Properties

Label 273.2.bf.b.185.23
Level $273$
Weight $2$
Character 273.185
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 185.23
Character \(\chi\) \(=\) 273.185
Dual form 273.2.bf.b.152.23

$q$-expansion

\(f(q)\) \(=\) \(q+(1.21710 + 0.702692i) q^{2} +(-1.65544 + 0.509428i) q^{3} +(-0.0124468 - 0.0215586i) q^{4} +(-1.48377 - 2.56997i) q^{5} +(-2.37281 - 0.543240i) q^{6} +(-2.30005 + 1.30759i) q^{7} -2.84575i q^{8} +(2.48097 - 1.68666i) q^{9} +O(q^{10})\) \(q+(1.21710 + 0.702692i) q^{2} +(-1.65544 + 0.509428i) q^{3} +(-0.0124468 - 0.0215586i) q^{4} +(-1.48377 - 2.56997i) q^{5} +(-2.37281 - 0.543240i) q^{6} +(-2.30005 + 1.30759i) q^{7} -2.84575i q^{8} +(2.48097 - 1.68666i) q^{9} -4.17054i q^{10} -2.71980i q^{11} +(0.0315876 + 0.0293481i) q^{12} +(-3.51855 + 0.787262i) q^{13} +(-3.71822 - 0.0247658i) q^{14} +(3.76551 + 3.49856i) q^{15} +(1.97480 - 3.42045i) q^{16} +(-0.233104 - 0.403748i) q^{17} +(4.20478 - 0.309473i) q^{18} -2.58817i q^{19} +(-0.0369366 + 0.0639760i) q^{20} +(3.14147 - 3.33634i) q^{21} +(1.91119 - 3.31027i) q^{22} +(2.09876 + 1.21172i) q^{23} +(1.44971 + 4.71098i) q^{24} +(-1.90316 + 3.29638i) q^{25} +(-4.83563 - 1.51429i) q^{26} +(-3.24786 + 4.05603i) q^{27} +(0.0568180 + 0.0333104i) q^{28} +(-7.22253 + 4.16993i) q^{29} +(2.12459 + 6.90409i) q^{30} +(5.80759 + 3.35302i) q^{31} +(-0.121947 + 0.0704059i) q^{32} +(1.38555 + 4.50247i) q^{33} -0.655201i q^{34} +(6.77320 + 3.97090i) q^{35} +(-0.0672421 - 0.0324925i) q^{36} +(5.67682 - 9.83255i) q^{37} +(1.81869 - 3.15006i) q^{38} +(5.42370 - 3.09572i) q^{39} +(-7.31350 + 4.22245i) q^{40} +(-4.19212 - 7.26096i) q^{41} +(6.16790 - 1.85317i) q^{42} +(-2.24397 + 3.88666i) q^{43} +(-0.0586351 + 0.0338530i) q^{44} +(-8.01585 - 3.87339i) q^{45} +(1.70293 + 2.94956i) q^{46} +(4.26729 + 7.39117i) q^{47} +(-1.52668 + 6.66836i) q^{48} +(3.58044 - 6.01502i) q^{49} +(-4.63268 + 2.67468i) q^{50} +(0.591570 + 0.549631i) q^{51} +(0.0607671 + 0.0660560i) q^{52} +(0.995744 + 0.574893i) q^{53} +(-6.80311 + 2.65435i) q^{54} +(-6.98981 + 4.03557i) q^{55} +(3.72107 + 6.54537i) q^{56} +(1.31849 + 4.28456i) q^{57} -11.7207 q^{58} +(-5.19062 - 8.99042i) q^{59} +(0.0285551 - 0.124725i) q^{60} -9.12590i q^{61} +(4.71228 + 8.16190i) q^{62} +(-3.50089 + 7.12347i) q^{63} -8.09708 q^{64} +(7.24397 + 7.87446i) q^{65} +(-1.47751 + 6.45357i) q^{66} +4.45771 q^{67} +(-0.00580281 + 0.0100508i) q^{68} +(-4.09165 - 0.936760i) q^{69} +(5.45334 + 9.59245i) q^{70} +(7.31046 + 4.22070i) q^{71} +(-4.79981 - 7.06022i) q^{72} +(-6.75653 - 3.90088i) q^{73} +(13.8185 - 7.97812i) q^{74} +(1.47131 - 6.42648i) q^{75} +(-0.0557973 + 0.0322146i) q^{76} +(3.55638 + 6.25568i) q^{77} +(8.77652 + 0.0434008i) q^{78} +(-1.45705 - 2.52368i) q^{79} -11.7206 q^{80} +(3.31038 - 8.36907i) q^{81} -11.7831i q^{82} +10.6532 q^{83} +(-0.111028 - 0.0261987i) q^{84} +(-0.691746 + 1.19814i) q^{85} +(-5.46226 + 3.15364i) q^{86} +(9.83218 - 10.5824i) q^{87} -7.73990 q^{88} +(3.44068 - 5.95943i) q^{89} +(-7.03428 - 10.3470i) q^{90} +(7.06343 - 6.41155i) q^{91} -0.0603282i q^{92} +(-11.3222 - 2.59216i) q^{93} +11.9944i q^{94} +(-6.65152 + 3.84026i) q^{95} +(0.166008 - 0.178676i) q^{96} +(8.95629 + 5.17091i) q^{97} +(8.58446 - 4.80492i) q^{98} +(-4.58738 - 6.74774i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64q + 32q^{4} - 12q^{6} - 4q^{7} + 8q^{9} + O(q^{10}) \) \( 64q + 32q^{4} - 12q^{6} - 4q^{7} + 8q^{9} + 6q^{12} - 12q^{13} - 9q^{15} - 16q^{16} + 2q^{18} + 10q^{21} + 10q^{22} - 24q^{25} - 50q^{28} - 16q^{30} - 24q^{31} - 33q^{39} + 90q^{40} - 48q^{42} - 20q^{43} - 3q^{45} + 6q^{48} - 10q^{51} + 30q^{52} - 27q^{54} + 18q^{55} + 4q^{57} - 60q^{58} + 55q^{60} - 74q^{63} - 84q^{64} + 75q^{66} - 88q^{67} - 33q^{69} + 20q^{70} - 34q^{72} + 84q^{73} + 33q^{75} + 18q^{76} - 71q^{78} + 20q^{79} - 32q^{81} - 6q^{84} - 2q^{85} + 3q^{87} + 92q^{88} - 76q^{91} + 28q^{93} + 30q^{96} + 24q^{97} + 22q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21710 + 0.702692i 0.860619 + 0.496879i 0.864219 0.503115i \(-0.167813\pi\)
−0.00360060 + 0.999994i \(0.501146\pi\)
\(3\) −1.65544 + 0.509428i −0.955769 + 0.294119i
\(4\) −0.0124468 0.0215586i −0.00622342 0.0107793i
\(5\) −1.48377 2.56997i −0.663563 1.14933i −0.979673 0.200603i \(-0.935710\pi\)
0.316109 0.948723i \(-0.397623\pi\)
\(6\) −2.37281 0.543240i −0.968694 0.221777i
\(7\) −2.30005 + 1.30759i −0.869336 + 0.494221i
\(8\) 2.84575i 1.00613i
\(9\) 2.48097 1.68666i 0.826988 0.562219i
\(10\) 4.17054i 1.31884i
\(11\) 2.71980i 0.820052i −0.912074 0.410026i \(-0.865520\pi\)
0.912074 0.410026i \(-0.134480\pi\)
\(12\) 0.0315876 + 0.0293481i 0.00911854 + 0.00847208i
\(13\) −3.51855 + 0.787262i −0.975871 + 0.218347i
\(14\) −3.71822 0.0247658i −0.993735 0.00661894i
\(15\) 3.76551 + 3.49856i 0.972251 + 0.903323i
\(16\) 1.97480 3.42045i 0.493699 0.855112i
\(17\) −0.233104 0.403748i −0.0565360 0.0979232i 0.836372 0.548162i \(-0.184672\pi\)
−0.892908 + 0.450239i \(0.851339\pi\)
\(18\) 4.20478 0.309473i 0.991076 0.0729435i
\(19\) 2.58817i 0.593767i −0.954914 0.296884i \(-0.904053\pi\)
0.954914 0.296884i \(-0.0959473\pi\)
\(20\) −0.0369366 + 0.0639760i −0.00825927 + 0.0143055i
\(21\) 3.14147 3.33634i 0.685525 0.728049i
\(22\) 1.91119 3.31027i 0.407466 0.705752i
\(23\) 2.09876 + 1.21172i 0.437621 + 0.252661i 0.702588 0.711597i \(-0.252028\pi\)
−0.264967 + 0.964257i \(0.585361\pi\)
\(24\) 1.44971 + 4.71098i 0.295921 + 0.961624i
\(25\) −1.90316 + 3.29638i −0.380633 + 0.659275i
\(26\) −4.83563 1.51429i −0.948345 0.296976i
\(27\) −3.24786 + 4.05603i −0.625051 + 0.780584i
\(28\) 0.0568180 + 0.0333104i 0.0107376 + 0.00629508i
\(29\) −7.22253 + 4.16993i −1.34119 + 0.774336i −0.986982 0.160830i \(-0.948583\pi\)
−0.354208 + 0.935167i \(0.615249\pi\)
\(30\) 2.12459 + 6.90409i 0.387896 + 1.26051i
\(31\) 5.80759 + 3.35302i 1.04307 + 0.602219i 0.920703 0.390265i \(-0.127617\pi\)
0.122372 + 0.992484i \(0.460950\pi\)
\(32\) −0.121947 + 0.0704059i −0.0215573 + 0.0124461i
\(33\) 1.38555 + 4.50247i 0.241193 + 0.783780i
\(34\) 0.655201i 0.112366i
\(35\) 6.77320 + 3.97090i 1.14488 + 0.671204i
