Properties

Label 273.2.bf.b.185.14
Level $273$
Weight $2$
Character 273.185
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(152,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.152");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 185.14
Character \(\chi\) \(=\) 273.185
Dual form 273.2.bf.b.152.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.667801 - 0.385555i) q^{2} +(1.00894 + 1.40785i) q^{3} +(-0.702694 - 1.21710i) q^{4} +(0.907647 + 1.57209i) q^{5} +(-0.130967 - 1.32917i) q^{6} +(1.94952 - 1.78868i) q^{7} +2.62593i q^{8} +(-0.964085 + 2.84087i) q^{9} +O(q^{10})\) \(q+(-0.667801 - 0.385555i) q^{2} +(1.00894 + 1.40785i) q^{3} +(-0.702694 - 1.21710i) q^{4} +(0.907647 + 1.57209i) q^{5} +(-0.130967 - 1.32917i) q^{6} +(1.94952 - 1.78868i) q^{7} +2.62593i q^{8} +(-0.964085 + 2.84087i) q^{9} -1.39979i q^{10} +0.582432i q^{11} +(1.00452 - 2.21727i) q^{12} +(3.53127 - 0.728085i) q^{13} +(-1.99153 + 0.442837i) q^{14} +(-1.29751 + 2.86397i) q^{15} +(-0.392948 + 0.680606i) q^{16} +(-0.479095 - 0.829817i) q^{17} +(1.73913 - 1.52543i) q^{18} +1.92492i q^{19} +(1.27560 - 2.20940i) q^{20} +(4.48514 + 0.939958i) q^{21} +(0.224560 - 0.388949i) q^{22} +(7.56166 + 4.36573i) q^{23} +(-3.69692 + 2.64940i) q^{24} +(0.852355 - 1.47632i) q^{25} +(-2.63891 - 0.875284i) q^{26} +(-4.97222 + 1.50898i) q^{27} +(-3.54692 - 1.11587i) q^{28} +(-4.26919 + 2.46482i) q^{29} +(1.97070 - 1.41230i) q^{30} +(-2.83579 - 1.63724i) q^{31} +(5.07307 - 2.92894i) q^{32} +(-0.819977 + 0.587638i) q^{33} +0.738871i q^{34} +(4.58144 + 1.44133i) q^{35} +(4.13509 - 0.822874i) q^{36} +(0.899986 - 1.55882i) q^{37} +(0.742164 - 1.28547i) q^{38} +(4.58787 + 4.23691i) q^{39} +(-4.12820 + 2.38342i) q^{40} +(-1.73088 - 2.99798i) q^{41} +(-2.63278 - 2.35697i) q^{42} +(-0.367529 + 0.636578i) q^{43} +(0.708879 - 0.409272i) q^{44} +(-5.34115 + 1.06288i) q^{45} +(-3.36646 - 5.83087i) q^{46} +(-3.49201 - 6.04834i) q^{47} +(-1.35465 + 0.133478i) q^{48} +(0.601235 - 6.97413i) q^{49} +(-1.13841 + 0.657260i) q^{50} +(0.684881 - 1.51173i) q^{51} +(-3.36756 - 3.78630i) q^{52} +(-5.08741 - 2.93722i) q^{53} +(3.90225 + 0.909369i) q^{54} +(-0.915636 + 0.528642i) q^{55} +(4.69695 + 5.11930i) q^{56} +(-2.71000 + 1.94213i) q^{57} +3.80129 q^{58} +(-3.82837 - 6.63092i) q^{59} +(4.39750 - 0.433299i) q^{60} +3.82987i q^{61} +(1.26249 + 2.18670i) q^{62} +(3.20191 + 7.26277i) q^{63} -2.94528 q^{64} +(4.34976 + 