835449i
\(580\) 5.88902i 0.244528i
\(581\) 0.584341 2.40920i 0.0242426 0.0999506i
\(582\) 0.764190 0.160531i 0.0316767 0.00665421i
\(583\) 11.4055 19.7549i 0.472367 0.818164i
\(584\) −0.933862 1.61750i −0.0386435 0.0669325i
\(585\) −2.47541 + 3.37318i −0.102346 + 0.139464i
\(586\) −0.0479630 0.0276914i −0.00198133 0.00114392i
\(587\) −2.64918 −0.109344 −0.0546718 0.998504i \(-0.517411\pi\)
−0.0546718 + 0.998504i \(0.517411\pi\)
\(588\) 17.2476 17.0063i 0.711281 0.701328i
\(589\) −6.45215 −0.265856
\(590\) 0.360860 + 0.208343i 0.0148564 + 0.00857733i
\(591\) −22.6940 + 20.3361i −0.933508 + 0.836514i
\(592\) 13.3083 + 23.0507i 0.546968 + 0.947376i
\(593\) −14.5932 + 25.2762i −0.599271 + 1.03797i 0.393658 + 0.919257i \(0.371210\pi\)
−0.992929 + 0.118711i \(0.962124\pi\)
\(594\) −1.18587 + 0.848695i −0.0486569 + 0.0348224i
\(595\) 0.443754 1.82957i 0.0181921 0.0750051i
\(596\) 1.84300i 0.0754920i
\(597\) −20.4639 6.70310i −0.837532 0.274340i
\(598\) −0.285485 + 0.164825i −0.0116744 + 0.00674020i
\(599\) 22.0715 12.7430i 0.901819 0.520665i 0.0240290 0.999711i \(-0.492351\pi\)
0.877790 + 0.479046i \(0.159017\pi\)
\(600\) −0.947065 0.310218i −0.0386638 0.0126646i
\(601\) 2.11855i 0.0864174i −0.999066 0.0432087i \(-0.986242\pi\)
0.999066 0.0432087i \(-0.0137580\pi\)
\(602\) −0.769424 + 0.807027i −0.0313594 + 0.0328920i
\(603\) −19.4034 + 8.52833i −0.790166 + 0.347300i
\(604\) 0.560357 0.970566i 0.0228006 0.0394918i
\(605\) 17.0742 + 29.5734i 0.694166 + 1.20233i
\(606\) −1.14383 + 1.02498i −0.0464647 + 0.0416369i
\(607\) −2.85584 1.64882i −0.115915 0.0669236i 0.440921 0.897546i \(-0.354652\pi\)
−0.556837 + 0.830622i \(0.687985\pi\)
\(608\) 2.13102 0.0864243
\(609\) 4.58145 + 8.53368i 0.185650 + 0.345802i
\(610\) 0.368521 0.0149210
\(611\) −9.83531 5.67842i −0.397894 0.229724i
\(612\) −2.46522 1.80911i −0.0996506 0.0731288i
\(613\) −6.85785 11.8781i −0.276986 0.479754i 0.693648 0.720314i \(-0.256002\pi\)
−0.970634 + 0.240560i \(0.922669\pi\)
\(614\) 0.656494 1.13708i 0.0264940 0.0458889i
\(615\) 13.4907 2.83395i 0.543999 0.114276i
\(616\) 2.84814 0.836442i 0.114755 0.0337012i
\(617\) 30.9556i 1.24622i −0.782133 0.623112i \(-0.785868\pi\)
0.782133 0.623112i \(-0.214132\pi\)
\(618\) −0.237312 + 0.724490i −0.00954609 + 0.0291433i
\(619\) 26.4917 15.2950i 1.06479 0.614758i 0.138038 0.990427i \(-0.455920\pi\)
0.926754 + 0.375669i \(0.122587\pi\)
\(620\) 4.12422 2.38112i 0.165633 0.0956280i
\(621\) −36.1850 + 3.54176i −1.45205 + 0.142126i
\(622\) 0.387916i 0.0155540i
\(623\) −5.45160 5.19758i −0.218414 0.208237i
\(624\) −1.41956 6.75765i −0.0568277 0.270523i
\(625\) 0.196598 0.340518i 0.00786392 0.0136207i
\(626\) −0.684037 1.18479i −0.0273396 0.0473536i
\(627\) −25.9929 29.0068i −1.03806 1.15842i
\(628\) 1.04840 + 0.605296i 0.0418358 + 0.0241539i