\(36\) −0.0672421 0.0324925i −0.0112070 0.00541542i
\(37\) 5.67682 9.83255i 0.933264 1.61646i 0.155563 0.987826i \(-0.450281\pi\)
0.777701 0.628635i \(-0.216386\pi\)
\(38\) 1.81869 3.15006i 0.295030 0.511007i
\(39\) 5.42370 3.09572i 0.868487 0.495711i
\(40\) −7.31350 + 4.22245i −1.15637 + 0.667629i
\(41\) −4.19212 7.26096i −0.654699 1.13397i −0.981969 0.189041i \(-0.939462\pi\)
0.327270 0.944931i \(-0.393871\pi\)
\(42\) 6.16790 1.85317i 0.951728 0.285950i
\(43\) −2.24397 + 3.88666i −0.342202 + 0.592711i −0.984841 0.173458i \(-0.944506\pi\)
0.642640 + 0.766169i \(0.277839\pi\)
\(44\) −0.0586351 + 0.0338530i −0.00883957 + 0.00510353i
\(45\) −8.01585 3.87339i −1.19493 0.577411i
\(46\) 1.70293 + 2.94956i 0.251083 + 0.434889i
\(47\) 4.26729 + 7.39117i 0.622448 + 1.07811i 0.989028 + 0.147726i \(0.0471953\pi\)
−0.366580 + 0.930387i \(0.619471\pi\)
\(48\) −1.52668 + 6.66836i −0.220358 + 0.962496i
\(49\) 3.58044 6.01502i 0.511492 0.859288i
\(50\) −4.63268 + 2.67468i −0.655160 + 0.378257i
\(51\) 0.591570 + 0.549631i 0.0828364 + 0.0769637i
\(52\) 0.0607671 + 0.0660560i 0.00842688 + 0.00916032i
\(53\) 0.995744 + 0.574893i 0.136776 + 0.0789676i 0.566827 0.823837i \(-0.308171\pi\)
−0.430051 + 0.902805i \(0.641504\pi\)
\(54\) −6.80311 + 2.65435i −0.925786 + 0.361211i
\(55\) −6.98981 + 4.03557i −0.942506 + 0.544156i
\(56\) 3.72107 + 6.54537i 0.497248 + 0.874662i
\(57\) 1.31849 + 4.28456i 0.174638 + 0.567504i
\(58\) −11.7207 −1.53900
\(59\) −5.19062 8.99042i −0.675761 1.17045i −0.976246 0.216666i \(-0.930482\pi\)
0.300485 0.953787i \(-0.402852\pi\)
\(60\) 0.0285551 0.124725i 0.00368645 0.0161019i
\(61\) 9.12590i 1.16845i −0.811591 0.584226i \(-0.801398\pi\)
0.811591 0.584226i \(-0.198602\pi\)
\(62\) 4.71228 + 8.16190i 0.598460 + 1.03656i
\(63\) −3.50089 + 7.12347i −0.441071 + 0.897472i
\(64\) −8.09708 −1.01214
\(65\) 7.24397 + 7.87446i 0.898504 + 0.976706i
\(66\) −1.47751 + 6.45357i −0.181869 + 0.794379i
\(67\) 4.45771 0.544596 0.272298 0.962213i \(-0.412216\pi\)
0.272298 + 0.962213i \(0.412216\pi\)
\(68\) −0.00580281 + 0.0100508i −0.000703695 + 0.00121883i
\(69\) −4.09165 0.936760i −0.492577 0.112773i
\(70\) 5.45334 + 9.59245i 0.651799 + 1.14652i
\(71\) 7.31046 + 4.22070i 0.867593 + 0.500905i 0.866547 0.499095i \(-0.166334\pi\)
0.00104506 + 0.999999i \(0.499667\pi\)
\(72\) −4.79981 7.06022i −0.565663 0.832055i
\(73\) −6.75653 3.90088i −0.790792 0.456564i 0.0494495 0.998777i \(-0.484253\pi\)
−0.840241 + 0.542213i \(0.817587\pi\)
\(74\) 13.8185 7.97812i 1.60637 0.927438i
\(75\) 1.47131 6.42648i 0.169892 0.742066i
\(76\) −0.0557973 + 0.0322146i −0.00640038 + 0.00369526i
\(77\) 3.55638 + 6.25568i 0.405287 + 0.712901i
\(78\) 8.77652 + 0.0434008i 0.993745 + 0.00491417i
\(79\) −1.45705 2.52368i −0.163931 0.283936i 0.772344 0.635204i \(-0.219084\pi\)
−0.936275 + 0.351268i \(0.885751\pi\)
\(80\) −11.7206 −1.31040
\(81\) 3.31038 8.36907i 0.367820 0.929897i
\(82\) 11.7831i 1.30122i
\(83\) 10.6532 1.16934 0.584671 0.811271i \(-0.301224\pi\)
0.584671 + 0.811271i \(0.301224\pi\)
\(84\) −0.111028 0.0261987i −0.0121142 0.00285851i
\(85\) −0.691746 + 1.19814i −0.0750304 + 0.129957i
\(86\) −5.46226 + 3.15364i −0.589011 + 0.340065i
\(87\) 9.83218 10.5824i 1.05412 1.13456i
\(88\) −7.73990 −0.825076
\(89\) 3.44068 5.95943i 0.364711 0.631699i −0.624018 0.781410i \(-0.714501\pi\)
0.988730 + 0.149711i \(0.0478343\pi\)
\(90\) −7.03428 10.3470i −0.741478 1.09067i
\(91\) 7.06343 6.41155i 0.740449 0.672113i
\(92\) 0.0603282i 0.00628965i
\(93\) −11.3222 2.59216i −1.17406 0.268795i
\(94\) 11.9944i 1.23713i
\(95\) −6.65152 + 3.84026i −0.682432 + 0.394002i
\(96\) 0.166008 0.178676i 0.0169432 0.0182360i
\(97\) 8.95629 + 5.17091i 0.909373 + 0.525027i 0.880229 0.474548i \(-0.157389\pi\)
0.0291437 + 0.999575i \(0.490722\pi\)
\(98\) 8.58446 4.80492i 0.867161 0.485370i
\(99\) −4.58738 6.74774i −0.461049 0.678173i
\(100\) 0.0947535 0.00947535
\(101\) 6.64640 0.661341 0.330671 0.943746i \(-0.392725\pi\)
0.330671 + 0.943746i \(0.392725\pi\)
\(102\) 0.333778 + 1.08465i 0.0330490 + 0.107396i
\(103\) 7.72448 4.45973i 0.761116 0.439431i −0.0685803 0.997646i \(-0.521847\pi\)
0.829696 + 0.558215i \(0.188514\pi\)
\(104\) 2.24035 + 10.0129i 0.219685 + 0.981850i
\(105\) −13.2355 3.12312i −1.29165 0.304785i
\(106\) 0.807946 + 1.39940i 0.0784746 + 0.135922i
\(107\) 0.100989 + 0.0583060i 0.00976297 + 0.00563666i 0.504874 0.863193i \(-0.331539\pi\)
−0.495111 + 0.868830i \(0.664872\pi\)
\(108\) 0.127868 + 0.0195344i 0.0123041 + 0.00187969i
\(109\) −2.10015 + 3.63757i −0.201158 + 0.348416i −0.948902 0.315572i \(-0.897804\pi\)
0.747744 + 0.663987i \(0.231137\pi\)
\(110\) −11.3431 −1.08152
\(111\) −4.38866 + 19.1691i −0.416553 + 1.81945i
\(112\) −0.0696000 + 10.4494i −0.00657659 + 0.987376i
\(113\) −11.1270 6.42418i −1.04674 0.604336i −0.125005 0.992156i \(-0.539895\pi\)
−0.921735 + 0.387820i \(0.873228\pi\)
\(114\) −1.40600 + 6.14123i −0.131684 + 0.575179i
\(115\) 7.19165i 0.670625i
\(116\) 0.179795 + 0.103805i 0.0166936 + 0.00963804i
\(117\) −7.40157 + 7.88776i −0.684275 + 0.729224i
\(118\) 14.5896i 1.34308i
\(119\) 1.06408 + 0.623836i 0.0975445 + 0.0571870i
\(120\) 9.95603 10.7157i 0.908857 0.978208i
\(121\) 3.60267 0.327515
\(122\) 6.41270 11.1071i 0.580578 1.00559i
\(123\) 10.6387 + 9.88451i 0.959263 + 0.891256i
\(124\) 0.166938i 0.0149915i
\(125\) −3.54228 −0.316831
\(126\) −9.26654 + 6.20991i −0.825529 + 0.553223i
\(127\) −0.679843 1.17752i −0.0603263 0.104488i 0.834285 0.551333i \(-0.185881\pi\)
−0.894611 + 0.446845i \(0.852547\pi\)
\(128\) −9.61105 5.54895i −0.849505 0.490462i
\(129\) 1.73478 7.57728i 0.152738 0.667142i
\(130\) 3.28331 + 14.6743i 0.287965 + 1.28702i
\(131\) −5.82910 10.0963i −0.509291 0.882118i −0.999942 0.0107620i \(-0.996574\pi\)
0.490651 0.871356i \(-0.336759\pi\)
\(132\) 0.0798212 0.0859120i 0.00694754 0.00747768i
\(133\) 3.38425 + 5.95292i 0.293452 + 0.516184i
\(134\) 5.42548 + 3.13240i 0.468690 + 0.270598i
\(135\) 15.2430 + 2.32867i 1.31191 + 0.200420i
\(136\) −1.14897 + 0.663356i −0.0985231 + 0.0568823i
