Properties

Label 273.2.bh.a.131.16
Level $273$
Weight $2$
Character 273.131
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bh (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 131.16
Character \(\chi\) \(=\) 273.131
Dual form 273.2.bh.a.248.16

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.0408006 - 0.0235563i) q^{2} +(0.539158 + 1.64600i) q^{3} +(-0.998890 - 1.73013i) q^{4} +(0.697336 - 1.20782i) q^{5} +(0.0167755 - 0.0798583i) q^{6} +(0.623634 - 2.57120i) q^{7} +0.188345i q^{8} +(-2.41862 + 1.77491i) q^{9} +O(q^{10})\) \(q+(-0.0408006 - 0.0235563i) q^{2} +(0.539158 + 1.64600i) q^{3} +(-0.998890 - 1.73013i) q^{4} +(0.697336 - 1.20782i) q^{5} +(0.0167755 - 0.0798583i) q^{6} +(0.623634 - 2.57120i) q^{7} +0.188345i q^{8} +(-2.41862 + 1.77491i) q^{9} +(-0.0569035 + 0.0328532i) q^{10} +(5.15885 - 2.97846i) q^{11} +(2.30923 - 2.57698i) q^{12} -1.00000i q^{13} +(-0.0860125 + 0.0902162i) q^{14} +(2.36405 + 0.496606i) q^{15} +(-1.99334 + 3.45257i) q^{16} +(0.255100 + 0.441847i) q^{17} +(0.140491 - 0.0154438i) q^{18} +(-3.26922 - 1.88748i) q^{19} -2.78625 q^{20} +(4.56843 - 0.359786i) q^{21} -0.280646 q^{22} +(6.05965 + 3.49854i) q^{23} +(-0.310016 + 0.101548i) q^{24} +(1.52745 + 2.64561i) q^{25} +(-0.0235563 + 0.0408006i) q^{26} +(-4.22551 - 3.02408i) q^{27} +(-5.07145 + 1.48938i) q^{28} +2.11360i q^{29} +(-0.0847564 - 0.0759499i) q^{30} +(1.48020 - 0.854596i) q^{31} +(0.488883 - 0.282257i) q^{32} +(7.68398 + 6.88559i) q^{33} -0.0240368i q^{34} +(-2.67067 - 2.54623i) q^{35} +(5.48675 + 2.41158i) q^{36} +(3.33819 - 5.78191i) q^{37} +(0.0889241 + 0.154021i) q^{38} +(1.64600 - 0.539158i) q^{39} +(0.227488 + 0.131340i) q^{40} -5.70663 q^{41} +(-0.194870 - 0.0929356i) q^{42} -8.94548 q^{43} +(-10.3062 - 5.95031i) q^{44} +(0.457182 + 4.15896i) q^{45} +(-0.164825 - 0.285485i) q^{46} +(-5.67842 + 9.83531i) q^{47} +(-6.75765 - 1.41956i) q^{48} +(-6.22216 - 3.20698i) q^{49} -0.143924i q^{50} +(-0.589739 + 0.658120i) q^{51} +(-1.73013 + 0.998890i) q^{52} +(3.31629 - 1.91466i) q^{53} +(0.101167 + 0.222922i) q^{54} -8.30796i q^{55} +(0.484274 + 0.117459i) q^{56} +(1.34417 - 6.39878i) q^{57} +(0.0497885 - 0.0862362i) q^{58} +(3.17081 + 5.49200i) q^{59} +(-1.50223 - 4.58616i) q^{60} +(-4.85718 - 2.80429i) q^{61} -0.0805244 q^{62} +(3.05531 + 7.32564i) q^{63} +7.94678 q^{64} +(-1.20782 - 0.697336i) q^{65} +(-0.151312 - 0.461942i) q^{66} +(3.53248 + 6.11844i) q^{67} +(0.509634 - 0.882712i) q^{68} +(-2.49148 + 11.8604i) q^{69} +(0.0489854 + 0.166799i) q^{70} +7.65396i q^{71} +(-0.334296 - 0.455535i) q^{72} +(8.58793 - 4.95824i) q^{73} +(-0.272400 + 0.157270i) q^{74} +(-3.53114 + 3.94057i) q^{75} +7.54156i q^{76} +(-4.44100 - 15.1219i) q^{77} +(-0.0798583 - 0.0167755i) q^{78} +(-6.18461 + 10.7121i) q^{79} +(2.78006 + 4.81521i) q^{80} +(2.69941 - 8.58564i) q^{81} +(0.232834 + 0.134427i) q^{82} -0.936995 q^{83} +(-5.18584 - 7.54459i) q^{84} +0.711562 q^{85} +(0.364981 + 0.210722i) q^{86} +(-3.47898 + 1.13957i) q^{87} +(0.560980 + 0.971645i) q^{88} +(-1.42346 + 2.46551i) q^{89} +(0.0793163 - 0.180458i) q^{90} +(-2.57120 - 0.623634i) q^{91} -13.9786i q^{92} +(2.20473 + 1.97565i) q^{93} +(0.463366 - 0.267525i) q^{94} +(-4.55949 + 2.63242i) q^{95} +(0.728180 + 0.652519i) q^{96} +9.56933i q^{97} +(0.178324 + 0.277417i) q^{98} +(-7.19078 + 16.3602i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{4} - 4q^{7} - 4q^{9} + O(q^{10}) \) \( 64q + 32q^{4} - 4q^{7} - 4q^{9} - 12q^{10} - 30q^{12} + 12q^{15} - 16q^{16} - 10q^{18} + 10q^{21} - 8q^{22} + 36q^{24} - 36q^{25} - 20q^{28} - 22q^{30} + 12q^{31} + 36q^{36} - 36q^{40} + 48q^{42} - 32q^{43} - 6q^{45} - 48q^{46} + 36q^{49} - 16q^{51} - 54q^{54} - 8q^{57} - 12q^{58} + 16q^{60} - 72q^{61} - 86q^{63} - 48q^{64} - 78q^{66} + 32q^{67} - 4q^{70} + 62q^{72} + 48q^{73} + 48q^{75} - 20q^{78} - 64q^{79} + 28q^{81} + 72q^{82} - 18q^{84} + 64q^{85} + 60q^{87} + 44q^{88} + 8q^{91} - 38q^{93} + 72q^{94} + 66q^{96} - 68q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0408006 0.0235563i −0.0288504 0.0166568i 0.485505 0.874234i \(-0.338636\pi\)
−0.514356 + 0.857577i \(0.671969\pi\)
\(3\) 0.539158 + 1.64600i 0.311283 + 0.950317i
\(4\) −0.998890 1.73013i −0.499445 0.865064i
\(5\) 0.697336 1.20782i 0.311858 0.540154i −0.666907 0.745141i \(-0.732382\pi\)
0.978765 + 0.204987i \(0.0657153\pi\)
\(6\) 0.0167755 0.0798583i 0.00684858 0.0326020i
\(7\) 0.623634 2.57120i 0.235711 0.971823i
\(8\) 0.188345i 0.0665902i
\(9\) −2.41862 + 1.77491i −0.806206 + 0.591636i
\(10\) −0.0569035 + 0.0328532i −0.0179945 + 0.0103891i
\(11\) 5.15885 2.97846i 1.55545 0.898040i 0.557769 0.829996i \(-0.311658\pi\)
0.997682 0.0680438i \(-0.0216758\pi\)
\(12\) 2.30923 2.57698i 0.666617 0.743911i
\(13\) 1.00000i 0.277350i
\(14\) −0.0860125 + 0.0902162i −0.0229878 + 0.0241113i
\(15\) 2.36405 + 0.496606i 0.610394 + 0.128223i
\(16\) −1.99334 + 3.45257i −0.498336 + 0.863143i
\(17\) 0.255100 + 0.441847i 0.0618709 + 0.107164i 0.895302 0.445460i \(-0.146960\pi\)
−0.833431 + 0.552624i \(0.813627\pi\)
\(18\) 0.140491 0.0154438i 0.0331141 0.00364013i
\(19\) −3.26922 1.88748i −0.750010 0.433019i 0.0756875 0.997132i \(-0.475885\pi\)
−0.825698 + 0.564113i \(0.809218\pi\)
\(20\) −2.78625 −0.623024
\(21\) 4.56843 0.359786i 0.996913 0.0785117i
\(22\) −0.280646 −0.0598338
\(23\) 6.05965 + 3.49854i 1.26352 + 0.729496i 0.973755 0.227600i \(-0.0730878\pi\)
0.289770 + 0.957096i \(0.406421\pi\)
\(24\) −0.310016 + 0.101548i −0.0632818 + 0.0207284i
\(25\) 1.52745 + 2.64561i 0.305489 + 0.529122i
\(26\) −0.0235563 + 0.0408006i −0.00461976 + 0.00800166i
\(27\) −4.22551 3.02408i −0.813200 0.581985i
\(28\) −5.07145 + 1.48938i −0.958414 + 0.281467i
\(29\) 2.11360i 0.392486i 0.980555 + 0.196243i \(0.0628741\pi\)
−0.980555 + 0.196243i \(0.937126\pi\)
\(30\) −0.0847564 0.0759499i −0.0154743 0.0138665i
\(31\) 1.48020 0.854596i 0.265853 0.153490i −0.361149 0.932508i \(-0.617615\pi\)
0.627001 + 0.779018i \(0.284282\pi\)
\(32\) 0.488883 0.282257i 0.0864232 0.0498964i
\(33\) 7.68398 + 6.88559i 1.33761 + 1.19863i
\(34\) 0.0240368i 0.00412228i
\(35\) −2.67067 2.54623i −0.451426 0.430391i