4.89064i) q^{65} +(0.774149 - 0.0762792i) q^{66} -10.1565 q^{67} +(-0.673315 + 1.16622i) q^{68} +(1.48296 + 15.0504i) q^{69} +(-2.50378 - 2.72892i) q^{70} +(-9.73044 - 5.61787i) q^{71} +(-7.45993 - 2.53162i) q^{72} +(-7.30674 - 4.21855i) q^{73} +(-1.20202 + 0.693989i) q^{74} +(2.93842 - 0.289531i) q^{75} +(2.34283 - 1.35263i) q^{76} +(1.04179 + 1.13546i) q^{77} +(-1.43022 - 4.59829i) q^{78} +(6.35477 + 11.0068i) q^{79} -1.42663 q^{80} +(-7.14108 - 5.47768i) q^{81} +2.66940i q^{82} -7.45221 q^{83} +(-2.00766 - 6.11938i) q^{84} +(0.869698 - 1.50636i) q^{85} +(0.490872 - 0.283405i) q^{86} +(-7.77745 - 3.52353i) q^{87} -1.52943 q^{88} +(3.53452 - 6.12198i) q^{89} +(3.97662 + 1.34952i) q^{90} +(5.58197 - 7.73574i) q^{91} -12.2711i q^{92} +(-0.556143 - 5.64424i) q^{93} +5.38545i q^{94} +(-3.02615 + 1.74715i) q^{95} +(9.24192 + 4.18700i) q^{96} +(7.89537 + 4.55839i) q^{97} +(-3.09042 + 4.42552i) q^{98} +(-1.65461 - 0.561514i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9} + 6 q^{12} - 12 q^{13} - 9 q^{15} - 16 q^{16} + 2 q^{18} + 10 q^{21} + 10 q^{22} - 24 q^{25} - 50 q^{28} - 16 q^{30} - 24 q^{31} - 33 q^{39} + 90 q^{40} - 48 q^{42} - 20 q^{43} - 3 q^{45} + 6 q^{48} - 10 q^{51} + 30 q^{52} - 27 q^{54} + 18 q^{55} + 4 q^{57} - 60 q^{58} + 55 q^{60} - 74 q^{63} - 84 q^{64} + 75 q^{66} - 88 q^{67} - 33 q^{69} + 20 q^{70} - 34 q^{72} + 84 q^{73} + 33 q^{75} + 18 q^{76} - 71 q^{78} + 20 q^{79} - 32 q^{81} - 6 q^{84} - 2 q^{85} + 3 q^{87} + 92 q^{88} - 76 q^{91} + 28 q^{93} + 30 q^{96} + 24 q^{97} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.667801 0.385555i −0.472207 0.272629i 0.244956 0.969534i \(-0.421226\pi\)
−0.717163 + 0.696905i \(0.754560\pi\)
\(3\) 1.00894 + 1.40785i 0.582511 + 0.812823i
\(4\) −0.702694 1.21710i −0.351347 0.608551i
\(5\) 0.907647 + 1.57209i 0.405912 + 0.703060i 0.994427 0.105426i \(-0.0336206\pi\)
−0.588515 + 0.808486i \(0.700287\pi\)
\(6\) −0.130967 1.32917i −0.0534669 0.542630i
\(7\) 1.94952 1.78868i 0.736848 0.676058i
\(8\) 2.62593i 0.928407i
\(9\) −0.964085 + 2.84087i −0.321362 + 0.946957i
\(10\) 1.39979i 0.442653i
\(11\) 0.582432i 0.175610i 0.996138 + 0.0878049i \(0.0279852\pi\)
−0.996138 + 0.0878049i \(0.972015\pi\)
\(12\) 1.00452 2.21727i 0.289981 0.640071i
\(13\) 3.53127 0.728085i 0.979399 0.201935i
\(14\) −1.99153 + 0.442837i −0.532258 + 0.118353i
\(15\) −1.29751 + 2.86397i −0.335015 + 0.739475i
\(16\) −0.392948 + 0.680606i −0.0982370 + 0.170151i