\(137\) −1.10479 + 0.637851i −0.0943887 + 0.0544953i −0.546451 0.837491i \(-0.684022\pi\)
0.452063 + 0.891986i \(0.350688\pi\)
\(138\) −4.32169 4.01530i −0.367887 0.341805i
\(139\) 3.59002 + 2.07270i 0.304501 + 0.175804i 0.644463 0.764635i \(-0.277081\pi\)
−0.339962 + 0.940439i \(0.610414\pi\)
\(140\) 0.00130180 0.195446i 0.000110022 0.0165182i
\(141\) −10.8295 10.0618i −0.912010 0.847352i
\(142\) 5.93171 + 10.2740i 0.497778 + 0.862176i
\(143\) 2.14120 + 9.56978i 0.179056 + 0.800265i
\(144\) −0.869721 11.8168i −0.0724767 0.984735i
\(145\) 21.4332 + 12.3745i 1.77993 + 1.02764i
\(146\) −5.48224 9.49552i −0.453714 0.785855i
\(147\) −2.86299 + 11.7815i −0.236135 + 0.971720i
\(148\) −0.282634 −0.0232324
\(149\) 12.4970i 1.02380i 0.859046 + 0.511899i \(0.171058\pi\)
−0.859046 + 0.511899i \(0.828942\pi\)
\(150\) 6.30656 6.78779i 0.514929 0.554220i
\(151\) 2.63468 4.56339i 0.214407 0.371364i −0.738682 0.674054i \(-0.764552\pi\)
0.953089 + 0.302690i \(0.0978848\pi\)
\(152\) −7.36530 −0.597405
\(153\) −1.25931 0.608518i −0.101809 0.0491958i
\(154\) −0.0673581 + 10.1128i −0.00542787 + 0.814914i
\(155\) 19.9005i 1.59844i
\(156\) −0.134247 0.0783953i −0.0107484 0.00627665i
\(157\) −0.305705 0.176499i −0.0243979 0.0140861i 0.487751 0.872983i \(-0.337817\pi\)
−0.512149 + 0.858896i \(0.671151\pi\)
\(158\) 4.09542i 0.325814i
\(159\) −1.94126 0.444441i −0.153952 0.0352464i
\(160\) 0.361882 + 0.208933i 0.0286093 + 0.0165176i
\(161\) −6.41166 0.0427060i −0.505310 0.00336570i
\(162\) 9.90994 7.85981i 0.778598 0.617525i
\(163\) −23.7010 −1.85641 −0.928205 0.372070i \(-0.878648\pi\)
−0.928205 + 0.372070i \(0.878648\pi\)
\(164\) −0.104357 + 0.180752i −0.00814894 + 0.0141144i
\(165\) 9.51539 10.2415i 0.740772 0.797296i
\(166\) 12.9660 + 7.48593i 1.00636 + 0.581021i
\(167\) −1.87878 3.25415i −0.145385 0.251814i 0.784132 0.620594i \(-0.213109\pi\)
−0.929516 + 0.368781i \(0.879775\pi\)
\(168\) −9.49440 8.93986i −0.732509 0.689725i
\(169\) 11.7604 5.54005i 0.904649 0.426157i
\(170\) −1.68385 + 0.972170i −0.129145 + 0.0745620i
\(171\) −4.36536 6.42116i −0.333827 0.491039i
\(172\) 0.111721 0.00851866
\(173\) −4.23157 −0.321720 −0.160860 0.986977i \(-0.551427\pi\)
−0.160860 + 0.986977i \(0.551427\pi\)
\(174\) 19.4029 5.97086i 1.47093 0.452650i
\(175\) 0.0670754 10.0704i 0.00507042 0.761249i
\(176\) −9.30295 5.37106i −0.701236 0.404859i
\(177\) 13.1727 + 12.2388i 0.990123 + 0.919928i
\(178\) 8.37530 4.83548i 0.627755 0.362435i
\(179\) 1.00129i 0.0748401i −0.999300 0.0374201i \(-0.988086\pi\)
0.999300 0.0374201i \(-0.0119140\pi\)
\(180\) 0.0162672 + 0.221022i 0.00121249 + 0.0164740i
\(181\) 4.63844i 0.344773i 0.985029 + 0.172386i \(0.0551477\pi\)
−0.985029 + 0.172386i \(0.944852\pi\)
\(182\) 13.1022 2.84007i 0.971203 0.210520i
\(183\) 4.64899 + 15.1074i 0.343663 + 1.11677i
\(184\) 3.44825 5.97255i 0.254208 0.440302i
\(185\) −33.6925 −2.47712
\(186\) −11.9588 11.1110i −0.876862 0.814696i
\(187\) −1.09811 + 0.633997i −0.0803021 + 0.0463624i
\(188\) 0.106229 0.183993i 0.00774752 0.0134191i
\(189\) 2.16662 13.5759i 0.157598 0.987503i
\(190\) −10.7941 −0.783085
\(191\) 2.70485i 0.195716i 0.995200 + 0.0978581i \(0.0311991\pi\)
−0.995200 + 0.0978581i \(0.968801\pi\)
\(192\) 13.4042 4.12488i 0.967367 0.297688i
\(193\) −24.2731 −1.74722 −0.873608 0.486631i \(-0.838226\pi\)
−0.873608 + 0.486631i \(0.838226\pi\)
\(194\) 7.26712 + 12.5870i 0.521749 + 0.903696i
\(195\) −16.0034 9.34541i −1.14603 0.669239i
\(196\) −0.174240 0.00232122i −0.0124457 0.000165801i
\(197\) 6.13256 3.54064i 0.436927 0.252260i −0.265366 0.964148i \(-0.585493\pi\)
0.702293 + 0.711888i \(0.252160\pi\)
\(198\) −0.841706 11.4362i −0.0598174 0.812734i
\(199\) −16.6686 + 9.62360i −1.18160 + 0.682199i −0.956385 0.292109i \(-0.905643\pi\)
−0.225218 + 0.974308i \(0.572310\pi\)
\(200\) 9.38068 + 5.41594i 0.663314 + 0.382965i
\(201\) −7.37948 + 2.27089i −0.520508 + 0.160176i
\(202\) 8.08932 + 4.67037i 0.569163 + 0.328606i
\(203\) 11.1596 19.0351i 0.783252 1.33600i
\(204\) 0.00448606 0.0195946i 0.000314087 0.00137189i
\(205\) −12.4403 + 21.5472i −0.868869 + 1.50492i
\(206\) 12.5353 0.873374
\(207\) 7.25069 0.533653i 0.503958 0.0370914i
\(208\) −4.25564 + 13.5897i −0.295075 + 0.942277i
\(209\) −7.03932 −0.486920
\(210\) −13.9143 13.1016i −0.960181 0.904099i
\(211\) −11.6667 20.2073i −0.803169 1.39113i −0.917520 0.397690i \(-0.869812\pi\)
0.114351 0.993440i \(-0.463521\pi\)
\(212\) 0.0286224i 0.00196580i
\(213\) −14.2522 3.26296i −0.976543 0.223574i
\(214\) 0.0819424 + 0.141928i 0.00560147 + 0.00970203i
\(215\) 13.3181 0.908290
\(216\) 11.5425 + 9.24261i 0.785366 + 0.628880i
\(217\) −17.7421 0.118174i −1.20441 0.00802219i
\(218\) −5.11218 + 2.95152i −0.346240 + 0.199902i
\(219\) 13.1722 + 3.01571i 0.890098 + 0.203783i
\(220\) 0.174002 + 0.100460i 0.0117312 + 0.00677303i
\(221\) 1.13804 + 1.23709i 0.0765531 + 0.0832160i
\(222\) −18.8114 + 20.2468i −1.26254 + 1.35888i
\(223\) 4.43230 2.55899i 0.296809 0.171363i −0.344200 0.938897i \(-0.611850\pi\)
0.641008 + 0.767534i \(0.278516\pi\)
\(224\) 0.188421 0.321392i 0.0125894 0.0214739i
\(225\) 0.838173 + 11.3882i 0.0558782 + 0.759212i
\(226\) −9.02844 15.6377i −0.600563 1.04021i
\(227\) 11.5535 + 20.0112i 0.766832 + 1.32819i 0.939273 + 0.343172i \(0.111501\pi\)
−0.172441 + 0.985020i \(0.555165\pi\)
\(228\) 0.0759580 0.0817540i 0.00503044 0.00541429i
\(229\) 21.6165 12.4803i 1.42846 0.824720i 0.431458 0.902133i \(-0.357999\pi\)
0.996999 + 0.0774125i \(0.0246658\pi\)
\(230\) 5.05352 8.75295i 0.333219 0.577153i
\(231\) −9.07419 8.54419i −0.597038 0.562166i
\(232\) 11.8666 + 20.5535i 0.779080 + 1.34941i
\(233\) −10.3307 + 5.96443i −0.676787 + 0.390743i −0.798643 0.601805i \(-0.794449\pi\)
0.121857 + 0.992548i \(0.461115\pi\)
\(234\) −14.5511 + 4.39916i −0.951236 + 0.287582i
\(235\) 12.6634 21.9336i 0.826068 1.43079i
\(236\) −0.129214 + 0.223805i −0.00841109 + 0.0145684i
\(237\) 3.69769 + 3.43554i 0.240191 + 0.223162i
\(238\) 0.856731 + 1.50699i 0.0555336 + 0.0976839i
\(239\) 10.2941i 0.665868i −0.942950 0.332934i \(-0.891961\pi\)
0.942950 0.332934i \(-0.108039\pi\)