\(36\) 5.48675 + 2.41158i 0.914458 + 0.401930i
\(37\) 3.33819 5.78191i 0.548795 0.950540i −0.449563 0.893249i \(-0.648420\pi\)
0.998358 0.0572914i \(-0.0182464\pi\)
\(38\) 0.0889241 + 0.154021i 0.0144254 + 0.0249855i
\(39\) 1.64600 0.539158i 0.263571 0.0863344i
\(40\) 0.227488 + 0.131340i 0.0359690 + 0.0207667i
\(41\) −5.70663 −0.891226 −0.445613 0.895226i \(-0.647014\pi\)
−0.445613 + 0.895226i \(0.647014\pi\)
\(42\) −0.194870 0.0929356i −0.0300691 0.0143403i
\(43\) −8.94548 −1.36417 −0.682087 0.731271i \(-0.738927\pi\)
−0.682087 + 0.731271i \(0.738927\pi\)
\(44\) −10.3062 5.95031i −1.55372 0.897044i
\(45\) 0.457182 + 4.15896i 0.0681526 + 0.619982i
\(46\) −0.164825 0.285485i −0.0243021 0.0420925i
\(47\) −5.67842 + 9.83531i −0.828283 + 1.43463i 0.0711020 + 0.997469i \(0.477348\pi\)
−0.899385 + 0.437158i \(0.855985\pi\)
\(48\) −6.75765 1.41956i −0.975383 0.204895i
\(49\) −6.22216 3.20698i −0.888880 0.458139i
\(50\) 0.143924i 0.0203539i
\(51\) −0.589739 + 0.658120i −0.0825800 + 0.0921552i
\(52\) −1.73013 + 0.998890i −0.239926 + 0.138521i
\(53\) 3.31629 1.91466i 0.455528 0.262999i −0.254634 0.967037i \(-0.581955\pi\)
0.710162 + 0.704038i \(0.248622\pi\)
\(54\) 0.101167 + 0.222922i 0.0137671 + 0.0303358i
\(55\) 8.30796i 1.12024i
\(56\) 0.484274 + 0.117459i 0.0647139 + 0.0156961i
\(57\) 1.34417 6.39878i 0.178039 0.847539i
\(58\) 0.0497885 0.0862362i 0.00653755 0.0113234i
\(59\) 3.17081 + 5.49200i 0.412804 + 0.714998i 0.995195 0.0979111i \(-0.0312161\pi\)
−0.582391 + 0.812909i \(0.697883\pi\)
\(60\) −1.50223 4.58616i −0.193937 0.592070i
\(61\) −4.85718 2.80429i −0.621898 0.359053i 0.155709 0.987803i \(-0.450234\pi\)
−0.777608 + 0.628750i \(0.783567\pi\)
\(62\) −0.0805244 −0.0102266
\(63\) 3.05531 + 7.32564i 0.384933 + 0.922944i
\(64\) 7.94678 0.993347
\(65\) −1.20782 0.697336i −0.149812 0.0864939i
\(66\) −0.151312 0.461942i −0.0186253 0.0568611i
\(67\) 3.53248 + 6.11844i 0.431561 + 0.747486i 0.997008 0.0772989i \(-0.0246296\pi\)
−0.565447 + 0.824785i \(0.691296\pi\)
\(68\) 0.509634 0.882712i 0.0618022 0.107045i
\(69\) −2.49148 + 11.8604i −0.299939 + 1.42783i
\(70\) 0.0489854 + 0.166799i 0.00585488 + 0.0199363i
\(71\) 7.65396i 0.908358i 0.890910 + 0.454179i \(0.150067\pi\)
−0.890910 + 0.454179i \(0.849933\pi\)
\(72\) −0.334296 0.455535i −0.0393971 0.0536854i
\(73\) 8.58793 4.95824i 1.00514 0.580318i 0.0953756 0.995441i \(-0.469595\pi\)
0.909765 + 0.415123i \(0.136261\pi\)
\(74\) −0.272400 + 0.157270i −0.0316659 + 0.0182823i
\(75\) −3.53114 + 3.94057i −0.407741 + 0.455018i
\(76\) 7.54156i 0.865076i
\(77\) −4.44100 15.1219i −0.506099 1.72330i
\(78\) −0.0798583 0.0167755i −0.00904217 0.00189946i
\(79\) −6.18461 + 10.7121i −0.695823 + 1.20520i 0.274079 + 0.961707i \(0.411627\pi\)
−0.969902 + 0.243494i \(0.921706\pi\)
\(80\) 2.78006 + 4.81521i 0.310820 + 0.538356i
\(81\) 2.69941 8.58564i 0.299935 0.953960i
\(82\) 0.232834 + 0.134427i 0.0257122 + 0.0148450i
\(83\) −0.936995 −0.102849 −0.0514243 0.998677i \(-0.516376\pi\)
−0.0514243 + 0.998677i \(0.516376\pi\)
\(84\) −5.18584 7.54459i −0.565821 0.823182i
\(85\) 0.711562 0.0771798
\(86\) 0.364981 + 0.210722i 0.0393569 + 0.0227227i
\(87\) −3.47898 + 1.13957i −0.372986 + 0.122174i
\(88\) 0.560980 + 0.971645i 0.0598006 + 0.103578i
\(89\) −1.42346 + 2.46551i −0.150887 + 0.261343i −0.931554 0.363604i \(-0.881546\pi\)
0.780667 + 0.624947i \(0.214879\pi\)
\(90\) 0.0793163 0.180458i 0.00836067 0.0190219i
\(91\) −2.57120 0.623634i −0.269535 0.0653746i
\(92\) 13.9786i 1.45737i
\(93\) 2.20473 + 1.97565i 0.228620 + 0.204865i
\(94\) 0.463366 0.267525i 0.0477926 0.0275930i
\(95\) −4.55949 + 2.63242i −0.467793 + 0.270081i
\(96\) 0.728180 + 0.652519i 0.0743195 + 0.0665975i
\(97\) 9.56933i 0.971619i 0.874065 + 0.485809i \(0.161475\pi\)
−0.874065 + 0.485809i \(0.838525\pi\)
\(98\) 0.178324 + 0.277417i 0.0180134 + 0.0280234i
\(99\) −7.19078 + 16.3602i −0.722701 + 1.64427i
\(100\) 3.05150 5.28535i 0.305150 0.528535i
\(101\) 9.41087 + 16.3001i 0.936416 + 1.62192i 0.772089 + 0.635515i \(0.219212\pi\)
0.164327 + 0.986406i \(0.447455\pi\)
\(102\) 0.0395646 0.0129597i 0.00391747 0.00128320i
\(103\) −8.09092 4.67129i −0.797222 0.460276i 0.0452770 0.998974i \(-0.485583\pi\)
−0.842499 + 0.538698i \(0.818916\pi\)
\(104\) 0.188345 0.0184688
\(105\) 2.75117 5.76874i 0.268487 0.562971i
\(106\) −0.180409 −0.0175229
\(107\) −1.63019 0.941191i −0.157597 0.0909884i 0.419128 0.907927i \(-0.362336\pi\)
−0.576724 + 0.816939i \(0.695669\pi\)
\(108\) −1.01123 + 10.3314i −0.0973056 + 0.994139i
\(109\) 0.661161 + 1.14516i 0.0633277 + 0.109687i 0.895951 0.444153i \(-0.146495\pi\)
−0.832623 + 0.553840i \(0.813162\pi\)
\(110\) −0.195704 + 0.338970i −0.0186597 + 0.0323195i
\(111\) 11.3168 + 2.37728i 1.07415 + 0.225642i
\(112\) 7.63415 + 7.27843i 0.721359 + 0.687747i
\(113\) 12.0329i 1.13196i −0.824420 0.565978i \(-0.808499\pi\)
0.824420 0.565978i \(-0.191501\pi\)
\(114\) −0.205574 + 0.229411i −0.0192538 + 0.0214863i
\(115\) 8.45123 4.87932i 0.788081 0.454999i
\(116\) 3.65680 2.11125i 0.339525 0.196025i
\(117\) 1.77491 + 2.41862i 0.164090 + 0.223601i
\(118\) 0.298769i 0.0275040i
\(119\) 1.29517 0.380364i 0.118728 0.0348679i
\(120\) −0.0935336 + 0.445257i −0.00853841 + 0.0406462i
\(121\) 12.2425 21.2046i 1.11295 1.92769i
\(122\) 0.132117 + 0.228834i 0.0119613 + 0.0207176i
\(123\) −3.07678 9.39310i −0.277424 0.846947i
\(124\) −2.95712 1.70730i −0.265558 0.153320i
\(125\) 11.2339 1.00479
\(126\) 0.0479060 0.370863i 0.00426781 0.0330391i
\(127\) 9.81825 0.871229 0.435614 0.900133i \(-0.356531\pi\)
0.435614 + 0.900133i \(0.356531\pi\)
\(128\) −1.30200 0.751710i −0.115082 0.0664424i
\(129\) −4.82303 14.7242i −0.424644 1.29640i
\(130\) 0.0328532 + 0.0569035i 0.00288142 + 0.00499077i
\(131\) −1.61775 + 2.80202i −0.141343 + 0.244814i −0.928003 0.372573i \(-0.878475\pi\)
0.786659 + 0.617387i \(0.211809\pi\)
\(132\) 4.23750 20.1722i 0.368827 1.75577i
\(133\) −6.89190 + 7.22872i −0.597603 + 0.626810i
\(134\) 0.332848i 0.0287537i
\(135\) −6.59915 + 2.99486i −0.567964 + 0.257756i
\(136\) −0.0832198 + 0.0480470i −0.00713604 + 0.00411999i