\(629\) −3.40629 −0.135818
\(630\) −0.513458 + 0.0913987i −0.0204566 + 0.00364141i
\(631\) 2.96288 0.117951 0.0589753 0.998259i \(-0.481217\pi\)
0.0589753 + 0.998259i \(0.481217\pi\)
\(632\) 2.01757 + 1.16484i 0.0802546 + 0.0463350i
\(633\) 3.88713 + 4.33785i 0.154500 + 0.172414i
\(634\) 0.270764 + 0.468977i 0.0107534 + 0.0186254i
\(635\) −6.84662 + 11.8587i −0.271700 + 0.470598i
\(636\) −2.72402 12.9674i −0.108014 0.514192i
\(637\) −3.20698 + 6.22216i −0.127065 + 0.246531i
\(638\) 0.593173i 0.0234839i
\(639\) 22.8244 + 2.50902i 0.902919 + 0.0992551i
\(640\) −1.81586 + 1.04839i −0.0717783 + 0.0414412i
\(641\) 14.6925 8.48274i 0.580320 0.335048i −0.180940 0.983494i \(-0.557914\pi\)
0.761261 + 0.648446i \(0.224581\pi\)
\(642\) 0.0478146 0.145973i 0.00188709 0.00576111i
\(643\) 3.63792i 0.143465i −0.997424 0.0717327i \(-0.977147\pi\)
0.997424 0.0717327i \(-0.0228529\pi\)
\(644\) 35.9419 + 8.71755i 1.41631 + 0.343520i
\(645\) −21.1475 + 4.44238i −0.832683 + 0.174919i
\(646\) −0.0453691 + 0.0785816i −0.00178502 + 0.00309175i
\(647\) −1.40125 2.42704i −0.0550889 0.0954168i 0.837166 0.546949i \(-0.184211\pi\)
−0.892255 + 0.451532i \(0.850878\pi\)
\(648\) −0.368226 + 1.65463i −0.0144653 + 0.0650000i
\(649\) 32.7154 + 18.8883i 1.28419 + 0.741429i
\(650\) 0.143924 0.00564514
\(651\) −4.12391 + 6.65894i −0.161629 + 0.260984i
\(652\) −21.4641 −0.840599
\(653\) 37.2552 + 21.5093i 1.45791 + 0.841723i 0.998908 0.0467132i \(-0.0148747\pi\)
0.458999 + 0.888437i \(0.348208\pi\)
\(654\) 0.0803595 0.0720099i 0.00314231 0.00281581i
\(655\) 2.25623 + 3.90790i 0.0881581 + 0.152694i
\(656\) −11.3753 + 19.7026i −0.444130 + 0.769256i
\(657\) 11.9705 + 27.2349i 0.467013 + 1.06253i
\(658\) −0.398889 1.35825i −0.0155503 0.0529499i
\(659\) 44.9591i 1.75136i −0.482892 0.875680i \(-0.660414\pi\)
0.482892 0.875680i \(-0.339586\pi\)
\(660\) 27.3194 + 8.94866i 1.06341 + 0.348326i
\(661\) 10.6321 6.13846i 0.413542 0.238758i −0.278769 0.960358i \(-0.589926\pi\)
0.692310 + 0.721600i \(0.256593\pi\)
\(662\) −0.277646 + 0.160299i −0.0107910 + 0.00623019i
\(663\) 0.839789 + 0.275079i 0.0326147 + 0.0106832i
\(664\) 0.176479i 0.00684870i
\(665\) −3.92504 13.3650i −0.152206 0.518274i
\(666\) 0.379691 + 0.863862i 0.0147127 + 0.0334740i
\(667\) −7.39452 + 12.8077i −0.286317 + 0.495916i
\(668\) −20.6862 35.8296i −0.800375 1.38629i
\(669\) 5.97103 5.35062i 0.230853 0.206867i
\(670\) −0.402021 0.232107i −0.0155314 0.00896707i
\(671\) 33.4099 1.28978
\(672\) 1.36205 2.19932i 0.0525422 0.0848406i
\(673\) −6.55223 −0.252570 −0.126285 0.991994i \(-0.540305\pi\)
−0.126285 + 0.991994i \(0.540305\pi\)
\(674\) −0.00139038 0.000802737i −5.35555e−5 3.09203e-5i
\(675\) 14.4548 + 6.55994i 0.556365 + 0.252492i
\(676\) 0.998890 + 1.73013i 0.0384189 + 0.0665434i