\(240\) 19.4027 5.97081i 1.25244 0.385414i
\(241\) 13.7616 7.94527i 0.886464 0.511800i 0.0136795 0.999906i \(-0.495646\pi\)
0.872784 + 0.488106i \(0.162312\pi\)
\(242\) 4.38480 + 2.53157i 0.281866 + 0.162735i
\(243\) −1.21669 + 15.5409i −0.0780505 + 0.996949i
\(244\) −0.196741 + 0.113589i −0.0125951 + 0.00727177i
\(245\) −20.7710 0.276709i −1.32701 0.0176783i
\(246\) 6.00264 + 19.5062i 0.382714 + 1.24367i
\(247\) 2.03757 + 9.10662i 0.129647 + 0.579440i
\(248\) 9.54186 16.5270i 0.605909 1.04946i
\(249\) −17.6358 + 5.42705i −1.11762 + 0.343925i
\(250\) −4.31130 2.48913i −0.272671 0.157426i
\(251\) −8.02838 + 13.9056i −0.506747 + 0.877712i 0.493222 + 0.869903i \(0.335819\pi\)
−0.999970 + 0.00780844i \(0.997514\pi\)
\(252\) 0.197147 0.0131905i 0.0124191 0.000830920i
\(253\) 3.29563 5.70821i 0.207195 0.358872i
\(254\) 1.91088i 0.119899i
\(255\) 0.534778 2.33584i 0.0334891 0.146276i
\(256\) 0.298678 + 0.517325i 0.0186674 + 0.0323328i
\(257\) −5.49333 + 9.51472i −0.342664 + 0.593512i −0.984927 0.172973i \(-0.944663\pi\)
0.642262 + 0.766485i \(0.277996\pi\)
\(258\) 7.43589 8.00329i 0.462938 0.498263i
\(259\) −0.200075 + 30.0383i −0.0124320 + 1.86649i
\(260\) 0.0795974 0.254182i 0.00493642 0.0157637i
\(261\) −10.8856 + 22.5274i −0.673802 + 1.39441i
\(262\) 16.3843i 1.01222i
\(263\) 6.93143i 0.427410i 0.976898 + 0.213705i \(0.0685532\pi\)
−0.976898 + 0.213705i \(0.931447\pi\)
\(264\) 12.8129 3.94292i 0.788582 0.242670i
\(265\) 3.41204i 0.209600i
\(266\) −0.0640981 + 9.62338i −0.00393011 + 0.590047i
\(267\) −2.65994 + 11.6183i −0.162785 + 0.711026i
\(268\) −0.0554844 0.0961019i −0.00338925 0.00587036i
\(269\) 3.57872 + 6.19852i 0.218198 + 0.377931i 0.954257 0.298987i \(-0.0966487\pi\)
−0.736059 + 0.676918i \(0.763315\pi\)
\(270\) 16.9159 + 13.5453i 1.02947 + 0.824343i
\(271\) 12.1343 + 7.00577i 0.737109 + 0.425570i 0.821017 0.570903i \(-0.193407\pi\)
−0.0839081 + 0.996473i \(0.526740\pi\)
\(272\) −1.84133 −0.111647
\(273\) −8.42686 + 14.2122i −0.510017 + 0.860164i
\(274\) −1.79285 −0.108310
\(275\) 8.96550 + 5.17623i 0.540640 + 0.312139i
\(276\) 0.0307329 + 0.0998698i 0.00184990 + 0.00601145i
\(277\) 11.8084 + 20.4527i 0.709497 + 1.22888i 0.965044 + 0.262088i \(0.0844111\pi\)
−0.255547 + 0.966797i \(0.582256\pi\)
\(278\) 2.91294 + 5.04536i 0.174706 + 0.302600i
\(279\) 20.0638 1.47670i 1.20119 0.0884078i
\(280\) 11.3002 19.2749i 0.675316 1.15189i
\(281\) 16.8039i 1.00244i 0.865320 + 0.501219i \(0.167115\pi\)
−0.865320 + 0.501219i \(0.832885\pi\)
\(282\) −6.11027 19.8560i −0.363862 1.18241i
\(283\) 8.94217i 0.531557i 0.964034 + 0.265778i \(0.0856289\pi\)
−0.964034 + 0.265778i \(0.914371\pi\)
\(284\) 0.210137i 0.0124694i
\(285\) 9.05486 9.74579i 0.536364 0.577291i
\(286\) −4.11856 + 13.1520i −0.243536 + 0.777692i
\(287\) 19.1364 + 11.2190i 1.12959 + 0.662237i
\(288\) −0.183795 + 0.380356i −0.0108302 + 0.0224127i
\(289\) 8.39133 14.5342i 0.493607 0.854953i
\(290\) 17.3909 + 30.1219i 1.02123 + 1.76882i
\(291\) −17.4608 3.99755i −1.02357 0.234341i
\(292\) 0.194215i 0.0113656i
\(293\) 8.37506 14.5060i 0.489277 0.847452i −0.510647 0.859790i \(-0.670594\pi\)
0.999924 + 0.0123385i \(0.00392756\pi\)
\(294\) −11.7633 + 12.3274i −0.686049 + 0.718950i
\(295\) −15.4034 + 26.6795i −0.896821 + 1.55334i
\(296\) −27.9810 16.1548i −1.62636 0.938981i
\(297\) 11.0316 + 8.83354i 0.640119 + 0.512574i
\(298\) −8.78157 + 15.2101i −0.508703 + 0.881099i
\(299\) −8.33853 2.61122i −0.482229 0.151011i
\(300\) −0.156859 + 0.0482701i −0.00905625 + 0.00278688i
\(301\) 0.0790867 11.8737i 0.00455848 0.684388i
\(302\) 6.41332 3.70273i 0.369045 0.213068i
\(303\) −11.0027 + 3.38586i −0.632089 + 0.194513i
\(304\) −8.85271 5.11111i −0.507737 0.293142i
\(305\) −23.4533 + 13.5408i −1.34293 + 0.775342i
\(306\) −1.10510 1.62553i −0.0631743 0.0929254i
\(307\) 2.98509i 0.170368i 0.996365 + 0.0851842i \(0.0271479\pi\)
−0.996365 + 0.0851842i \(0.972852\pi\)
\(308\) 0.0905978 0.154534i 0.00516229 0.00880538i
\(309\) −10.5155 + 11.3179i −0.598206 + 0.643853i
\(310\) 13.9839 24.2208i 0.794232 1.37565i
\(311\) 1.42109 2.46141i 0.0805828 0.139574i −0.822918 0.568161i \(-0.807655\pi\)
0.903500 + 0.428587i \(0.140989\pi\)
\(312\) −8.80965 15.4345i −0.498748 0.873808i
\(313\) −7.32752 + 4.23055i −0.414176 + 0.239125i −0.692582 0.721339i \(-0.743527\pi\)
0.278406 + 0.960463i \(0.410194\pi\)
\(314\) −0.248049 0.429633i −0.0139982 0.0242456i
\(315\) 23.5016 1.57242i 1.32417 0.0885957i
\(316\) −0.0362713 + 0.0628237i −0.00204042 + 0.00353411i
\(317\) 24.6025 14.2043i 1.38182 0.797792i 0.389442 0.921051i \(-0.372668\pi\)
0.992375 + 0.123259i \(0.0393345\pi\)
\(318\) −2.05040 1.90504i −0.114981 0.106829i
\(319\) 11.3414 + 19.6439i 0.634996 + 1.09985i
\(320\) 12.0142 + 20.8093i 0.671616 + 1.16327i
\(321\) −0.196884 0.0450755i −0.0109890 0.00251587i
\(322\) −7.77362 4.55741i −0.433207 0.253974i
\(323\) −1.04497 + 0.603313i −0.0581436 + 0.0335692i
\(324\) −0.221629 + 0.0328016i −0.0123127 + 0.00182231i
\(325\) 4.10127 13.0968i 0.227498 0.726478i
\(326\) −28.8465 16.6545i −1.59766 0.922410i
\(327\) 1.62359 7.09165i 0.0897849 0.392169i
\(328\) −20.6629 + 11.9297i −1.14092 + 0.658710i
\(329\) −19.4796 11.4202i −1.07394 0.629615i
\(330\) 18.7778 5.77848i 1.03368 0.318095i
\(331\) −24.7098 −1.35817 −0.679086 0.734059i \(-0.737624\pi\)
−0.679086 + 0.734059i \(0.737624\pi\)
\(332\) −0.132599 0.229668i −0.00727731 0.0126047i
\(333\) −2.50013 33.9691i −0.137006 1.86149i
\(334\) 5.28083i 0.288954i
\(335\) −6.61423 11.4562i −0.361374 0.625918i
\(336\) −5.20801 17.3338i −0.284120 0.945638i
\(337\) −4.13151 −0.225057 −0.112529 0.993648i \(-0.535895\pi\)
−0.112529 + 0.993648i \(0.535895\pi\)
\(338\) 18.2066 + 1.52119i 0.990307 + 0.0827416i
\(339\) 21.6927 + 4.96643i 1.17819 + 0.269739i
\(340\) 0.0344402 0.00186778
\(341\) 9.11954 15.7955i 0.493851 0.855375i
\(342\) −0.800969 10.8827i −0.0433114 0.588469i
\(343\) −0.370042 + 18.5166i −0.0199804 + 0.999800i
\(344\) 11.0605 + 6.38578i 0.596342 + 0.344298i
\(345\) 3.66363 + 11.9054i 0.197243 + 0.640963i