\(137\) 13.5607 7.82928i 1.15857 0.668900i 0.207609 0.978212i \(-0.433432\pi\)
0.950961 + 0.309311i \(0.100099\pi\)
\(138\) 0.381042 0.425224i 0.0324364 0.0361974i
\(139\) 10.8590i 0.921051i 0.887646 + 0.460525i \(0.152339\pi\)
−0.887646 + 0.460525i \(0.847661\pi\)
\(140\) −1.73760 + 7.16401i −0.146854 + 0.605469i
\(141\) −19.2505 4.04387i −1.62118 0.340556i
\(142\) 0.180299 0.312286i 0.0151303 0.0262065i
\(143\) −2.97846 5.15885i −0.249072 0.431405i
\(144\) −1.30686 11.8884i −0.108905 0.990704i
\(145\) 2.55285 + 1.47389i 0.212003 + 0.122400i
\(146\) −0.467190 −0.0386650
\(147\) 1.92394 11.9707i 0.158684 0.987329i
\(148\) −13.3379 −1.09637
\(149\) 0.798927 + 0.461261i 0.0654507 + 0.0377880i 0.532368 0.846513i \(-0.321302\pi\)
−0.466918 + 0.884301i \(0.654636\pi\)
\(150\) 0.236898 0.0775976i 0.0193426 0.00633581i
\(151\) 0.280490 + 0.485822i 0.0228259 + 0.0395357i 0.877213 0.480102i \(-0.159400\pi\)
−0.854387 + 0.519638i \(0.826067\pi\)
\(152\) 0.355499 0.615742i 0.0288348 0.0499433i
\(153\) −1.40123 0.615878i −0.113282 0.0497908i
\(154\) −0.175020 + 0.721597i −0.0141035 + 0.0581479i
\(155\) 2.38376i 0.191468i
\(156\) −2.57698 2.30923i −0.206324 0.184886i
\(157\) −0.524784 + 0.302984i −0.0418823 + 0.0241808i −0.520795 0.853682i \(-0.674364\pi\)
0.478913 + 0.877863i \(0.341031\pi\)
\(158\) 0.504672 0.291373i 0.0401496 0.0231804i
\(159\) 4.93954 + 4.42630i 0.391731 + 0.351029i
\(160\) 0.787311i 0.0622424i
\(161\) 12.7745 13.3988i 1.00677 1.05597i
\(162\) −0.312383 + 0.286711i −0.0245431 + 0.0225262i
\(163\) 5.37199 9.30455i 0.420766 0.728789i −0.575248 0.817979i \(-0.695095\pi\)
0.996015 + 0.0891901i \(0.0284279\pi\)
\(164\) 5.70030 + 9.87321i 0.445118 + 0.770968i
\(165\) 13.6749 4.47930i 1.06459 0.348713i
\(166\) 0.0382300 + 0.0220721i 0.00296722 + 0.00171313i
\(167\) −20.7092 −1.60253 −0.801264 0.598311i \(-0.795839\pi\)
−0.801264 + 0.598311i \(0.795839\pi\)
\(168\) 0.0677640 + 0.860443i 0.00522811 + 0.0663846i
\(169\) −1.00000 −0.0769231
\(170\) −0.0290322 0.0167617i −0.00222667 0.00128557i
\(171\) 11.2571 1.23746i 0.860851 0.0946307i
\(172\) 8.93555 + 15.4768i 0.681330 + 1.18010i
\(173\) 7.06681 12.2401i 0.537279 0.930595i −0.461770 0.887000i \(-0.652785\pi\)
0.999049 0.0435953i \(-0.0138812\pi\)
\(174\) 0.168788 + 0.0354568i 0.0127958 + 0.00268797i
\(175\) 7.75497 2.27748i 0.586221 0.172161i
\(176\) 23.7484i 1.79010i
\(177\) −7.33025 + 8.18020i −0.550976 + 0.614862i
\(178\) 0.116156 0.0670628i 0.00870628 0.00502657i
\(179\) −6.72527 + 3.88284i −0.502671 + 0.290217i −0.729816 0.683644i \(-0.760394\pi\)
0.227145 + 0.973861i \(0.427061\pi\)
\(180\) 6.73887 4.94533i 0.502285 0.368603i
\(181\) 8.95701i 0.665769i 0.942968 + 0.332885i \(0.108022\pi\)
−0.942968 + 0.332885i \(0.891978\pi\)
\(182\) 0.0902162 + 0.0860125i 0.00668727 + 0.00637567i
\(183\) 1.99707 9.50687i 0.147628 0.702768i
\(184\) −0.658934 + 1.14131i −0.0485773 + 0.0841383i
\(185\) −4.65568 8.06387i −0.342292 0.592867i
\(186\) −0.0434154 0.132543i −0.00318337 0.00971852i
\(187\) 2.63205 + 1.51961i 0.192474 + 0.111125i
\(188\) 22.6885 1.65473
\(189\) −10.4107 + 8.97872i −0.757267 + 0.653106i
\(190\) 0.248040 0.0179947
\(191\) 11.3877 + 6.57469i 0.823985 + 0.475728i 0.851789 0.523886i \(-0.175518\pi\)
−0.0278039 + 0.999613i \(0.508851\pi\)
\(192\) 4.28457 + 13.0804i 0.309212 + 0.943995i
\(193\) −6.10661 10.5770i −0.439563 0.761346i 0.558092 0.829779i \(-0.311533\pi\)
−0.997656 + 0.0684328i \(0.978200\pi\)
\(194\) 0.225418 0.390435i 0.0161840 0.0280316i
\(195\) 0.496606 2.36405i 0.0355627 0.169293i
\(196\) 0.666776 + 13.9686i 0.0476269 + 0.997754i
\(197\) 17.5933i 1.25347i 0.779232 + 0.626736i \(0.215610\pi\)
−0.779232 + 0.626736i \(0.784390\pi\)
\(198\) 0.678774 0.498120i 0.0482384 0.0353998i
\(199\) 10.7669 6.21627i 0.763244 0.440659i −0.0672150 0.997739i \(-0.521411\pi\)
0.830459 + 0.557079i \(0.188078\pi\)
\(200\) −0.498289 + 0.287687i −0.0352344 + 0.0203426i
\(201\) −8.16636 + 9.11326i −0.576011 + 0.642800i
\(202\) 0.886739i 0.0623907i
\(203\) 5.43449 + 1.31811i 0.381427 + 0.0925133i
\(204\) 1.72772 + 0.362935i 0.120964 + 0.0254105i
\(205\) −3.97944 + 6.89259i −0.277936 + 0.481399i
\(206\) 0.220076 + 0.381183i 0.0153334 + 0.0265583i
\(207\) −20.8656 + 2.29369i −1.45026 + 0.159422i
\(208\) 3.45257 + 1.99334i 0.239393 + 0.138214i
\(209\) −22.4872 −1.55547
\(210\) −0.248139 + 0.170561i −0.0171233 + 0.0117698i
\(211\) −3.36287 −0.231510 −0.115755 0.993278i \(-0.536929\pi\)
−0.115755 + 0.993278i \(0.536929\pi\)
\(212\) −6.62522 3.82507i −0.455022 0.262707i
\(213\) −12.5984 + 4.12670i −0.863229 + 0.282757i
\(214\) 0.0443419 + 0.0768024i 0.00303115 + 0.00525010i
\(215\) −6.23801 + 10.8045i −0.425429 + 0.736864i
\(216\) 0.569572 0.795855i 0.0387545 0.0541511i
\(217\) −1.27424 4.33886i −0.0865007 0.294541i
\(218\) 0.0622979i 0.00421935i
\(219\) 12.7915 + 11.4624i 0.864370 + 0.774559i
\(220\) −14.3738 + 8.29874i −0.969084 + 0.559501i
\(221\) 0.441847 0.255100i 0.0297218 0.0171599i
\(222\) −0.405733 0.363576i −0.0272310 0.0244017i
\(223\) 4.62898i 0.309979i 0.987916 + 0.154990i \(0.0495344\pi\)
−0.987916 + 0.154990i \(0.950466\pi\)
\(224\) −0.420855 1.43304i −0.0281196 0.0957492i
\(225\) −8.39002 3.68765i −0.559335 0.245843i
\(226\) −0.283449 + 0.490948i −0.0188548 + 0.0326574i
\(227\) −12.2312 21.1851i −0.811813 1.40610i −0.911594 0.411092i \(-0.865147\pi\)
0.0997806 0.995009i \(-0.468186\pi\)
\(228\) −12.4134 + 4.06609i −0.822096 + 0.269284i
\(229\) 0.339161 + 0.195815i 0.0224124 + 0.0129398i 0.511164 0.859483i \(-0.329214\pi\)
−0.488752 + 0.872423i \(0.662548\pi\)
\(230\) −0.459754 −0.0303153
\(231\) 22.4962 15.4630i 1.48014 1.01739i
\(232\) −0.398087 −0.0261357
\(233\) −12.3209 7.11345i −0.807167 0.466018i 0.0388043 0.999247i \(-0.487645\pi\)
−0.845971 + 0.533229i \(0.820978\pi\)
\(234\) −0.0154438 0.140491i −0.00100959 0.00918420i
\(235\) 7.91953 + 13.7170i 0.516613 + 0.894800i
\(236\) 6.33458 10.9718i 0.412346 0.714204i
\(237\) −20.9665 4.40436i −1.36192 0.286094i
\(238\) −0.0618035 0.0149902i −0.00400613 0.000971668i
\(239\) 11.9836i 0.775155i −0.921837 0.387578i \(-0.873312\pi\)
0.921837 0.387578i \(-0.126688\pi\)