\(17\) −0.479095 0.829817i −0.116198 0.201260i 0.802060 0.597243i \(-0.203737\pi\)
−0.918258 + 0.395983i \(0.870404\pi\)
\(18\) 1.73913 1.52543i 0.409917 0.359547i
\(19\) 1.92492i 0.441608i 0.975318 + 0.220804i \(0.0708681\pi\)
−0.975318 + 0.220804i \(0.929132\pi\)
\(20\) 1.27560 2.20940i 0.285232 0.494036i
\(21\) 4.48514 + 0.939958i 0.978738 + 0.205116i
\(22\) 0.224560 0.388949i 0.0478763 0.0829242i
\(23\) 7.56166 + 4.36573i 1.57672 + 0.910317i 0.995314 + 0.0967001i \(0.0308288\pi\)
0.581402 + 0.813617i \(0.302505\pi\)
\(24\) −3.69692 + 2.64940i −0.754630 + 0.540807i
\(25\) 0.852355 1.47632i 0.170471 0.295265i
\(26\) −2.63891 0.875284i −0.517532 0.171657i
\(27\) −4.97222 + 1.50898i −0.956904 + 0.290403i
\(28\) −3.54692 1.11587i −0.670306 0.210879i
\(29\) −4.26919 + 2.46482i −0.792769 + 0.457705i −0.840936 0.541134i \(-0.817995\pi\)
0.0481677 + 0.998839i \(0.484662\pi\)
\(30\) 1.97070 1.41230i 0.359798 0.257850i
\(31\) −2.83579 1.63724i −0.509322 0.294057i 0.223233 0.974765i \(-0.428339\pi\)
−0.732555 + 0.680708i \(0.761672\pi\)
\(32\) 5.07307 2.92894i 0.896800 0.517768i
\(33\) −0.819977 + 0.587638i −0.142740 + 0.102295i
\(34\) 0.738871i 0.126715i
\(35\) 4.58144 + 1.44133i 0.774405 + 0.243629i
\(36\) 4.13509 0.822874i 0.689181 0.137146i
\(37\) 0.899986 1.55882i 0.147957 0.256269i −0.782515 0.622631i \(-0.786064\pi\)
0.930472 + 0.366363i \(0.119397\pi\)
\(38\) 0.742164 1.28547i 0.120395 0.208530i
\(39\) 4.58787 + 4.23691i 0.734648 + 0.678449i
\(40\) −4.12820 + 2.38342i −0.652726 + 0.376851i
\(41\) −1.73088 2.99798i −0.270319 0.468205i 0.698625 0.715488i \(-0.253796\pi\)
−0.968943 + 0.247283i \(0.920462\pi\)
\(42\) −2.63278 2.35697i −0.406246 0.363689i
\(43\) −0.367529 + 0.636578i −0.0560476 + 0.0970772i −0.892688 0.450675i \(-0.851183\pi\)
0.836640 + 0.547753i \(0.184517\pi\)
\(44\) 0.708879 0.409272i 0.106868 0.0617000i
\(45\) −5.34115 + 1.06288i −0.796212 + 0.158445i
\(46\) −3.36646 5.83087i −0.496357 0.859715i
\(47\) −3.49201 6.04834i −0.509362 0.882241i −0.999941 0.0108447i \(-0.996548\pi\)
0.490579 0.871397i \(-0.336785\pi\)
\(48\) −1.35465 + 0.133478i −0.195527 + 0.0192659i
\(49\) 0.601235 6.97413i 0.0858907 0.996305i
\(50\) −1.13841 + 0.657260i −0.160995 + 0.0929506i
\(51\) 0.684881 1.51173i 0.0959025 0.211684i
\(52\) −3.36756 3.78630i −0.466997 0.525065i
\(53\) −5.08741 2.93722i −0.698810 0.403458i 0.108094 0.994141i \(-0.465525\pi\)