\(677\) 23.1392 40.0783i 0.889312 1.54033i 0.0486212 0.998817i \(-0.484517\pi\)
0.840691 0.541516i \(-0.182149\pi\)
\(678\) 0.960923 0.201858i 0.0369040 0.00775230i
\(679\) 24.6047 + 5.96776i 0.944241 + 0.229022i
\(680\) 0.134020i 0.00513941i
\(681\) 13.1891 40.2650i 0.505408 1.54296i
\(682\) −0.415413 + 0.239839i −0.0159070 + 0.00918390i
\(683\) −26.2137 + 15.1345i −1.00304 + 0.579106i −0.909147 0.416476i \(-0.863265\pi\)
−0.0938944 + 0.995582i \(0.529932\pi\)
\(684\) −22.4892 2.47217i −0.859896 0.0945257i
\(685\) 21.8386i 0.834408i
\(686\) −0.824505 + 0.285500i −0.0314797 + 0.0109004i
\(687\) −0.139449 0.663833i −0.00532031 0.0253268i
\(688\) 17.8314 30.8849i 0.679817 1.17748i
\(689\) 1.91466 + 3.31629i 0.0729428 + 0.126341i
\(690\) −0.531428 0.593047i −0.0202311 0.0225769i
\(691\) 26.6158 + 15.3667i 1.01251 + 0.584575i 0.911927 0.410353i \(-0.134595\pi\)
0.100587 + 0.994928i \(0.467928\pi\)
\(692\) 28.2359 1.07337
\(693\) −46.5499 + 8.28617i −1.76828 + 0.314765i
\(694\) −0.979616 −0.0371857
\(695\) −13.1158 7.57239i −0.497510 0.287237i
\(696\) 0.460147 + 0.513502i 0.0174418 + 0.0194642i
\(697\) −1.45576 2.52146i −0.0551410 0.0955069i
\(698\) 0.768816 1.33163i 0.0291001 0.0504029i
\(699\) −5.06583 24.1154i −0.191607 0.912128i
\(700\) −11.6867 11.1421i −0.441715 0.421134i
\(701\) 12.1625i 0.459370i −0.973265 0.229685i \(-0.926230\pi\)
0.973265 0.229685i \(-0.0737696\pi\)
\(702\) −0.0238472 0.243639i −0.000900056 0.00919558i
\(703\) −21.8265 + 12.6015i −0.823203 + 0.475276i
\(704\) −40.9962 + 23.6692i −1.54510 + 0.892066i
\(705\) 8.53976 26.0711i 0.321626 0.981893i
\(706\) 0.899692i 0.0338604i
\(707\) −47.7798 + 14.0320i −1.79694 + 0.527726i
\(708\) 21.4749 4.51116i 0.807077 0.169540i
\(709\) −15.7202 + 27.2282i −0.590384 + 1.02258i 0.403796 + 0.914849i \(0.367690\pi\)
−0.994181 + 0.107727i \(0.965643\pi\)
\(710\) 0.251458 + 0.435537i 0.00943703 + 0.0163454i
\(711\) −29.9164 21.9542i −1.12195 0.823348i
\(712\) −0.464367 0.268102i −0.0174029 0.0100476i
\(713\) −11.9594 −0.447882
\(714\) 0.0521023 + 0.0970489i 0.00194988 + 0.00363196i
\(715\) −8.30796 −0.310700
\(716\) −13.4356 7.75706i −0.502113 0.289895i
\(717\) 15.4579 13.8518i 0.577287 0.517306i
\(718\) 0.0903927 + 0.156565i 0.00337343 + 0.00584295i
\(719\) 7.15809 12.3982i 0.266952 0.462374i −0.701121 0.713042i \(-0.747317\pi\)
0.968073 + 0.250668i \(0.0806502\pi\)
\(720\) 15.2704 6.71179i 0.569096 0.250134i
\(721\) −17.0566 + 17.8902i −0.635221 + 0.666266i
\(722\) 0.223766i 0.00832772i
\(723\) 25.5961 + 8.38419i 0.951930 + 0.311811i
\(724\) 15.4968 8.94707i 0.575933 0.332515i
\(725\) 5.59177 3.22841i 0.207673 0.119900i
\(726\) −1.89874 0.621945i −0.0704687 0.0230825i
\(727\) 24.8097i 0.920140i 0.887883 + 0.460070i \(0.152176\pi\)