\(240\) −6.42693 + 7.17213i −0.414856 + 0.462959i
\(241\) −13.4671 + 7.77526i −0.867495 + 0.500848i −0.866515 0.499151i \(-0.833645\pi\)
−0.000979872 1.00000i \(0.500312\pi\)
\(242\) −0.999001 + 0.576774i −0.0642182 + 0.0370764i
\(243\) 15.5874 0.185792i 0.999929 0.0119185i
\(244\) 11.2047i 0.717309i
\(245\) −8.21239 + 5.27892i −0.524670 + 0.337258i
\(246\) −0.0957318 + 0.455722i −0.00610364 + 0.0290558i
\(247\) −1.88748 + 3.26922i −0.120098 + 0.208015i
\(248\) 0.160959 + 0.278790i 0.0102209 + 0.0177032i
\(249\) −0.505189 1.54229i −0.0320150 0.0977387i
\(250\) −0.458351 0.264629i −0.0289887 0.0167366i
\(251\) −3.43050 −0.216531 −0.108266 0.994122i \(-0.534530\pi\)
−0.108266 + 0.994122i \(0.534530\pi\)
\(252\) 9.62238 12.6036i 0.606153 0.793952i
\(253\) 41.6811 2.62047
\(254\) −0.400591 0.231281i −0.0251353 0.0145119i
\(255\) 0.383645 + 1.17123i 0.0240248 + 0.0733453i
\(256\) −7.91136 13.7029i −0.494460 0.856430i
\(257\) −2.75251 + 4.76749i −0.171697 + 0.297388i −0.939013 0.343881i \(-0.888258\pi\)
0.767316 + 0.641269i \(0.221592\pi\)
\(258\) −0.150065 + 0.714371i −0.00934266 + 0.0444748i
\(259\) −12.7847 12.1889i −0.794400 0.757384i
\(260\) 2.78625i 0.172796i
\(261\) −3.75144 5.11199i −0.232209 0.316424i
\(262\) 0.132010 0.0762162i 0.00815562 0.00470865i
\(263\) −16.2877 + 9.40369i −1.00434 + 0.579857i −0.909530 0.415639i \(-0.863558\pi\)
−0.0948112 + 0.995495i \(0.530225\pi\)
\(264\) −1.29687 + 1.44724i −0.0798168 + 0.0890716i
\(265\) 5.34065i 0.328074i
\(266\) 0.451475 0.132589i 0.0276817 0.00812956i
\(267\) −4.82569 1.01372i −0.295327 0.0620384i
\(268\) 7.05712 12.2233i 0.431082 0.746656i
\(269\) −13.2097 22.8799i −0.805410 1.39501i −0.916014 0.401147i \(-0.868612\pi\)
0.110604 0.993865i \(-0.464722\pi\)
\(270\) 0.339797 + 0.0332591i 0.0206794 + 0.00202408i
\(271\) 4.91099 + 2.83536i 0.298321 + 0.172236i 0.641689 0.766965i \(-0.278234\pi\)
−0.343367 + 0.939201i \(0.611568\pi\)
\(272\) −2.03401 −0.123330
\(273\) −0.359786 4.56843i −0.0217752 0.276494i
\(274\) −0.737714 −0.0445669
\(275\) 15.7597 + 9.09887i 0.950346 + 0.548683i
\(276\) 23.0088 7.53670i 1.38497 0.453656i
\(277\) 7.83627 + 13.5728i 0.470836 + 0.815512i 0.999444 0.0333546i \(-0.0106191\pi\)
−0.528608 + 0.848866i \(0.677286\pi\)
\(278\) 0.255798 0.443055i 0.0153417 0.0265727i
\(279\) −2.06322 + 4.69417i −0.123522 + 0.281032i
\(280\) 0.479571 0.503009i 0.0286598 0.0300605i
\(281\) 21.8321i 1.30239i 0.758908 + 0.651197i \(0.225733\pi\)
−0.758908 + 0.651197i \(0.774267\pi\)
\(282\) 0.690172 + 0.618461i 0.0410992 + 0.0368288i
\(283\) −10.5400 + 6.08526i −0.626537 + 0.361731i −0.779410 0.626515i \(-0.784481\pi\)
0.152873 + 0.988246i \(0.451147\pi\)
\(284\) 13.2423 7.64547i 0.785788 0.453675i
\(285\) −6.79124 6.08561i −0.402279 0.360481i
\(286\) 0.280646i 0.0165949i
\(287\) −3.55885 + 14.6729i −0.210072 + 0.866114i
\(288\) −0.681441 + 1.55039i −0.0401543 + 0.0913578i
\(289\) 8.36985 14.4970i 0.492344 0.852765i
\(290\) −0.0694386 0.120271i −0.00407758 0.00706257i
\(291\) −15.7511 + 5.15939i −0.923346 + 0.302449i
\(292\) −17.1568 9.90548i −1.00403 0.579674i
\(293\) 1.17555 0.0686761 0.0343381 0.999410i \(-0.489068\pi\)
0.0343381 + 0.999410i \(0.489068\pi\)
\(294\) −0.360484 + 0.443092i −0.0210238 + 0.0258417i
\(295\) 8.84448 0.514945
\(296\) 1.08900 + 0.628732i 0.0632966 + 0.0365443i
\(297\) −30.8059 3.01526i −1.78754 0.174963i
\(298\) −0.0217311 0.0376395i −0.00125885 0.00218039i
\(299\) 3.49854 6.05965i 0.202326 0.350439i
\(300\) 10.3449 + 2.17312i 0.597264 + 0.125465i
\(301\) −5.57870 + 23.0006i −0.321551 + 1.32574i
\(302\) 0.0264291i 0.00152083i
\(303\) −21.7560 + 24.2786i −1.24985 + 1.39477i
\(304\) 13.0334 7.52481i 0.747514 0.431577i
\(305\) −6.77417 + 3.91107i −0.387888 + 0.223947i
\(306\) 0.0426631 + 0.0581359i 0.00243889 + 0.00332341i
\(307\) 27.8692i 1.59058i −0.606229 0.795290i \(-0.707318\pi\)
0.606229 0.795290i \(-0.292682\pi\)
\(308\) −21.7268 + 22.7886i −1.23800 + 1.29850i
\(309\) 3.32665 15.8362i 0.189247 0.900890i
\(310\) −0.0561525 + 0.0972590i −0.00318925 + 0.00552394i
\(311\) 4.11692 + 7.13071i 0.233449 + 0.404345i 0.958821 0.284012i \(-0.0916655\pi\)
−0.725372 + 0.688357i \(0.758332\pi\)
\(312\) 0.101548 + 0.310016i 0.00574902 + 0.0175512i
\(313\) −25.1480 14.5192i −1.42145 0.820675i −0.425028 0.905180i \(-0.639736\pi\)
−0.996423 + 0.0845047i \(0.973069\pi\)
\(314\) 0.0285487 0.00161109
\(315\) 10.9786 + 1.41816i 0.618577 + 0.0799044i
\(316\) 24.7110 1.39010
\(317\) −9.95440 5.74717i −0.559095 0.322793i 0.193687 0.981063i \(-0.437955\pi\)
−0.752782 + 0.658270i \(0.771289\pi\)
\(318\) −0.0972690 0.296953i −0.00545458 0.0166523i
\(319\) 6.29528 + 10.9037i 0.352468 + 0.610492i
\(320\) 5.54158 9.59829i 0.309783 0.536561i
\(321\) 0.670268 3.19074i 0.0374107 0.178090i
\(322\) −0.836831 + 0.245760i −0.0466348 + 0.0136957i
\(323\) 1.92599i 0.107165i
\(324\) −17.5507 + 3.90578i −0.975037 + 0.216988i
\(325\) 2.64561 1.52745i 0.146752 0.0847274i
\(326\) −0.438361 + 0.253088i −0.0242786 + 0.0140172i
\(327\) −1.52847 + 1.70569i −0.0845245 + 0.0943251i
\(328\) 1.07482i 0.0593469i
\(329\) 21.7473 + 20.7340i 1.19897 + 1.14310i
\(330\) −0.663459 0.139370i −0.0365222 0.00767209i
\(331\) −3.40247 + 5.89325i −0.187017 + 0.323922i −0.944254 0.329217i \(-0.893215\pi\)
0.757238 + 0.653139i \(0.226548\pi\)
\(332\) 0.935955 + 1.62112i 0.0513672 + 0.0889706i
\(333\) 2.18856 + 19.9092i 0.119932 + 1.09102i
\(334\) 0.844949 + 0.487832i 0.0462336 + 0.0266930i
\(335\) 9.85330 0.538343
\(336\) −7.86427 + 16.4900i −0.429031 + 0.899604i
\(337\) −0.0340775 −0.00185632 −0.000928159 1.00000i \(-0.500295\pi\)
−0.000928159 1.00000i \(0.500295\pi\)
\(338\) 0.0408006 + 0.0235563i 0.00221926 + 0.00128129i
\(339\) 19.8061 6.48762i 1.07572 0.352359i
\(340\) −0.710773 1.23109i −0.0385471 0.0667655i
\(341\) 5.09077 8.81747i 0.275680 0.477493i
\(342\) −0.488446 0.214686i −0.0264121 0.0116089i
\(343\) −12.1261 + 13.9985i −0.654750 + 0.755846i
\(344\) 1.68484i 0.0908405i
\(345\) 12.5879 + 11.2800i 0.677710 + 0.607294i
\(346\) −0.576660 + 0.332935i −0.0310014 + 0.0178987i