−0.806904 + 0.590683i \(0.798858\pi\)
\(54\) 3.90225 + 0.909369i 0.531029 + 0.123749i
\(55\) −0.915636 + 0.528642i −0.123464 + 0.0712821i
\(56\) 4.69695 + 5.11930i 0.627657 + 0.684095i
\(57\) −2.71000 + 1.94213i −0.358949 + 0.257241i
\(58\) 3.80129 0.499134
\(59\) −3.82837 6.63092i −0.498411 0.863273i 0.501587 0.865107i \(-0.332750\pi\)
−0.999998 + 0.00183405i \(0.999416\pi\)
\(60\) 4.39750 0.433299i 0.567715 0.0559386i
\(61\) 3.82987i 0.490365i 0.969477 + 0.245182i \(0.0788479\pi\)
−0.969477 + 0.245182i \(0.921152\pi\)
\(62\) 1.26249 + 2.18670i 0.160337 + 0.277712i
\(63\) 3.20191 + 7.26277i 0.403403 + 0.915022i
\(64\) −2.94528 −0.368159
\(65\) 4.34976 + 4.89064i 0.539522 + 0.606609i
\(66\) 0.774149 0.0762792i 0.0952911 0.00938931i
\(67\) −10.1565 −1.24081 −0.620405 0.784282i \(-0.713032\pi\)
−0.620405 + 0.784282i \(0.713032\pi\)
\(68\) −0.673315 + 1.16622i −0.0816515 + 0.141424i
\(69\) 1.48296 + 15.0504i 0.178528 + 1.81186i
\(70\) −2.50378 2.72892i −0.299259 0.326168i
\(71\) −9.73044 5.61787i −1.15479 0.666719i −0.204740 0.978816i \(-0.565635\pi\)
−0.950050 + 0.312098i \(0.898968\pi\)
\(72\) −7.45993 2.53162i −0.879161 0.298354i
\(73\) −7.30674 4.21855i −0.855189 0.493744i 0.00720927 0.999974i \(-0.497705\pi\)
−0.862398 + 0.506230i \(0.831039\pi\)
\(74\) −1.20202 + 0.693989i −0.139732 + 0.0806745i
\(75\) 2.93842 0.289531i 0.339299 0.0334321i
\(76\) 2.34283 1.35263i 0.268741 0.155158i
\(77\) 1.04179 + 1.13546i 0.118722 + 0.129398i
\(78\) −1.43022 4.59829i −0.161941 0.520654i
\(79\) 6.35477 + 11.0068i 0.714968 + 1.23836i 0.962972 + 0.269602i \(0.0868921\pi\)
−0.248004 + 0.968759i \(0.579775\pi\)
\(80\) −1.42663 −0.159502
\(81\) −7.14108 5.47768i −0.793454 0.608631i
\(82\) 2.66940i 0.294786i
\(83\) −7.45221 −0.817987 −0.408993 0.912537i \(-0.634120\pi\)
−0.408993 + 0.912537i \(0.634120\pi\)
\(84\) −2.00766 6.11938i −0.219053 0.667679i
\(85\) 0.869698 1.50636i 0.0943320 0.163388i
\(86\) 0.490872 0.283405i 0.0529321 0.0305603i
\(87\) −7.77745 3.52353i −0.833830 0.377762i
\(88\) −1.52943 −0.163037
\(89\) 3.53452 6.12198i 0.374659 0.648928i −0.615617 0.788045i \(-0.711093\pi\)
0.990276 + 0.139117i \(0.0444265\pi\)
\(90\) 3.97662 + 1.34952i 0.419173 + 0.142252i
\(91\) 5.58197 7.73574i 0.585149 0.810926i
\(92\) 12.2711i 1.27935i
\(93\) −0.556143 5.64424i −0.0576694 0.585280i
\(94\) 5.38545i 0.555467i
\(95\) −3.02615 + 1.74715i −0.310477 + 0.179254i
\(96\) 9.24192 + 4.18700i 0.943249 + 0.427334i