−0.887883 + 0.460070i \(0.847824\pi\)
\(728\) −0.117459 + 0.484274i −0.00435330 + 0.0179484i
\(729\) 8.70986 25.5566i 0.322587 0.946540i
\(730\) −0.325789 + 0.564283i −0.0120580 + 0.0208850i
\(731\) 2.28199 + 3.95253i 0.0844026 + 0.146190i
\(732\) 14.4532 12.9515i 0.534207 0.478701i
\(733\) 3.85134 + 2.22357i 0.142253 + 0.0821296i 0.569437 0.822035i \(-0.307161\pi\)
−0.427185 + 0.904164i \(0.640495\pi\)
\(734\) −1.26419 −0.0466621
\(735\) −16.3021 4.49147i −0.601311 0.165670i
\(736\) 3.94995 0.145597
\(737\) −36.4471 21.0427i −1.34254 0.775118i
\(738\) −0.477190 + 0.650254i −0.0175656 + 0.0239362i
\(739\) 4.12989 + 7.15319i 0.151921 + 0.263134i 0.931933 0.362629i \(-0.118121\pi\)
−0.780013 + 0.625763i \(0.784788\pi\)
\(740\) 9.30102 16.1098i 0.341912 0.592209i
\(741\) 6.39878 1.34417i 0.235065 0.0493792i
\(742\) −0.112509 + 0.463868i −0.00413034 + 0.0170291i
\(743\) 32.7399i 1.20111i 0.799583 + 0.600556i \(0.205054\pi\)
−0.799583 + 0.600556i \(0.794946\pi\)
\(744\) −0.173565 + 0.529877i −0.00636321 + 0.0194262i
\(745\) 1.11424 0.643307i 0.0408226 0.0235690i
\(746\) 0.475816 0.274713i 0.0174209 0.0100579i
\(747\) −0.307153 + 2.79415i −0.0112381 + 0.102233i
\(748\) 6.07171i 0.222004i
\(749\) 3.43664 3.60459i 0.125572 0.131709i
\(750\) 0.188455 + 0.897122i 0.00688141 + 0.0327583i
\(751\) −14.2807 + 24.7349i −0.521110 + 0.902590i 0.478588 + 0.878039i \(0.341149\pi\)
−0.999699 + 0.0245502i \(0.992185\pi\)
\(752\) 22.6381 + 39.2103i 0.825526 + 1.42985i
\(753\) −3.96531 4.42509i −0.144504 0.161259i
\(754\) −0.0862362 0.0497885i −0.00314054 0.00181319i
\(755\) −0.782382 −0.0284738
\(756\) −16.9255 + 21.6299i −0.615573 + 0.786671i
\(757\) 21.3186 0.774839 0.387420 0.921903i \(-0.373366\pi\)
0.387420 + 0.921903i \(0.373366\pi\)
\(758\) −1.23027 0.710296i −0.0446853 0.0257991i
\(759\) −48.1790 53.7654i −1.74879 1.95156i
\(760\) −0.495804 0.858759i −0.0179847 0.0311504i
\(761\) −6.75158 + 11.6941i −0.244745 + 0.423910i −0.962060 0.272839i \(-0.912037\pi\)
0.717315 + 0.696749i \(0.245371\pi\)
\(762\) −0.164706 0.784069i −0.00596669 0.0284038i
\(763\) 3.35677 0.985816i 0.121523 0.0356889i
\(764\) 26.2696i 0.950400i
\(765\) −0.233254 + 2.12191i −0.00843333 + 0.0767176i
\(766\) 1.05126 0.606945i 0.0379835 0.0219298i
\(767\) −5.49200 + 3.17081i −0.198305 + 0.114491i
\(768\) −8.53096 + 26.0442i −0.307834 + 0.939788i
\(769\) 9.41375i 0.339469i 0.985490 + 0.169734i \(0.0542910\pi\)
−0.985490 + 0.169734i \(0.945709\pi\)
\(770\) −0.749512 0.714588i −0.0270105 0.0257520i
\(771\) −9.33132 + 1.96020i −0.336059 + 0.0705948i
\(772\) −12.1997 + 21.1304i −0.439075 + 0.760501i
\(773\) 2.45165 + 4.24639i 0.0881799 + 0.152732i 0.906742 0.421686i \(-0.138562\pi\)
−0.818562 + 0.574418i \(0.805228\pi\)
\(774\) 0.748024 1.01931i 0.0268872 0.0366384i