\(347\) 18.0074 10.3966i 0.966686 0.558117i 0.0684619 0.997654i \(-0.478191\pi\)
0.898224 + 0.439537i \(0.144858\pi\)
\(348\) 5.44671 + 4.88078i 0.291975 + 0.261638i
\(349\) 32.6374i 1.74704i −0.486786 0.873521i \(-0.661831\pi\)
0.486786 0.873521i \(-0.338169\pi\)
\(350\) −0.370056 0.0897555i −0.0197804 0.00479764i
\(351\) −3.02408 + 4.22551i −0.161414 + 0.225541i
\(352\) 1.68138 2.91224i 0.0896180 0.155223i
\(353\) −9.54834 16.5382i −0.508207 0.880240i −0.999955 0.00950230i \(-0.996975\pi\)
0.491748 0.870737i \(-0.336358\pi\)
\(354\) 0.491774 0.161084i 0.0261375 0.00856152i
\(355\) 9.24462 + 5.33738i 0.490654 + 0.283279i
\(356\) 5.68753 0.301438
\(357\) 1.32438 + 1.92676i 0.0700935 + 0.101975i
\(358\) 0.365860 0.0193363
\(359\) −3.32321 1.91866i −0.175392 0.101263i 0.409734 0.912205i \(-0.365622\pi\)
−0.585126 + 0.810942i \(0.698955\pi\)
\(360\) −0.783322 + 0.0861081i −0.0412847 + 0.00453830i
\(361\) −2.37481 4.11329i −0.124990 0.216489i
\(362\) 0.210994 0.365452i 0.0110896 0.0192077i
\(363\) 41.5033 + 8.71845i 2.17836 + 0.457600i
\(364\) 1.48938 + 5.07145i 0.0780649 + 0.265816i
\(365\) 13.8302i 0.723908i
\(366\) −0.305428 + 0.340843i −0.0159650 + 0.0178161i
\(367\) −23.2384 + 13.4167i −1.21304 + 0.700346i −0.963419 0.267998i \(-0.913638\pi\)
−0.249616 + 0.968345i \(0.580304\pi\)
\(368\) −24.1579 + 13.9476i −1.25932 + 0.727069i
\(369\) 13.8022 10.1287i 0.718511 0.527281i
\(370\) 0.438681i 0.0228059i
\(371\) −2.85483 9.72090i −0.148216 0.504684i
\(372\) 1.21585 5.78792i 0.0630388 0.300090i
\(373\) 5.83099 10.0996i 0.301917 0.522936i −0.674653 0.738135i \(-0.735707\pi\)
0.976570 + 0.215199i \(0.0690400\pi\)
\(374\) −0.0715928 0.124002i −0.00370197 0.00641201i
\(375\) 6.05687 + 18.4910i 0.312775 + 0.954872i
\(376\) −1.85244 1.06950i −0.0955321 0.0551555i
\(377\) 2.11360 0.108856
\(378\) 0.636268 0.121100i 0.0327261 0.00622874i
\(379\) −30.1532 −1.54886 −0.774432 0.632657i \(-0.781964\pi\)
−0.774432 + 0.632657i \(0.781964\pi\)
\(380\) 9.10885 + 5.25900i 0.467274 + 0.269781i
\(381\) 5.29359 + 16.1608i 0.271199 + 0.827944i
\(382\) −0.309750 0.536503i −0.0158482 0.0274499i
\(383\) −12.8829 + 22.3138i −0.658284 + 1.14018i 0.322775 + 0.946476i \(0.395384\pi\)
−0.981060 + 0.193706i \(0.937949\pi\)
\(384\) 0.535329 2.54838i 0.0273184 0.130046i
\(385\) −21.3614 5.18112i −1.08868 0.264054i
\(386\) 0.575395i 0.0292868i
\(387\) 21.6357 15.8774i 1.09980 0.807093i
\(388\) 16.5562 9.55871i 0.840513 0.485270i
\(389\) 8.93634 5.15940i 0.453091 0.261592i −0.256044 0.966665i \(-0.582419\pi\)
0.709135 + 0.705073i \(0.249086\pi\)
\(390\) −0.0759499 + 0.0847564i −0.00384587 + 0.00429180i
\(391\) 3.56992i 0.180538i
\(392\) 0.604019 1.17192i 0.0305076 0.0591907i
\(393\) −5.48434 1.15208i −0.276649 0.0581145i
\(394\) 0.414433 0.717818i 0.0208788 0.0361632i
\(395\) 8.62551 + 14.9398i 0.433996 + 0.751704i
\(396\) 35.4881 3.90110i 1.78334 0.196038i
\(397\) −5.77444 3.33387i −0.289811 0.167322i 0.348046 0.937478i \(-0.386845\pi\)
−0.637857 + 0.770155i \(0.720179\pi\)
\(398\) −0.585728 −0.0293599
\(399\) −15.6143 7.44662i −0.781692 0.372797i
\(400\) −12.1789 −0.608945
\(401\) 22.1362 + 12.7803i 1.10543 + 0.638220i 0.937642 0.347604i \(-0.113005\pi\)
0.167787 + 0.985823i \(0.446338\pi\)
\(402\) 0.547867 0.179458i 0.0273251 0.00895054i
\(403\) −0.854596 1.48020i −0.0425705 0.0737342i
\(404\) 18.8008 32.5640i 0.935377 1.62012i
\(405\) −8.48752 9.24748i −0.421748 0.459511i
\(406\) −0.190681 0.181796i −0.00946334 0.00902239i
\(407\) 39.7707i 1.97136i
\(408\) −0.123954 0.111075i −0.00613663 0.00549901i
\(409\) −4.09676 + 2.36527i −0.202572 + 0.116955i −0.597855 0.801605i \(-0.703980\pi\)
0.395283 + 0.918560i \(0.370647\pi\)
\(410\) 0.324727 0.187481i 0.0160371 0.00925904i
\(411\) 20.1983 + 18.0997i 0.996311 + 0.892791i
\(412\) 18.6644i 0.919531i
\(413\) 16.0985 4.72779i 0.792154 0.232640i
\(414\) 0.905359 + 0.397931i 0.0444959 + 0.0195572i
\(415\) −0.653400 + 1.13172i −0.0320742 + 0.0555541i
\(416\) −0.282257 0.488883i −0.0138388 0.0239695i
\(417\) −17.8739 + 5.85474i −0.875291 + 0.286708i
\(418\) 0.917492 + 0.529714i 0.0448760 + 0.0259092i
\(419\) 34.1086 1.66631 0.833157 0.553037i \(-0.186531\pi\)
0.833157 + 0.553037i \(0.186531\pi\)
\(420\) −12.7288 + 1.00245i −0.621101 + 0.0489147i
\(421\) 19.6855 0.959411 0.479705 0.877430i \(-0.340744\pi\)
0.479705 + 0.877430i \(0.340744\pi\)
\(422\) 0.137207 + 0.0792166i 0.00667914 + 0.00385621i
\(423\) −3.72284 33.8665i −0.181011 1.64665i
\(424\) 0.360618 + 0.624608i 0.0175132 + 0.0303337i
\(425\) −0.779303 + 1.34979i −0.0378018 + 0.0654746i
\(426\) 0.611232 + 0.128399i 0.0296143 + 0.00622097i
\(427\) −10.2395 + 10.7399i −0.495525 + 0.519742i
\(428\) 3.76059i 0.181775i
\(429\) 6.88559 7.68398i 0.332439 0.370986i
\(430\) 0.509029 0.293888i 0.0245476 0.0141725i
\(431\) −5.51191 + 3.18230i −0.265499 + 0.153286i −0.626841 0.779148i \(-0.715652\pi\)
0.361341 + 0.932434i \(0.382319\pi\)
\(432\) 18.8638 8.56084i 0.907583 0.411884i
\(433\) 34.2620i 1.64653i −0.567660 0.823263i \(-0.692151\pi\)
0.567660 0.823263i \(-0.307849\pi\)
\(434\) −0.0502177 + 0.207044i −0.00241053 + 0.00993845i
\(435\) −1.04963 + 4.99665i −0.0503258 + 0.239571i
\(436\) 1.32085 2.28779i 0.0632575 0.109565i
\(437\) −13.2069 22.8750i −0.631771 1.09426i
\(438\) −0.251890 0.768994i −0.0120358 0.0367440i
\(439\) −19.2073 11.0894i −0.916717 0.529267i −0.0341306 0.999417i \(-0.510866\pi\)
−0.882586 + 0.470151i \(0.844200\pi\)
\(440\) 1.56477 0.0745973
\(441\) 20.7411 3.28731i 0.987672 0.156539i
\(442\) −0.0240368 −0.00114332
\(443\) 20.1068 + 11.6087i 0.955305 + 0.551546i 0.894725 0.446618i \(-0.147372\pi\)
0.0605802 + 0.998163i \(0.480705\pi\)
\(444\) −7.19126 21.9542i −0.341282 1.04190i
\(445\) 1.98526 + 3.43857i 0.0941104 + 0.163004i
\(446\) 0.109041 0.188865i 0.00516326 0.00894303i
\(447\) −0.328486 + 1.56372i −0.0155369 + 0.0739616i
\(448\) 4.95588 20.4328i 0.234143 0.965358i
\(449\) 11.5322i 0.544240i −0.962263 0.272120i \(-0.912275\pi\)
0.962263 0.272120i \(-0.0877247\pi\)
\(450\) 0.255451 + 0.348096i 0.0120421 + 0.0164094i
\(451\) −29.4396 + 16.9970i −1.38626 + 0.800357i
\(452\) −20.8184 + 12.0195i −0.979215 + 0.565350i