\(97\) 7.89537 + 4.55839i 0.801653 + 0.462835i 0.844049 0.536266i \(-0.180166\pi\)
−0.0423956 + 0.999101i \(0.513499\pi\)
\(98\) −3.09042 + 4.42552i −0.312179 + 0.447045i
\(99\) −1.65461 0.561514i −0.166295 0.0564343i
\(100\) −2.39578 −0.239578
\(101\) −4.25938 −0.423824 −0.211912 0.977289i \(-0.567969\pi\)
−0.211912 + 0.977289i \(0.567969\pi\)
\(102\) −1.04022 + 0.745475i −0.102997 + 0.0738131i
\(103\) −1.48182 + 0.855530i −0.146008 + 0.0842979i −0.571224 0.820794i \(-0.693531\pi\)
0.425216 + 0.905092i \(0.360198\pi\)
\(104\) 1.91190 + 9.27288i 0.187477 + 0.909281i
\(105\) 2.59322 + 7.90419i 0.253073 + 0.771370i
\(106\) 2.26492 + 3.92296i 0.219988 + 0.381031i
\(107\) −15.8763 9.16617i −1.53482 0.886127i −0.999130 0.0417114i \(-0.986719\pi\)
−0.535688 0.844416i \(-0.679948\pi\)
\(108\) 5.33053 + 4.99135i 0.512931 + 0.480293i
\(109\) 7.69087 13.3210i 0.736651 1.27592i −0.217344 0.976095i \(-0.569739\pi\)
0.953995 0.299822i \(-0.0969275\pi\)
\(110\) 0.815283 0.0777342
\(111\) 3.10262 0.305710i 0.294488 0.0290167i
\(112\) 0.451328 + 2.02971i 0.0426465 + 0.191790i
\(113\) 13.4652 + 7.77412i 1.26670 + 0.731328i 0.974362 0.224988i \(-0.0722343\pi\)
0.292335 + 0.956316i \(0.405568\pi\)
\(114\) 2.55854 0.252101i 0.239629 0.0236114i
\(115\) 15.8501i 1.47803i
\(116\) 5.99987 + 3.46403i 0.557074 + 0.321627i
\(117\) −1.33605 + 10.7338i −0.123518 + 0.992342i
\(118\) 5.90419i 0.543524i
\(119\) −2.41828 0.760794i −0.221684 0.0697419i
\(120\) −7.52059 3.40716i −0.686533 0.311030i
\(121\) 10.6608 0.969161
\(122\) 1.47663 2.55759i 0.133688 0.231554i
\(123\) 2.47435 5.46160i 0.223104 0.492456i
\(124\) 4.60192i 0.413265i
\(125\) 12.1710 1.08861
\(126\) 0.661956 6.08460i 0.0589717 0.542059i
\(127\) 3.36330 + 5.82541i 0.298445 + 0.516922i 0.975780 0.218753i \(-0.0701988\pi\)
−0.677336 + 0.735674i \(0.736865\pi\)
\(128\) −8.17928 4.72231i −0.722953 0.417397i
\(129\) −1.26702 + 0.124843i −0.111555 + 0.0109918i
\(130\) −1.01917 4.94305i −0.0893869 0.433534i
\(131\) 8.45044 + 14.6366i 0.738318 + 1.27880i 0.953252 + 0.302176i \(0.0977131\pi\)
−0.214934 + 0.976629i \(0.568954\pi\)
\(132\) 1.29141 + 0.585066i 0.112403 + 0.0509235i
\(133\) 3.44308 + 3.75267i 0.298553 + 0.325398i
\(134\) 6.78250 + 3.91588i 0.585919 + 0.338280i
\(135\) −6.88527 6.44716i −0.592590 0.554883i
\(136\) 2.17904 1.25807i 0.186851 0.107879i
\(137\) 11.9707 6.91127i 1.02272 0.590470i 0.107832 0.994169i \(-0.465609\pi\)