\(346\) −5.15024 2.97349i −0.276878 0.159856i
\(347\) 8.01426 4.62703i 0.430228 0.248392i −0.269216 0.963080i \(-0.586764\pi\)
0.699444 + 0.714688i \(0.253431\pi\)
\(348\) −0.350522 0.0802499i −0.0187899 0.00430185i
\(349\) 7.84315 4.52825i 0.419834 0.242391i −0.275172 0.961395i \(-0.588735\pi\)
0.695006 + 0.719004i \(0.255402\pi\)
\(350\) 7.15801 12.2095i 0.382612 0.652626i
\(351\) 8.23460 16.8283i 0.439531 0.898228i
\(352\) 0.191490 + 0.331671i 0.0102065 + 0.0176781i
\(353\) −11.7797 −0.626968 −0.313484 0.949593i \(-0.601496\pi\)
−0.313484 + 0.949593i \(0.601496\pi\)
\(354\) 7.43238 + 24.1523i 0.395026 + 1.28368i
\(355\) 25.0502i 1.32953i
\(356\) −0.171302 −0.00907901
\(357\) −2.07933 0.490648i −0.110050 0.0259679i
\(358\) 0.703600 1.21867i 0.0371864 0.0644088i
\(359\) 1.14560 0.661413i 0.0604625 0.0349080i −0.469464 0.882952i \(-0.655553\pi\)
0.529927 + 0.848044i \(0.322220\pi\)
\(360\) −11.0227 + 22.8111i −0.580948 + 1.20225i
\(361\) 12.3014 0.647440
\(362\) −3.25940 + 5.64544i −0.171310 + 0.296718i
\(363\) −5.96400 + 1.83530i −0.313029 + 0.0963283i
\(364\) −0.226141 0.0724739i −0.0118530 0.00379866i
\(365\) 23.1521i 1.21184i
\(366\) −4.95756 + 21.6540i −0.259136 + 1.13187i
\(367\) 5.82994i 0.304320i 0.988356 + 0.152160i \(0.0486230\pi\)
−0.988356 + 0.152160i \(0.951377\pi\)
\(368\) 8.28923 4.78579i 0.432106 0.249477i
\(369\) −22.6473 10.9435i −1.17897 0.569697i
\(370\) −41.0071 23.6754i −2.13186 1.23083i
\(371\) −3.04198 0.0202616i −0.157932 0.00105193i
\(372\) 0.0850429 + 0.276356i 0.00440927 + 0.0143284i
\(373\) 3.23740 0.167626 0.0838130 0.996482i \(-0.473290\pi\)
0.0838130 + 0.996482i \(0.473290\pi\)
\(374\) −1.78202 −0.0921460
\(375\) 5.86403 1.80454i 0.302817 0.0931859i
\(376\) 21.0334 12.1437i 1.08472 0.626262i
\(377\) 22.1300 20.3581i 1.13975 1.04850i
\(378\) 12.1767 15.0008i 0.626301 0.771557i
\(379\) −11.8507 20.5261i −0.608731 1.05435i −0.991450 0.130488i \(-0.958346\pi\)
0.382719 0.923865i \(-0.374988\pi\)
\(380\) 0.165581 + 0.0955982i 0.00849412 + 0.00490408i
\(381\) 1.72530 + 1.60299i 0.0883899 + 0.0821235i
\(382\) −1.90068 + 3.29207i −0.0972472 + 0.168437i
\(383\) 35.5991 1.81903 0.909515 0.415671i \(-0.136453\pi\)
0.909515 + 0.415671i \(0.136453\pi\)
\(384\) 18.7373 + 4.28980i 0.956185 + 0.218913i
\(385\) 10.8001 18.4218i 0.550422 0.938861i
\(386\) −29.5428 17.0565i −1.50369 0.868154i
\(387\) 0.988266 + 13.4275i 0.0502364 + 0.682557i
\(388\) 0.257446i 0.0130699i
\(389\) 0.288306 + 0.166454i 0.0146177 + 0.00843954i 0.507291 0.861775i \(-0.330647\pi\)
−0.492673 + 0.870214i \(0.663980\pi\)
\(390\) −12.9108 22.6198i −0.653765 1.14540i
\(391\) 1.12982i 0.0571377i
\(392\) −17.1173 10.1891i −0.864552 0.514625i
\(393\) 14.7931 + 13.7443i 0.746212 + 0.693309i
\(394\) 9.95192 0.501370
\(395\) −4.32385 + 7.48913i −0.217557 + 0.376819i
\(396\) −0.0883732 + 0.182885i −0.00444092 + 0.00919033i
\(397\) 29.6338i 1.48728i −0.668581 0.743639i \(-0.733098\pi\)
0.668581 0.743639i \(-0.266902\pi\)
\(398\) −27.0497 −1.35588
\(399\) −8.63502 8.13067i −0.432292 0.407042i
\(400\) 7.51672 + 13.0193i 0.375836 + 0.650967i
\(401\) 8.55524 + 4.93937i 0.427228 + 0.246660i 0.698165 0.715937i \(-0.254000\pi\)
−0.270937 + 0.962597i \(0.587333\pi\)
\(402\) −10.5773 2.42161i −0.527547 0.120779i
\(403\) −23.0740 7.22567i −1.14940 0.359936i
\(404\) −0.0827267 0.143287i −0.00411581 0.00712878i
\(405\) −26.4201 + 3.91024i −1.31283 + 0.194301i
\(406\) 26.9582 15.3258i 1.33791 0.760608i
\(407\) −26.7426 15.4398i −1.32558 0.765325i
\(408\) 1.56411 1.68346i 0.0774352 0.0833439i
\(409\) 2.89726 1.67273i 0.143260 0.0827113i −0.426657 0.904414i \(-0.640309\pi\)
0.569917 + 0.821702i \(0.306975\pi\)
\(410\) −30.2822 + 17.4834i −1.49553 + 0.863444i
\(411\) 1.50398 1.61874i 0.0741857 0.0798464i
\(412\) −0.192291 0.111019i −0.00947349 0.00546952i
\(413\) 23.6944 + 13.8912i 1.16593 + 0.683542i
\(414\) 9.19980 + 4.44550i 0.452146 + 0.218484i
\(415\) −15.8069 27.3784i −0.775932 1.34395i
\(416\) 0.373648 0.343731i 0.0183196 0.0168528i
\(417\) −6.99895 1.60237i −0.342740 0.0784684i
\(418\) −8.56755 4.94648i −0.419052 0.241940i
\(419\) −7.87912 13.6470i −0.384920 0.666702i 0.606838 0.794826i \(-0.292438\pi\)
−0.991758 + 0.128124i \(0.959104\pi\)
\(420\) 0.0974105 + 0.324212i 0.00475315 + 0.0158199i
\(421\) −1.57179 −0.0766041 −0.0383021 0.999266i \(-0.512195\pi\)
−0.0383021 + 0.999266i \(0.512195\pi\)
\(422\) 32.7924i 1.59631i
\(423\) 23.0534 + 11.1398i 1.12089 + 0.541634i
\(424\) 1.63600 2.83364i 0.0794514 0.137614i
\(425\) 1.77454 0.0860778
\(426\) −15.0535 13.9862i −0.729343 0.677636i
\(427\) 11.9329 + 20.9900i 0.577473 + 1.01578i
\(428\) 0.00290290i 0.000140317i
\(429\) −8.41974 14.7514i −0.406509 0.712205i
\(430\) 16.2095 + 9.35856i 0.781692 + 0.451310i
\(431\) 35.3995i 1.70514i 0.522617 + 0.852568i \(0.324956\pi\)
−0.522617 + 0.852568i \(0.675044\pi\)
\(432\) 7.45959 + 19.1190i 0.358900 + 0.919862i
\(433\) 31.5305 + 18.2041i 1.51526 + 0.874834i 0.999840 + 0.0178948i \(0.00569638\pi\)
0.515417 + 0.856939i \(0.327637\pi\)
\(434\) −21.5108 12.6111i −1.03255 0.605350i
\(435\) −41.7853 9.56650i −2.00345 0.458678i
\(436\) 0.104561 0.00500756
\(437\) 3.13613 5.43194i 0.150022 0.259845i
\(438\) 13.9128 + 12.9265i 0.664780 + 0.617650i
\(439\) −28.2871 16.3316i −1.35007 0.779464i −0.361813 0.932251i \(-0.617842\pi\)
−0.988259 + 0.152786i \(0.951175\pi\)
\(440\) 11.4842 + 19.8913i 0.547490 + 0.948280i
\(441\) −1.26232 20.9620i −0.0601104 0.998192i
\(442\) 0.515815 + 2.30536i 0.0245348 + 0.109655i
\(443\) 4.64059 2.67925i 0.220481 0.127295i −0.385692 0.922628i \(-0.626037\pi\)
0.606173 + 0.795333i \(0.292704\pi\)
\(444\) 0.467884 0.143982i 0.0222048 0.00683308i
\(445\) −20.4208 −0.968037
\(446\) 7.19273 0.340586
\(447\) −6.36635 20.6881i −0.301118 0.978514i
\(448\) 18.6237 10.5876i 0.879886 0.500218i
\(449\) 25.3524 + 14.6372i 1.19645 + 0.690774i 0.959763 0.280811i \(-0.0906035\pi\)
0.236692 + 0.971585i \(0.423937\pi\)
\(450\) −6.98225 + 14.4495i −0.329146 + 0.681157i
\(451\) −19.7484 + 11.4017i −0.929916 + 0.536887i
\(452\) 0.319843i 0.0150441i