\(453\) −0.648434 + 0.723620i −0.0304661 + 0.0339987i
\(454\) 1.15248i 0.0540888i
\(455\) −2.54623 + 2.67067i −0.119369 + 0.125203i
\(456\) 1.20518 + 0.253168i 0.0564378 + 0.0118557i
\(457\) 2.40598 4.16728i 0.112547 0.194937i −0.804249 0.594292i \(-0.797432\pi\)
0.916797 + 0.399355i \(0.130766\pi\)
\(458\) −0.00922531 0.0159787i −0.000431071 0.000746636i
\(459\) 0.258252 2.63847i 0.0120542 0.123153i
\(460\) −16.8837 9.74781i −0.787206 0.454494i
\(461\) 19.7845 0.921455 0.460728 0.887542i \(-0.347589\pi\)
0.460728 + 0.887542i \(0.347589\pi\)
\(462\) −1.28211 + 0.100972i −0.0596492 + 0.00469766i
\(463\) 12.0040 0.557872 0.278936 0.960310i \(-0.410018\pi\)
0.278936 + 0.960310i \(0.410018\pi\)
\(464\) −7.29736 4.21313i −0.338771 0.195590i
\(465\) 3.92367 1.28523i 0.181956 0.0596009i
\(466\) 0.335133 + 0.580467i 0.0155247 + 0.0268896i
\(467\) −10.2459 + 17.7464i −0.474124 + 0.821207i −0.999561 0.0296256i \(-0.990568\pi\)
0.525437 + 0.850832i \(0.323902\pi\)
\(468\) 2.41158 5.48675i 0.111475 0.253625i
\(469\) 17.9347 5.26706i 0.828148 0.243210i
\(470\) 0.746218i 0.0344205i
\(471\) −0.781653 0.700436i −0.0360166 0.0322744i
\(472\) −1.03439 + 0.597207i −0.0476118 + 0.0274887i
\(473\) −46.1484 + 26.6438i −2.12190 + 1.22508i
\(474\) 0.751697 + 0.673593i 0.0345266 + 0.0309392i
\(475\) 11.5321i 0.529130i
\(476\) −1.95181 1.86086i −0.0894609 0.0852925i
\(477\) −4.62249 + 10.5169i −0.211649 + 0.481538i
\(478\) −0.282289 + 0.488939i −0.0129116 + 0.0223635i
\(479\) 4.02095 + 6.96449i 0.183722 + 0.318216i 0.943145 0.332381i \(-0.107852\pi\)
−0.759423 + 0.650597i \(0.774519\pi\)
\(480\) 1.29591 0.424486i 0.0591501 0.0193750i
\(481\) −5.78191 3.33819i −0.263632 0.152208i
\(482\) 0.732624 0.0333701
\(483\) 28.9418 + 13.8027i 1.31690 + 0.628043i
\(484\) −48.9156 −2.22343
\(485\) 11.5580 + 6.67304i 0.524824 + 0.303007i
\(486\) −0.640350 0.359599i −0.0290469 0.0163117i
\(487\) −13.1627 22.7984i −0.596457 1.03309i −0.993339 0.115225i \(-0.963241\pi\)
0.396882 0.917869i \(-0.370092\pi\)
\(488\) 0.528176 0.914828i 0.0239094 0.0414123i
\(489\) 18.2116 + 3.82565i 0.823558 + 0.173002i
\(490\) 0.459422 0.0219301i 0.0207546 0.000990701i
\(491\) 40.4161i 1.82395i −0.410243 0.911976i \(-0.634556\pi\)
0.410243 0.911976i \(-0.365444\pi\)
\(492\) −13.1779 + 14.7059i −0.594106 + 0.662993i
\(493\) −0.933887 + 0.539180i −0.0420602 + 0.0242834i
\(494\) 0.154021 0.0889241i 0.00692973 0.00400088i
\(495\) 14.7458 + 20.0938i 0.662776 + 0.903147i
\(496\) 6.81402i 0.305958i
\(497\) 19.6799 + 4.77327i 0.882764 + 0.214110i
\(498\) −0.0157186 + 0.0748268i −0.000704367 + 0.00335307i
\(499\) −0.749571 + 1.29829i −0.0335554 + 0.0581196i −0.882315 0.470659i \(-0.844016\pi\)
0.848760 + 0.528778i \(0.177350\pi\)
\(500\) −11.2215 19.4361i −0.501839 0.869211i
\(501\) −11.1655 34.0873i −0.498840 1.52291i
\(502\) 0.139967 + 0.0808098i 0.00624702 + 0.00360672i
\(503\) 8.23344 0.367111 0.183555 0.983009i \(-0.441239\pi\)
0.183555 + 0.983009i \(0.441239\pi\)
\(504\) −1.37975 + 0.575454i −0.0614590 + 0.0256328i
\(505\) 26.2501 1.16812
\(506\) −1.70062 0.981851i −0.0756016 0.0436486i
\(507\) −0.539158 1.64600i −0.0239449 0.0731013i
\(508\) −9.80736 16.9868i −0.435131 0.753669i
\(509\) −10.1538 + 17.5869i −0.450060 + 0.779527i −0.998389 0.0567355i \(-0.981931\pi\)
0.548329 + 0.836263i \(0.315264\pi\)
\(510\) 0.0119368 0.0568241i 0.000528572 0.00251622i
\(511\) −7.39292 25.1734i −0.327044 1.11361i
\(512\) 3.75229i 0.165829i
\(513\) 8.10621 + 17.8620i 0.357898 + 0.788625i
\(514\) 0.224609 0.129678i 0.00990706 0.00571984i
\(515\) −11.2842 + 6.51492i −0.497240 + 0.287082i
\(516\) −20.6572 + 23.0524i −0.909381 + 1.01482i
\(517\) 67.6518i 2.97532i
\(518\) 0.234496 + 0.798475i 0.0103032 + 0.0350830i
\(519\) 23.9572 + 5.03261i 1.05161 + 0.220907i
\(520\) 0.131340 0.227488i 0.00575964 0.00997599i
\(521\) 10.8916 + 18.8648i 0.477170 + 0.826483i 0.999658 0.0261641i \(-0.00832925\pi\)
−0.522488 + 0.852647i \(0.674996\pi\)
\(522\) 0.0326419 + 0.296942i 0.00142870 + 0.0129968i
\(523\) 21.8027 + 12.5878i 0.953367 + 0.550427i 0.894125 0.447817i \(-0.147798\pi\)
0.0592415 + 0.998244i \(0.481132\pi\)
\(524\) 6.46381 0.282373
\(525\) 7.92988 + 11.5367i 0.346088 + 0.503505i
\(526\) 0.886063 0.0386342
\(527\) 0.755201 + 0.436016i 0.0328971 + 0.0189931i
\(528\) −39.0898 + 12.8041i −1.70117 + 0.557229i
\(529\) 12.9796 + 22.4813i 0.564330 + 0.977449i
\(530\) −0.125806 + 0.217902i −0.00546465 + 0.00946505i
\(531\) −17.4168 7.65516i −0.755823 0.332205i
\(532\) 19.3909 + 4.70317i 0.840701 + 0.203908i
\(533\) 5.70663i 0.247182i
\(534\) 0.173012 + 0.155035i 0.00748695 + 0.00670904i
\(535\) −2.27358 + 1.31265i −0.0982955 + 0.0567509i
\(536\) −1.15238 + 0.665327i −0.0497752 + 0.0287377i
\(537\) −10.0171 8.97632i −0.432271 0.387357i
\(538\) 1.24468i 0.0536622i
\(539\) −41.6510 + 1.98817i −1.79404 + 0.0856367i
\(540\) 11.7733 + 8.42584i 0.506643 + 0.362591i
\(541\) −3.28601 + 5.69153i −0.141277 + 0.244698i −0.927978 0.372636i \(-0.878454\pi\)
0.786701 + 0.617334i \(0.211787\pi\)
\(542\) −0.133581 0.231369i −0.00573779 0.00993815i
\(543\) −14.7432 + 4.82925i −0.632692 + 0.207243i
\(544\) 0.249428 + 0.144008i 0.0106942 + 0.00617427i
\(545\) 1.84421 0.0789971
\(546\) −0.0929356 + 0.194870i −0.00397728 + 0.00833967i
\(547\) −29.0225 −1.24091 −0.620456 0.784241i \(-0.713052\pi\)
−0.620456 + 0.784241i \(0.713052\pi\)
\(548\) −27.0913 15.6412i −1.15728 0.668158i
\(549\) 16.7250 1.83853i 0.713806 0.0784665i
\(550\) −0.428671 0.742480i −0.0182786 0.0316594i
\(551\) 3.98939 6.90982i 0.169954 0.294368i
\(552\) −2.23386 0.469259i −0.0950794 0.0199730i
\(553\) 23.6860 + 22.5823i 1.00723 + 0.960297i
\(554\) 0.738373i 0.0313704i
\(555\) 10.7630 12.0109i 0.456862 0.509836i
\(556\) 18.7875 10.8470i 0.796768 0.460014i
\(557\) 20.5511 11.8652i 0.870777 0.502743i 0.00317056 0.999995i \(-0.498991\pi\)
0.867606 + 0.497252i \(0.165657\pi\)
\(558\) 0.194758 0.142923i 0.00824474 0.00605042i
\(559\) 8.94548i 0.378354i
\(560\) 14.1146 4.14517i 0.596451 0.175166i
\(561\) −1.08219 + 5.15165i −0.0456901 + 0.217503i
\(562\) 0.514283 0.890764i 0.0216937 0.0375746i