0.914892 + 0.403699i \(0.132276\pi\)
\(138\) 4.81245 10.6225i 0.409663 0.904244i
\(139\) −6.06889 3.50387i −0.514756 0.297195i 0.220030 0.975493i \(-0.429384\pi\)
−0.734787 + 0.678298i \(0.762718\pi\)
\(140\) −1.46511 6.58890i −0.123825 0.556863i
\(141\) 4.99193 11.0186i 0.420397 0.927937i
\(142\) 4.33200 + 7.50324i 0.363533 + 0.629658i
\(143\) 0.424060 + 2.05673i 0.0354617 + 0.171992i
\(144\) −1.55468 1.77248i −0.129556 0.147706i
\(145\) −7.74983 4.47437i −0.643588 0.371576i
\(146\) 3.25297 + 5.63430i 0.269217 + 0.466298i
\(147\) 10.4251 6.19002i 0.859851 0.510545i
\(148\) −2.52966 −0.207937
\(149\) 23.0231i 1.88612i 0.332617 + 0.943062i \(0.392068\pi\)
−0.332617 + 0.943062i \(0.607932\pi\)
\(150\) −2.07391 0.939572i −0.169334 0.0767157i
\(151\) 6.63079 11.4849i 0.539606 0.934624i −0.459319 0.888271i \(-0.651907\pi\)
0.998925 0.0463533i \(-0.0147600\pi\)
\(152\) −5.05472 −0.409992
\(153\) 2.81929 0.561033i 0.227926 0.0453569i
\(154\) −0.257923 1.15993i −0.0207840 0.0934697i
\(155\) 5.94415i 0.477445i
\(156\) 1.93288 8.56117i 0.154754 0.685442i
\(157\) 16.2821 + 9.40048i 1.29945 + 0.750240i 0.980310 0.197466i \(-0.0632714\pi\)
0.319144 + 0.947706i \(0.396605\pi\)
\(158\) 9.80046i 0.779683i
\(159\) −0.997724 10.1258i −0.0791246 0.803027i
\(160\) 9.20910 + 5.31688i 0.728044 + 0.420336i
\(161\) 22.5505 5.01434i 1.77723 0.395186i
\(162\) 2.65688 + 6.41128i 0.208744 + 0.503718i
\(163\) −5.33633 −0.417973 −0.208987 0.977918i \(-0.567017\pi\)
−0.208987 + 0.977918i \(0.567017\pi\)
\(164\) −2.43256 + 4.21332i −0.189951 + 0.329005i
\(165\) −1.66807 0.755710i −0.129859 0.0588319i
\(166\) 4.97660 + 2.87324i 0.386259 + 0.223007i
\(167\) −3.96880 6.87417i −0.307115 0.531939i 0.670615 0.741806i \(-0.266030\pi\)
−0.977730 + 0.209867i \(0.932697\pi\)
\(168\) −2.46826 + 11.7777i −0.190431 + 0.908667i
\(169\) 11.9398 5.14214i 0.918445 0.395549i
\(170\) −1.16157 + 0.670633i −0.0890884 + 0.0514352i
\(171\) −5.46846 1.85579i −0.418183 0.141916i
\(172\) 1.03304 0.0787686
\(173\) −18.6622 −1.41886 −0.709430 0.704776i \(-0.751048\pi\)
−0.709430 + 0.704776i \(0.751048\pi\)
\(174\) 3.83527 + 5.35165i 0.290751 + 0.405708i
\(175\) −0.978990 4.40271i −0.0740047 0.332813i
\(176\) −0.396407 0.228865i −0.0298803 0.0172514i
\(177\) 5.47276 12.0800i 0.411358 0.907986i
\(178\) −4.72072 + 2.72551i −0.353833 + 0.204285i
\(179\) 11.9693i 0.894629i 0.894377 + 0.447315i \(0.147620\pi\)
−0.894377 + 0.447315i \(0.852380\pi\)