\(453\) −2.03683 + 8.89660i −0.0956984 + 0.417999i
\(454\) 32.4742i 1.52409i
\(455\) −26.9580 8.63952i −1.26381 0.405027i
\(456\) 12.1928 3.75209i 0.570981 0.175708i
\(457\) 15.6657 27.1338i 0.732812 1.26927i −0.222865 0.974849i \(-0.571541\pi\)
0.955677 0.294418i \(-0.0951257\pi\)
\(458\) 35.0792 1.63914
\(459\) 2.39470 + 0.365838i 0.111775 + 0.0170759i
\(460\) −0.155042 + 0.0895134i −0.00722886 + 0.00417358i
\(461\) 2.74375 4.75231i 0.127789 0.221337i −0.795031 0.606569i \(-0.792545\pi\)
0.922820 + 0.385232i \(0.125879\pi\)
\(462\) −5.04025 16.7755i −0.234494 0.780466i
\(463\) 10.4977 0.487870 0.243935 0.969792i \(-0.421562\pi\)
0.243935 + 0.969792i \(0.421562\pi\)
\(464\) 32.9390i 1.52916i
\(465\) 10.1379 + 32.9440i 0.470132 + 1.52774i
\(466\) −16.7646 −0.776607
\(467\) −6.11729 10.5955i −0.283075 0.490299i 0.689066 0.724699i \(-0.258021\pi\)
−0.972140 + 0.234399i \(0.924688\pi\)
\(468\) 0.262175 + 0.0613895i 0.0121190 + 0.00283773i
\(469\) −10.2530 + 5.82884i −0.473437 + 0.269151i
\(470\) 30.8252 17.7969i 1.42186 0.820911i
\(471\) 0.595989 + 0.136448i 0.0274617 + 0.00628721i
\(472\) −25.5845 + 14.7712i −1.17762 + 0.679901i
\(473\) 10.5710 + 6.10315i 0.486054 + 0.280623i
\(474\) 2.08633 + 6.77973i 0.0958281 + 0.311403i
\(475\) 8.53159 + 4.92571i 0.391456 + 0.226007i
\(476\) 0.000204515 0.0307049i 9.37394e−6 0.00140736i
\(477\) 3.44005 0.253189i 0.157509 0.0115927i
\(478\) 7.23357 12.5289i 0.330856 0.573059i
\(479\) −15.7699 −0.720544 −0.360272 0.932847i \(-0.617316\pi\)
−0.360272 + 0.932847i \(0.617316\pi\)
\(480\) −0.705510 0.161523i −0.0322020 0.00737246i
\(481\) −12.2334 + 39.0655i −0.557796 + 1.78123i
\(482\) 22.3323 1.01721
\(483\) 10.6359 3.19559i 0.483949 0.145404i
\(484\) −0.0448418 0.0776683i −0.00203826 0.00353038i
\(485\) 30.6899i 1.39355i
\(486\) −12.4013 + 18.0599i −0.562534 + 0.819212i
\(487\) −12.4868 21.6278i −0.565833 0.980051i −0.996972 0.0777654i \(-0.975221\pi\)
0.431139 0.902285i \(-0.358112\pi\)
\(488\) −25.9701 −1.17561
\(489\) 39.2357 12.0740i 1.77430 0.546005i
\(490\) −25.0859 14.9324i −1.13327 0.674577i
\(491\) 36.6633 21.1676i 1.65459 0.955280i 0.679444 0.733727i \(-0.262221\pi\)
0.975148 0.221552i \(-0.0711124\pi\)
\(492\) 0.0806770 0.352387i 0.00363720 0.0158868i
\(493\) 3.36720 + 1.94405i 0.151651 + 0.0875557i
\(494\) −3.91923 + 12.5154i −0.176334 + 0.563096i
\(495\) −10.5349 + 21.8015i −0.473507 + 0.979906i
\(496\) 22.9376 13.2430i 1.02993 0.594630i
\(497\) −22.3333 0.148755i −1.00179 0.00667257i
\(498\) −25.2780 5.78725i −1.13273 0.259333i
\(499\) 4.70714 + 8.15301i 0.210721 + 0.364979i 0.951940 0.306284i \(-0.0990856\pi\)
−0.741220 + 0.671263i \(0.765752\pi\)
\(500\) 0.0440902 + 0.0763664i 0.00197177 + 0.00341521i
\(501\) 4.76797 + 4.42994i 0.213017 + 0.197915i
\(502\) −19.5427 + 11.2830i −0.872232 + 0.503583i
\(503\) −4.94844 + 8.57095i −0.220640 + 0.382160i −0.955003 0.296598i \(-0.904148\pi\)
0.734362 + 0.678758i \(0.237481\pi\)
\(504\) 20.2716 + 9.96268i 0.902970 + 0.443773i
\(505\) −9.86174 17.0810i −0.438842 0.760096i
\(506\) 8.02223 4.63163i 0.356631 0.205901i
\(507\) −16.6464 + 15.1623i −0.739295 + 0.673382i
\(508\) −0.0169238 + 0.0293129i −0.000750872 + 0.00130055i
\(509\) 15.9736 27.6670i 0.708015 1.22632i −0.257577 0.966258i \(-0.582924\pi\)
0.965592 0.260061i \(-0.0837426\pi\)
\(510\) 2.29226 2.46717i 0.101503 0.109248i
\(511\) 20.6411 + 0.137483i 0.913107 + 0.00608190i
\(512\) 23.0353i 1.01803i
\(513\) 10.4977 + 8.40602i 0.463485 + 0.371135i
\(514\) −13.3718 + 7.72024i −0.589807 + 0.340525i
\(515\) −22.9228 13.2345i −1.01010 0.583180i
\(516\) −0.184948 + 0.0569140i −0.00814187 + 0.00250550i
\(517\) 20.1025 11.6062i 0.884108 0.510440i
\(518\) −21.3512 + 36.4189i −0.938116 + 1.60016i
\(519\) 7.00511 2.15568i 0.307490 0.0946239i
\(520\) 22.4088 20.6146i 0.982690 0.904009i
\(521\) −1.58017 + 2.73693i −0.0692283 + 0.119907i −0.898562 0.438847i \(-0.855387\pi\)
0.829333 + 0.558754i \(0.188720\pi\)
\(522\) −29.0787 + 19.7688i −1.27274 + 0.865257i
\(523\) −9.19469 5.30855i −0.402056 0.232127i 0.285315 0.958434i \(-0.407902\pi\)
−0.687371 + 0.726307i \(0.741235\pi\)
\(524\) −0.145108 + 0.251334i −0.00633907 + 0.0109796i
\(525\) 5.01910 + 16.7051i 0.219051 + 0.729069i
\(526\) −4.87066 + 8.43624i −0.212371 + 0.367837i
\(527\) 3.12640i 0.136188i
\(528\) 18.1366 + 4.15228i 0.789296 + 0.180705i
\(529\) −8.56348 14.8324i −0.372325 0.644886i
\(530\) 2.39762 4.15279i 0.104146 0.180386i
\(531\) −28.0415 13.5501i −1.21690 0.588025i
\(532\) 0.0862131 0.147055i 0.00373781 0.00637563i
\(533\) 20.4665 + 22.2478i 0.886501 + 0.963659i
\(534\) −11.4015 + 12.2715i −0.493390 + 0.531038i
\(535\) 0.346052i 0.0149611i
\(536\) 12.6856i 0.547933i
\(537\) 0.510087 + 1.65758i 0.0220119 + 0.0715298i
\(538\) 10.0590i 0.433672i
\(539\) −16.3597 9.73810i −0.704661 0.419450i
\(540\) −0.139524 0.357601i −0.00600416 0.0153887i
\(541\) 10.0471 + 17.4021i 0.431958 + 0.748173i 0.997042 0.0768601i \(-0.0244895\pi\)
−0.565084 + 0.825034i \(0.691156\pi\)
\(542\) 9.84580 + 17.0534i 0.422913 + 0.732507i
\(543\) −2.36295 7.67866i −0.101404 0.329523i
\(544\) 0.0568524 + 0.0328238i 0.00243753 + 0.00140731i
\(545\) 12.4646 0.533924
\(546\) −20.2432 + 11.3762i −0.866327 + 0.486857i
\(547\) 18.0920 0.773556 0.386778 0.922173i \(-0.373588\pi\)
0.386778 + 0.922173i \(0.373588\pi\)
\(548\) 0.0275023 + 0.0158785i 0.00117484 + 0.000678295i
\(549\) −15.3923 22.6410i −0.656926 0.966296i
\(550\) 7.27460 + 12.6000i 0.310190 + 0.537265i
\(551\) 10.7925 + 18.6931i 0.459776 + 0.796355i
\(552\) −2.66579 + 11.6438i −0.113463 + 0.495594i
\(553\) 6.65120 + 3.89937i 0.282838 + 0.165818i
\(554\) 33.1906i 1.41014i
\(555\) 55.7759 17.1639i 2.36755 0.728567i
\(556\) 0.103194i 0.00437641i
\(557\) 32.7781i 1.38885i −0.719563 0.694427i \(-0.755658\pi\)
0.719563 0.694427i \(-0.244342\pi\)
\(558\) 25.4573 + 12.3014i 1.07769 + 0.520760i
\(559\) 4.83569 15.4420i 0.204528 0.653128i
\(560\) 26.9579 15.3257i 1.13918 0.647628i
\(561\) 1.49489 1.60895i 0.0631142 0.0679301i
\(562\) −11.8080 + 20.4521i −0.498090 + 0.862718i