\(563\) 7.56363 + 13.1006i 0.318769 + 0.552124i 0.980231 0.197854i \(-0.0633973\pi\)
−0.661462 + 0.749978i \(0.730064\pi\)
\(564\) 12.2327 + 37.3452i 0.515089 + 1.57252i
\(565\) −14.5335 8.39095i −0.611431 0.353010i
\(566\) 0.573384 0.0241011
\(567\) −20.3920 12.2950i −0.856382 0.516343i
\(568\) −1.44159 −0.0604877
\(569\) −30.2650 17.4735i −1.26877 0.732527i −0.294018 0.955800i \(-0.594992\pi\)
−0.974756 + 0.223273i \(0.928326\pi\)
\(570\) 0.133733 + 0.408273i 0.00560145 + 0.0171007i
\(571\) −1.05572 1.82856i −0.0441805 0.0765228i 0.843090 0.537773i \(-0.180734\pi\)
−0.887270 + 0.461250i \(0.847401\pi\)
\(572\) −5.95031 + 10.3062i −0.248795 + 0.430926i
\(573\) −4.68215 + 22.2889i −0.195600 + 0.931133i
\(574\) 0.490842 0.514831i 0.0204873 0.0214886i
\(575\) 21.3753i 0.891413i
\(576\) −19.2202 + 14.1048i −0.800842 + 0.587700i
\(577\) 20.9456 12.0929i 0.871975 0.503435i 0.00397109 0.999992i \(-0.498736\pi\)
0.868004 + 0.496557i \(0.165403\pi\)
\(578\) −0.682990 + 0.394324i −0.0284086 + 0.0164017i
\(579\) 14.1172 15.7541i 0.586692 0.654719i
\(580\) 5.88902i 0.244528i
\(581\) −0.584341 + 2.40920i −0.0242426 + 0.0999506i
\(582\) 0.764190 + 0.160531i 0.0316767 + 0.00665421i
\(583\) 11.4055 19.7549i 0.472367 0.818164i
\(584\) 0.933862 + 1.61750i 0.0386435 + 0.0669325i
\(585\) 4.15896 0.457182i 0.171952 0.0189021i
\(586\) −0.0479630 0.0276914i −0.00198133 0.00114392i
\(587\) 2.64918 0.109344 0.0546718 0.998504i \(-0.482589\pi\)
0.0546718 + 0.998504i \(0.482589\pi\)
\(588\) −22.6327 + 8.62878i −0.933357 + 0.355845i
\(589\) −6.45215 −0.265856
\(590\) −0.360860 0.208343i −0.0148564 0.00857733i
\(591\) −28.9586 + 9.48559i −1.19120 + 0.390185i
\(592\) 13.3083 + 23.0507i 0.546968 + 0.947376i
\(593\) 14.5932 25.2762i 0.599271 1.03797i −0.393658 0.919257i \(-0.628790\pi\)
0.992929 0.118711i \(-0.0378762\pi\)
\(594\) 1.18587 + 0.848695i 0.0486569 + 0.0348224i
\(595\) 0.443754 1.82957i 0.0181921 0.0750051i
\(596\) 1.84300i 0.0754920i
\(597\) 16.0370 + 14.3707i 0.656351 + 0.588154i
\(598\) −0.285485 + 0.164825i −0.0116744 + 0.00674020i
\(599\) −22.0715 + 12.7430i −0.901819 + 0.520665i −0.877790 0.479046i \(-0.840983\pi\)
−0.0240290 + 0.999711i \(0.507649\pi\)
\(600\) −0.742189 0.665074i −0.0302998 0.0271515i
\(601\) 2.11855i 0.0864174i −0.999066 0.0432087i \(-0.986242\pi\)
0.999066 0.0432087i \(-0.0137580\pi\)
\(602\) 0.769424 0.807027i 0.0313594 0.0328920i
\(603\) −19.4034 8.52833i −0.790166 0.347300i
\(604\) 0.560357 0.970566i 0.0228006 0.0394918i
\(605\) −17.0742 29.5734i −0.694166 1.20233i
\(606\) 1.45957 0.478093i 0.0592910 0.0194212i
\(607\) −2.85584 1.64882i −0.115915 0.0669236i 0.440921 0.897546i \(-0.354652\pi\)
−0.556837 + 0.830622i \(0.687985\pi\)
\(608\) −2.13102 −0.0864243
\(609\) 0.760443 + 9.65584i 0.0308147 + 0.391274i
\(610\) 0.368521 0.0149210
\(611\) 9.83531 + 5.67842i 0.397894 + 0.229724i
\(612\) 0.334122 + 3.03950i 0.0135061 + 0.122864i
\(613\) −6.85785 11.8781i −0.276986 0.479754i 0.693648 0.720314i \(-0.256002\pi\)
−0.970634 + 0.240560i \(0.922669\pi\)
\(614\) −0.656494 + 1.13708i −0.0264940 + 0.0458889i
\(615\) −13.4907 2.83395i −0.543999 0.114276i
\(616\) 2.84814 0.836442i 0.114755 0.0337012i
\(617\) 30.9556i 1.24622i 0.782133 + 0.623112i \(0.214132\pi\)
−0.782133 + 0.623112i \(0.785868\pi\)
\(618\) −0.508771 + 0.567763i −0.0204658 + 0.0228388i
\(619\) 26.4917 15.2950i 1.06479 0.614758i 0.138038 0.990427i \(-0.455920\pi\)
0.926754 + 0.375669i \(0.122587\pi\)
\(620\) −4.12422 + 2.38112i −0.165633 + 0.0956280i
\(621\) −15.0252 33.1080i −0.602942 1.32858i
\(622\) 0.387916i 0.0155540i
\(623\) 5.45160 + 5.19758i 0.218414 + 0.208237i
\(624\) −1.41956 + 6.75765i −0.0568277 + 0.270523i
\(625\) 0.196598 0.340518i 0.00786392 0.0136207i
\(626\) 0.684037 + 1.18479i 0.0273396 + 0.0473536i
\(627\) −12.1242 37.0139i −0.484192 1.47819i
\(628\) 1.04840 + 0.605296i 0.0418358 + 0.0241539i
\(629\) 3.40629 0.135818
\(630\) −0.414529 0.316478i −0.0165152 0.0126088i
\(631\) 2.96288 0.117951 0.0589753 0.998259i \(-0.481217\pi\)
0.0589753 + 0.998259i \(0.481217\pi\)
\(632\) −2.01757 1.16484i −0.0802546 0.0463350i
\(633\) −1.81312 5.53528i −0.0720651 0.220008i
\(634\) 0.270764 + 0.468977i 0.0107534 + 0.0186254i
\(635\) 6.84662 11.8587i 0.271700 0.470598i
\(636\) 2.72402 12.9674i 0.108014 0.514192i
\(637\) −3.20698 + 6.22216i −0.127065 + 0.246531i
\(638\) 0.593173i 0.0234839i
\(639\) −13.5851 18.5120i −0.537417 0.732324i
\(640\) −1.81586 + 1.04839i −0.0717783 + 0.0414412i
\(641\) −14.6925 + 8.48274i −0.580320 + 0.335048i −0.761261 0.648446i \(-0.775419\pi\)
0.180940 + 0.983494i \(0.442086\pi\)
\(642\) −0.102509 + 0.114395i −0.00404572 + 0.00451482i
\(643\) 3.63792i 0.143465i −0.997424 0.0717327i \(-0.977147\pi\)
0.997424 0.0717327i \(-0.0228529\pi\)
\(644\) −35.9419 8.71755i −1.41631 0.343520i
\(645\) −21.1475 4.44238i −0.832683 0.174919i
\(646\) −0.0453691 + 0.0785816i −0.00178502 + 0.00309175i
\(647\) 1.40125 + 2.42704i 0.0550889 + 0.0954168i 0.892255 0.451532i \(-0.149122\pi\)
−0.837166 + 0.546949i \(0.815789\pi\)
\(648\) 1.61707 + 0.508422i 0.0635243 + 0.0199727i
\(649\) 32.7154 + 18.8883i 1.28419 + 0.741429i
\(650\) −0.143924 −0.00564514
\(651\) 6.45474 4.43672i 0.252981 0.173889i
\(652\) −21.4641 −0.840599
\(653\) −37.2552 21.5093i −1.45791 0.841723i −0.458999 0.888437i \(-0.651792\pi\)
−0.998908 + 0.0467132i \(0.985125\pi\)
\(654\) 0.102542 0.0335884i 0.00400972 0.00131341i
\(655\) 2.25623 + 3.90790i 0.0881581 + 0.152694i
\(656\) 11.3753 19.7026i 0.444130 0.769256i
\(657\) −11.9705 + 27.2349i −0.467013 + 1.06253i
\(658\) −0.398889 1.35825i −0.0155503 0.0529499i
\(659\) 44.9591i 1.75136i 0.482892 + 0.875680i \(0.339586\pi\)
−0.482892 + 0.875680i \(0.660414\pi\)
\(660\) −21.4095 19.1850i −0.833362 0.746774i
\(661\) 10.6321 6.13846i 0.413542 0.238758i −0.278769 0.960358i \(-0.589926\pi\)
0.692310 + 0.721600i \(0.256593\pi\)
\(662\) 0.277646 0.160299i 0.0107910 0.00623019i
\(663\) 0.658120 + 0.589739i 0.0255593 + 0.0229036i
\(664\) 0.176479i 0.00684870i
\(665\) 3.92504 + 13.3650i 0.152206 + 0.518274i
\(666\) 0.379691 0.863862i 0.0147127 0.0334740i