\(563\) −9.35180 16.1978i −0.394131 0.682656i 0.598859 0.800855i \(-0.295621\pi\)
−0.992990 + 0.118199i \(0.962288\pi\)
\(564\) −0.0821237 + 0.358706i −0.00345803 + 0.0151042i
\(565\) 38.1281i 1.60406i
\(566\) −6.28359 + 10.8835i −0.264119 + 0.457468i
\(567\) 3.32925 + 23.5779i 0.139815 + 0.990178i
\(568\) 12.0111 20.8038i 0.503973 0.872908i
\(569\) −2.94338 1.69936i −0.123393 0.0712408i 0.437033 0.899445i \(-0.356029\pi\)
−0.560426 + 0.828205i \(0.689363\pi\)
\(570\) 17.8690 5.49881i 0.748448 0.230320i
\(571\) 4.29368 7.43687i 0.179685 0.311224i −0.762088 0.647474i \(-0.775825\pi\)
0.941773 + 0.336250i \(0.109159\pi\)
\(572\) 0.179659 0.165275i 0.00751194 0.00691048i
\(573\) −1.37793 4.47772i −0.0575638 0.187060i
\(574\) 15.4074 + 27.1017i 0.643092 + 1.13120i
\(575\) −7.98855 + 4.61219i −0.333146 + 0.192342i
\(576\) −20.0886 + 13.6570i −0.837024 + 0.569042i
\(577\) −19.0273 10.9854i −0.792117 0.457329i 0.0485903 0.998819i \(-0.484527\pi\)
−0.840707 + 0.541490i \(0.817860\pi\)
\(578\) 20.4261 11.7930i 0.849616 0.490526i
\(579\) 40.1827 12.3654i 1.66993 0.513889i
\(580\) 0.616092i 0.0255818i
\(581\) −24.5029 + 13.9300i −1.01655 + 0.577913i
\(582\) −18.4425 17.1350i −0.764465 0.710268i
\(583\) 1.56360 2.70823i 0.0647575 0.112163i
\(584\) −11.1010 + 19.2274i −0.459361 + 0.795636i
\(585\) 31.2536 + 7.31816i 1.29218 + 0.302569i
\(586\) 20.3866 11.7702i 0.842161 0.486222i
\(587\) 21.5356 + 37.3007i 0.888868 + 1.53956i 0.841215 + 0.540701i \(0.181841\pi\)
0.0476531 + 0.998864i \(0.484826\pi\)
\(588\) 0.289627 0.0849204i 0.0119440 0.00350206i
\(589\) 8.67818 15.0310i 0.357578 0.619343i
\(590\) −37.4949 + 21.6477i −1.54364 + 0.891222i
\(591\) −8.34839 + 8.98542i −0.343407 + 0.369611i
\(592\) −22.4211 38.8346i −0.921503 1.59609i
\(593\) −15.2562 26.4245i −0.626498 1.08513i −0.988249 0.152851i \(-0.951155\pi\)
0.361752 0.932274i \(-0.382179\pi\)
\(594\) 7.21931 + 18.5031i 0.296212 + 0.759192i
\(595\) 0.0243800 3.66030i 0.000999483 0.150058i
\(596\) 0.269418 0.155549i 0.0110358 0.00637152i
\(597\) 22.6913 24.4227i 0.928692 0.999556i
\(598\) −8.31392 9.03753i −0.339982 0.369572i
\(599\) 22.8836 + 13.2118i 0.934998 + 0.539821i 0.888389 0.459092i \(-0.151825\pi\)
0.0466090 + 0.998913i \(0.485159\pi\)
\(600\) −18.2882 4.18698i −0.746612 0.170933i
\(601\) −32.5373 + 18.7854i −1.32722 + 0.766272i −0.984869 0.173299i \(-0.944557\pi\)
−0.342353 + 0.939571i \(0.611224\pi\)
\(602\) 8.43981 14.3959i 0.343981 0.586732i
\(603\) 11.0594 7.51863i 0.450375 0.306182i
\(604\) −0.131174 −0.00533738
\(605\) −5.34554 9.25874i −0.217327 0.376421i
\(606\) −15.7706 3.61059i −0.640637 0.146670i
\(607\) 0.974616i 0.0395585i −0.999804 0.0197792i \(-0.993704\pi\)
0.999804 0.0197792i \(-0.00629633\pi\)
\(608\) 0.182222 + 0.315619i 0.00739010 + 0.0128000i
\(609\) −8.77707 + 37.1965i −0.355665 + 1.50728i
\(610\) −38.0599 −1.54100
\(611\) −20.8335 22.6467i −0.842832 0.916189i
\(612\) 0.00255562 + 0.0347230i 0.000103305 + 0.00140359i
\(613\) 0.0794798 0.00321016 0.00160508 0.999999i \(-0.499489\pi\)
0.00160508 + 0.999999i \(0.499489\pi\)
\(614\) −2.09760 + 3.63316i −0.0846524 + 0.146622i
\(615\) 9.61740 42.0076i 0.387811 1.69391i
\(616\) 17.8021 10.1206i 0.717268 0.407769i
\(617\) 8.99665 + 5.19422i 0.362192 + 0.209111i 0.670042 0.742323i \(-0.266276\pi\)
−0.307850 + 0.951435i \(0.599610\pi\)
\(618\) −20.7514 + 6.38583i −0.834744 + 0.256876i
\(619\) 34.3765 + 19.8473i 1.38171 + 0.797729i 0.992362 0.123362i \(-0.0393678\pi\)
0.389346 + 0.921092i \(0.372701\pi\)
\(620\) −0.429025 + 0.247698i −0.0172301 + 0.00994778i
\(621\) −11.7312 + 4.57714i −0.470758 + 0.183674i
\(622\) 3.45922 1.99718i 0.138702 0.0800797i
\(623\) −0.121264 + 18.2060i −0.00485834 + 0.729407i
\(624\) 0.121970 24.6649i 0.00488273 0.987386i
\(625\) 14.7718 + 25.5854i 0.590870 + 1.02342i
\(626\) −11.8911 −0.475263
\(627\) 11.6532 3.58603i 0.465383 0.143212i
\(628\) 0.00878741i 0.000350656i
\(629\) −5.29316 −0.211052
\(630\) 29.7087 + 14.6006i 1.18362 + 0.581703i
\(631\) −22.2297 + 38.5030i −0.884952 + 1.53278i −0.0391833 + 0.999232i \(0.512476\pi\)
−0.845769 + 0.533550i \(0.820858\pi\)
\(632\) −7.18177 + 4.14640i −0.285676 + 0.164935i
\(633\) 29.6077 + 27.5087i 1.17680 + 1.09337i
\(634\) 39.9250 1.58562
\(635\) −2.01746 + 3.49435i −0.0800606 + 0.138669i
\(636\) 0.0145811 + 0.0473827i 0.000578177 + 0.00187885i
\(637\) −7.86258 + 23.9829i −0.311527 + 0.950237i
\(638\) 31.8780i 1.26206i
\(639\) 25.2559 1.85884i 0.999107 0.0735345i
\(640\) 32.9335i 1.30181i
\(641\) 22.5064 12.9941i 0.888950 0.513235i 0.0153508 0.999882i \(-0.495113\pi\)
0.873599 + 0.486647i \(0.161780\pi\)
\(642\) −0.207953 0.193210i −0.00820725 0.00762540i
\(643\) 6.96396 + 4.02064i 0.274632 + 0.158559i 0.630991 0.775790i \(-0.282649\pi\)
−0.356359 + 0.934349i \(0.615982\pi\)
\(644\) 0.0788843 + 0.138758i 0.00310848 + 0.00546782i
\(645\) −22.0474 + 6.78464i −0.868116 + 0.267145i
\(646\) −1.69577 −0.0667193
\(647\) −19.5481 −0.768516 −0.384258 0.923226i \(-0.625543\pi\)
−0.384258 + 0.923226i \(0.625543\pi\)
\(648\) −23.8163 9.42052i −0.935594 0.370073i
\(649\) −24.4522 + 14.1175i −0.959832 + 0.554159i
\(650\) 14.1947 13.0581i 0.556760 0.512182i
\(651\) 29.4312 8.84270i 1.15350 0.346573i
\(652\) 0.295003 + 0.510961i 0.0115532 + 0.0200108i
\(653\) 31.6753 + 18.2877i 1.23955 + 0.715654i 0.969002 0.247053i \(-0.0794621\pi\)
0.270547 + 0.962707i \(0.412795\pi\)
\(654\) 6.95932 7.49035i 0.272131 0.292896i
\(655\) −17.2981 + 29.9612i −0.675894 + 1.17068i
\(656\) −33.1143 −1.29290
\(657\) −23.3422 + 1.71799i −0.910664 + 0.0670251i
\(658\) −15.6837 27.5876i −0.611413 1.07548i
\(659\) −24.3137 14.0375i −0.947126 0.546824i −0.0549393 0.998490i \(-0.517497\pi\)
−0.892187 + 0.451666i \(0.850830\pi\)
\(660\) −0.339228 0.0776642i −0.0132044 0.00302308i
\(661\) 0.894387i 0.0347876i 0.999849 + 0.0173938i \(0.00553690\pi\)
−0.999849 + 0.0173938i \(0.994463\pi\)
\(662\) −30.0742 17.3634i −1.16887 0.674847i
\(663\) −2.51417 1.46818i −0.0976424 0.0570195i
\(664\) 30.3164i 1.17651i
\(665\) 10.2774 17.5302i 0.398539 0.679792i
\(666\) 20.8269 43.1005i 0.807026 1.67011i
\(667\) −20.2111 −0.782577
\(668\) −0.0467698 + 0.0810077i −0.00180958 + 0.00313428i
\(669\) −6.03379 + 6.49420i −0.233280 + 0.251080i
\(670\) 18.5911i 0.718236i
\(671\) −24.8207 −0.958191
\(672\) −0.148194 + 0.628033i −0.00571670 + 0.0242269i
\(673\) −14.0268 24.2951i −0.540692 0.936506i −0.998864 0.0476430i \(-0.984829\pi\)
0.458172 0.888863i \(-0.348504\pi\)
\(674\) −5.02845 2.90318i −0.193689 0.111826i
\(675\) −7.18901 18.4255i −0.276705 0.709196i
\(676\) −0.265816 0.184582i −0.0102237 0.00709931i
\(677\) −16.0687 27.8319i −0.617572 1.06967i −0.989927 0.141575i \(-0.954783\pi\)
0.372356 0.928090i \(-0.378550\pi\)
\(678\) 22.9123 + 21.2880i 0.879943 + 0.817559i
\(679\) −27.3613 0.182245i −1.05003 0.00699390i
\(680\) 3.40961 + 1.96854i 0.130753 + 0.0754901i
\(681\) −29.3204 27.2417i −1.12356 1.04390i
\(682\) 22.1988 12.8165i 0.850035 0.490768i
\(683\) −20.7123 + 11.9583i −0.792535 + 0.457570i −0.840854 0.541262i \(-0.817947\pi\)
0.0483193 + 0.998832i \(0.484613\pi\)
\(684\) −0.0840961 + 0.174034i −0.00321550 + 0.00665436i
\(685\) 3.27852 + 1.89285i 0.125266 + 0.0723222i
\(686\) −13.4618 + 22.2765i −0.513975 + 0.850519i
\(687\) −29.4270 + 31.6724i −1.12271 + 1.20838i
\(688\) 8.86276 + 15.3507i 0.337889 + 0.585242i
\(689\) −3.95617 1.23888i −0.150718 0.0471976i
\(690\) −3.90680 + 17.0644i −0.148729 + 0.649631i
\(691\) 41.3896 + 23.8963i 1.57454 + 0.909059i 0.995602 + 0.0936839i \(0.0298643\pi\)
0.578934 + 0.815375i \(0.303469\pi\)
\(692\) 0.0526697 + 0.0912265i 0.00200220 + 0.00346791i
\(693\) 19.3744 + 9.52174i 0.735974 + 0.361701i
\(694\) 13.0055 0.493683
\(695\) 12.3017i 0.466628i
\(696\) −30.1150 27.9800i −1.14151 1.06058i
\(697\) −1.95440 + 3.38512i −0.0740281 + 0.128220i
\(698\) 12.7279 0.481756
\(699\) 14.0634 15.1365i 0.531927 0.572515i
\(700\) −0.217938 + 0.123898i −0.00823727 + 0.00468292i
\(701\) 6.73334i 0.254315i 0.991883 + 0.127157i \(0.0405853\pi\)
−0.991883 + 0.127157i \(0.959415\pi\)
\(702\) 21.8474 14.6953i 0.824578 0.554638i
\(703\) −25.4483 14.6926i −0.959801 0.554142i
\(704\) 22.0225i 0.830003i
\(705\) −9.78986 + 42.7609i −0.368708 + 1.61047i
\(706\) −14.3370 8.27748i −0.539581 0.311527i
\(707\) −15.2870 + 8.69073i −0.574928 + 0.326849i
\(708\) 0.0998930 0.436320i 0.00375421 0.0163979i
\(709\) −38.0202 −1.42788 −0.713939 0.700208i \(-0.753091\pi\)
−0.713939 + 0.700208i \(0.753091\pi\)
\(710\) 17.6026 30.4886i 0.660614 1.14422i
\(711\) −7.87146 3.80362i −0.295203 0.142647i
\(712\) −16.9591 9.79133i −0.635569 0.366946i
\(713\) 8.12581 + 14.0743i 0.304314 + 0.527088i
\(714\) −2.18597 2.05830i −0.0818080 0.0770298i
\(715\) 21.4170 19.7022i 0.800950 0.736820i
\(716\) −0.0215864 + 0.0124629i −0.000806723 + 0.000465762i
\(717\) 5.24409 + 17.0412i 0.195844 + 0.636416i
\(718\) 1.85908 0.0693802
\(719\) 24.6301 0.918549 0.459275 0.888294i \(-0.348109\pi\)
0.459275 + 0.888294i \(0.348109\pi\)
\(720\) −29.0784 + 19.7686i −1.08369 + 0.736733i
\(721\) −11.9352 + 20.3580i −0.444490 + 0.758172i
\(722\) 14.9720 + 8.64408i 0.557199 + 0.321699i
\(723\) −18.7340 + 20.1635i −0.696724 + 0.749888i
\(724\) 0.0999981 0.0577340i 0.00371640 0.00214567i
\(725\) 31.7442i 1.17895i
\(726\) −8.54843 1.95711i −0.317262 0.0726353i
\(727\) 6.39426i 0.237150i −0.992945 0.118575i \(-0.962167\pi\)
0.992945 0.118575i \(-0.0378326\pi\)
\(728\) −18.2457 20.1008i −0.676230 0.744985i
\(729\) −5.90283 26.3469i −0.218623 0.975809i
\(730\) −16.2688 + 28.1784i −0.602135 + 1.04293i
\(731\) 2.09231 0.0773869
\(732\) 0.267828 0.288265i 0.00989921 0.0106546i
\(733\) 19.2593 11.1194i 0.711359 0.410703i −0.100205 0.994967i \(-0.531950\pi\)
0.811564 + 0.584263i \(0.198616\pi\)
\(734\) −4.09665 + 7.09561i −0.151210 + 0.261904i
\(735\) 34.5261 10.1233i 1.27351 0.373402i
\(736\) −0.341248 −0.0125786
\(737\) 12.1241i 0.446597i
\(738\) −19.8740 29.2334i −0.731573 1.07610i
\(739\) 23.2140 0.853940 0.426970 0.904266i \(-0.359581\pi\)
0.426970 + 0.904266i \(0.359581\pi\)
\(740\) 0.419365 + 0.726361i 0.0154162 + 0.0267016i
\(741\) −8.01224 14.0375i −0.294337 0.515679i
\(742\) −3.68815 2.16224i −0.135396 0.0793782i
\(743\) 13.9525 8.05548i 0.511867 0.295527i −0.221734 0.975107i \(-0.571172\pi\)
0.733601 + 0.679581i \(0.237838\pi\)
\(744\) −7.37666 + 32.2203i −0.270442 + 1.18125i
\(745\) 32.1170 18.5428i 1.17668 0.679354i
\(746\) 3.94023 + 2.27489i 0.144262 + 0.0832897i
\(747\) 26.4302 17.9683i 0.967032 0.657426i
\(748\) 0.0273361 + 0.0157825i 0.000999508 + 0.000577066i
\(749\) −0.308520 0.00205495i −0.0112731 7.50861e-5i
\(750\) 8.40514 + 1.92431i 0.306912 + 0.0702658i
\(751\) 3.91086 6.77381i 0.142709 0.247180i −0.785807 0.618472i \(-0.787752\pi\)
0.928516 + 0.371292i \(0.121085\pi\)
\(752\) 33.7081 1.22921
\(753\) 6.20662 27.1097i 0.226182 0.987933i
\(754\) 41.2399 9.22727i 1.50187 0.336037i
\(755\) −15.6370 −0.569090
\(756\) −0.319645 + 0.122268i −0.0116254 + 0.00444685i
\(757\) 25.1290 + 43.5247i 0.913329 + 1.58193i 0.809329 + 0.587356i \(0.199831\pi\)
0.104001 + 0.994577i \(0.466836\pi\)
\(758\) 33.3097i 1.20986i
\(759\) −2.54780 + 11.1285i −0.0924794 + 0.403938i
\(760\) 10.9284 + 18.9286i 0.396416 + 0.686613i
\(761\) 14.4623 0.524258 0.262129 0.965033i \(-0.415575\pi\)
0.262129 + 0.965033i \(0.415575\pi\)
\(762\) 0.973457 + 3.16335i 0.0352646 + 0.114596i
\(763\) 0.0740180 11.1127i 0.00267963 0.402307i
\(764\) 0.0583127 0.0336669i 0.00210968 0.00121802i
\(765\) 0.304652 + 4.13928i 0.0110147 + 0.149656i
\(766\) 43.3277 + 25.0152i 1.56549 + 0.903837i
\(767\) 25.3413 + 27.5469i 0.915021 + 0.994660i
\(768\) −0.757983 0.704246i −0.0273514 0.0254123i
\(769\) −17.5980 + 10.1602i −0.634602 + 0.366388i −0.782532 0.622610i \(-0.786072\pi\)
0.147930 + 0.988998i \(0.452739\pi\)
\(770\) 26.0896 14.8320i 0.940203 0.534509i
\(771\) 4.24680 18.5495i 0.152945 0.668044i
\(772\) 0.302123 + 0.523293i 0.0108737 + 0.0188337i
\(773\) −19.9457 34.5469i −0.717397 1.24257i −0.962028 0.272951i \(-0.912000\pi\)
0.244631 0.969616i \(-0.421333\pi\)
\(774\) −8.23257 + 17.0370i −0.295914 + 0.612383i
\(775\) −22.1056 + 12.7627i