\(667\) −7.39452 + 12.8077i −0.286317 + 0.495916i
\(668\) 20.6862 + 35.8296i 0.800375 + 1.38629i
\(669\) −7.61929 + 2.49575i −0.294579 + 0.0964914i
\(670\) −0.402021 0.232107i −0.0155314 0.00896707i
\(671\) −33.4099 −1.28978
\(672\) 2.13188 1.46536i 0.0822389 0.0565276i
\(673\) −6.55223 −0.252570 −0.126285 0.991994i \(-0.540305\pi\)
−0.126285 + 0.991994i \(0.540305\pi\)
\(674\) 0.00139038 0.000802737i 5.35555e−5 3.09203e-5i
\(675\) 1.54631 15.7982i 0.0595176 0.608072i
\(676\) 0.998890 + 1.73013i 0.0384189 + 0.0665434i
\(677\) −23.1392 + 40.0783i −0.889312 + 1.54033i −0.0486212 + 0.998817i \(0.515483\pi\)
−0.840691 + 0.541516i \(0.817851\pi\)
\(678\) −0.960923 0.201858i −0.0369040 0.00775230i
\(679\) 24.6047 + 5.96776i 0.944241 + 0.229022i
\(680\) 0.134020i 0.00513941i
\(681\) 28.2760 31.5546i 1.08354 1.20918i
\(682\) −0.415413 + 0.239839i −0.0159070 + 0.00918390i
\(683\) 26.2137 15.1345i 1.00304 0.579106i 0.0938944 0.995582i \(-0.470068\pi\)
0.909147 + 0.416476i \(0.136735\pi\)
\(684\) −13.3856 18.2401i −0.511810 0.697429i
\(685\) 21.8386i 0.834408i
\(686\) 0.824505 0.285500i 0.0314797 0.0109004i
\(687\) −0.139449 + 0.663833i −0.00532031 + 0.0253268i
\(688\) 17.8314 30.8849i 0.679817 1.17748i
\(689\) −1.91466 3.31629i −0.0729428 0.126341i
\(690\) −0.247880 0.756754i −0.00943663 0.0288091i
\(691\) 26.6158 + 15.3667i 1.01251 + 0.584575i 0.911927 0.410353i \(-0.134595\pi\)
0.100587 + 0.994928i \(0.467928\pi\)
\(692\) −28.2359 −1.07337
\(693\) 37.5811 + 28.6917i 1.42759 + 1.08991i
\(694\) −0.979616 −0.0371857
\(695\) 13.1158 + 7.57239i 0.497510 + 0.287237i
\(696\) −0.214632 0.655250i −0.00813560 0.0248372i
\(697\) −1.45576 2.52146i −0.0551410 0.0955069i
\(698\) −0.768816 + 1.33163i −0.0291001 + 0.0504029i
\(699\) 5.06583 24.1154i 0.191607 0.912128i
\(700\) −11.6867 11.1421i −0.441715 0.421134i
\(701\) 12.1625i 0.459370i 0.973265 + 0.229685i \(0.0737696\pi\)
−0.973265 + 0.229685i \(0.926230\pi\)
\(702\) 0.222922 0.101167i 0.00841363 0.00381832i
\(703\) −21.8265 + 12.6015i −0.823203 + 0.475276i
\(704\) 40.9962 23.6692i 1.54510 0.892066i
\(705\) −18.3083 + 20.4312i −0.689531 + 0.769483i
\(706\) 0.899692i 0.0338604i
\(707\) 47.7798 14.0320i 1.79694 0.527726i
\(708\) 21.4749 + 4.51116i 0.807077 + 0.169540i
\(709\) −15.7202 + 27.2282i −0.590384 + 1.02258i 0.403796 + 0.914849i \(0.367690\pi\)
−0.994181 + 0.107727i \(0.965643\pi\)
\(710\) −0.251458 0.435537i −0.00943703 0.0163454i
\(711\) −4.05471 36.8855i −0.152063 1.38331i
\(712\) −0.464367 0.268102i −0.0174029 0.0100476i
\(713\) 11.9594 0.447882
\(714\) −0.00864811 0.109811i −0.000323647 0.00410956i
\(715\) −8.30796 −0.310700
\(716\) 13.4356 + 7.75706i 0.502113 + 0.289895i
\(717\) 19.7250 6.46106i 0.736643 0.241293i
\(718\) 0.0903927 + 0.156565i 0.00337343 + 0.00584295i
\(719\) −7.15809 + 12.3982i −0.266952 + 0.462374i −0.968073 0.250668i \(-0.919350\pi\)
0.701121 + 0.713042i \(0.252683\pi\)
\(720\) −15.2704 6.71179i −0.569096 0.250134i
\(721\) −17.0566 + 17.8902i −0.635221 + 0.666266i
\(722\) 0.223766i 0.00832772i
\(723\) −20.0590 17.9748i −0.746001 0.668490i
\(724\) 15.4968 8.94707i 0.575933 0.332515i
\(725\) −5.59177 + 3.22841i −0.207673 + 0.119900i
\(726\) −1.48799 1.33338i −0.0552244 0.0494864i
\(727\) 24.8097i 0.920140i 0.887883 + 0.460070i \(0.152176\pi\)
−0.887883 + 0.460070i \(0.847824\pi\)
\(728\) 0.117459 0.484274i 0.00435330 0.0179484i
\(729\) 8.70986 + 25.5566i 0.322587 + 0.946540i
\(730\) −0.325789 + 0.564283i −0.0120580 + 0.0208850i
\(731\) −2.28199 3.95253i −0.0844026 0.146190i
\(732\) −18.4430 + 6.04112i −0.681671 + 0.223286i
\(733\) 3.85134 + 2.22357i 0.142253 + 0.0821296i 0.569437 0.822035i \(-0.307161\pi\)
−0.427185 + 0.904164i \(0.640495\pi\)
\(734\) 1.26419 0.0466621
\(735\) −13.1169 10.6714i −0.483823 0.393621i
\(736\) 3.94995 0.145597
\(737\) 36.4471 + 21.0427i 1.34254 + 0.775118i
\(738\) −0.801732 + 0.0881318i −0.0295121 + 0.00324418i
\(739\) 4.12989 + 7.15319i 0.151921 + 0.263134i 0.931933 0.362629i \(-0.118121\pi\)
−0.780013 + 0.625763i \(0.784788\pi\)
\(740\) −9.30102 + 16.1098i −0.341912 + 0.592209i
\(741\) −6.39878 1.34417i −0.235065 0.0493792i
\(742\) −0.112509 + 0.463868i −0.00413034 + 0.0170291i
\(743\) 32.7399i 1.20111i −0.799583 0.600556i \(-0.794946\pi\)
0.799583 0.600556i \(-0.205054\pi\)
\(744\) −0.372105 + 0.415251i −0.0136420 + 0.0152238i
\(745\) 1.11424 0.643307i 0.0408226 0.0235690i
\(746\) −0.475816 + 0.274713i −0.0174209 + 0.0100579i
\(747\) 2.26623 1.66308i 0.0829171 0.0608489i
\(748\) 6.07171i 0.222004i
\(749\) −3.43664 + 3.60459i −0.125572 + 0.131709i
\(750\) 0.188455 0.897122i 0.00688141 0.0327583i
\(751\) −14.2807 + 24.7349i −0.521110 + 0.902590i 0.478588 + 0.878039i \(0.341149\pi\)
−0.999699 + 0.0245502i \(0.992185\pi\)
\(752\) −22.6381 39.2103i −0.825526 1.42985i
\(753\) −1.84958 5.64660i −0.0674026 0.205773i
\(754\) −0.0862362 0.0497885i −0.00314054 0.00181319i
\(755\) 0.782382 0.0284738
\(756\) 25.9335 + 9.04308i 0.943192 + 0.328894i
\(757\) 21.3186 0.774839 0.387420 0.921903i \(-0.373366\pi\)
0.387420 + 0.921903i \(0.373366\pi\)
\(758\) 1.23027 + 0.710296i 0.0446853 + 0.0257991i
\(759\) 22.4727 + 68.6070i 0.815708 + 2.49028i
\(760\) −0.495804 0.858759i −0.0179847 0.0311504i
\(761\) 6.75158 11.6941i 0.244745 0.423910i −0.717315 0.696749i \(-0.754629\pi\)
0.962060 + 0.272839i \(0.0879626\pi\)
\(762\) 0.164706 0.784069i 0.00596669 0.0284038i
\(763\) 3.35677 0.985816i 0.121523 0.0356889i
\(764\) 26.2696i 0.950400i
\(765\) −1.72100 + 1.26296i −0.0622228 + 0.0456623i
\(766\) 1.05126 0.606945i 0.0379835 0.0219298i
\(767\) 5.49200 3.17081i 0.198305 0.114491i
\(768\) 18.2894 20.4101i 0.659963 0.736486i
\(769\) 9.41375i 0.339469i 0.985490 + 0.169734i \(0.0542910\pi\)
−0.985490 + 0.169734i \(0.945709\pi\)
\(770\) 0.749512 + 0.714588i 0.0270105 + 0.0257520i
\(771\) −9.33132 1.96020i −0.336059 0.0705948i
\(772\) −12.1997 + 21.1304i −0.439075 + 0.760501i
\(773\) −2.45165 4.24639i −0.0881799 0.152732i 0.818562 0.574418i \(-0.194772\pi\)
−0.906742 + 0.421686i \(0.861438\pi\)
\(774\) −1.25676 + 0.138152i −0.0451734 + 0.00496577i
\(775\) 4.52186