\(180\) 5.04683 + 5.75385i 0.376168 + 0.428867i
\(181\) 25.7422i 1.91340i −0.291075 0.956700i \(-0.594013\pi\)
0.291075 0.956700i \(-0.405987\pi\)
\(182\) −6.71020 + 3.01378i −0.497393 + 0.223396i
\(183\) −5.39189 + 3.86411i −0.398580 + 0.285643i
\(184\) −11.4641 + 19.8564i −0.845144 + 1.46383i
\(185\) 3.26748 0.240230
\(186\) −1.80477 + 3.98365i −0.132332 + 0.292096i
\(187\) 0.483312 0.279040i 0.0353433 0.0204055i
\(188\) −4.90764 + 8.50027i −0.357926 + 0.619946i
\(189\) −6.99435 + 11.8355i −0.508764 + 0.860906i
\(190\) 2.69449 0.195479
\(191\) 8.84553i 0.640040i −0.947411 0.320020i \(-0.896310\pi\)
0.947411 0.320020i \(-0.103690\pi\)
\(192\) −2.97160 4.14651i −0.214457 0.299248i
\(193\) −9.67676 −0.696548 −0.348274 0.937393i \(-0.613232\pi\)
−0.348274 + 0.937393i \(0.613232\pi\)
\(194\) −3.51502 6.08820i −0.252364 0.437107i
\(195\) −2.49664 + 11.0582i −0.178788 + 0.791892i
\(196\) −8.91072 + 4.16892i −0.636480 + 0.297780i
\(197\) −6.49684 + 3.75095i −0.462881 + 0.267244i −0.713255 0.700905i \(-0.752780\pi\)
0.250374 + 0.968149i \(0.419446\pi\)
\(198\) 0.888458 + 1.01292i 0.0631400 + 0.0719854i
\(199\) −10.2847 + 5.93785i −0.729060 + 0.420923i −0.818078 0.575107i \(-0.804960\pi\)
0.0890180 + 0.996030i \(0.471627\pi\)
\(200\) 3.87672 + 2.23823i 0.274126 + 0.158266i
\(201\) −10.2473 14.2988i −0.722786 1.00856i
\(202\) 2.84442 + 1.64223i 0.200133 + 0.115547i
\(203\) −3.91408 + 12.4414i −0.274715 + 0.873217i
\(204\) −2.32119 + 0.228714i −0.162516 + 0.0160132i
\(205\) 3.14206 5.44221i 0.219451 0.380100i
\(206\) 1.31942 0.0919281
\(207\) −19.6925 + 17.2728i −1.36873 + 1.20054i
\(208\) −0.892067 + 2.68950i −0.0618537 + 0.186484i
\(209\) −1.12114 −0.0775507
\(210\) 1.31574 6.27826i 0.0907950 0.433241i
\(211\) 10.9251 + 18.9229i 0.752118 + 1.30271i 0.946794 + 0.321839i \(0.104301\pi\)
−0.194677 + 0.980867i \(0.562366\pi\)
\(212\) 8.25587i 0.567015i
\(213\) −1.90830 19.3671i −0.130754 1.32701i
\(214\) 7.06813 + 12.2424i 0.483167 + 0.836871i
\(215\) −1.33434 −0.0910015
\(216\) −3.96247 13.0567i −0.269612 0.888396i
\(217\) −8.45692 + 1.88049i −0.574093 + 0.127656i
\(218\) −10.2719 + 5.93051i −0.695703 + 0.401665i
\(219\) −1.43297 14.5430i −0.0968311 0.982728i
\(220\) 1.28682 + 0.742948i 0.0867577 + 0.0500896i
\(221\) −2.29599 2.58149i −0.154445 0.173650i
\(222\) −2.18980 0.992077i −0.146970 0.0665838i
\(223\) −24.0650 + 13.8939i −1.61151 + 0.930405i −0.622488 + 0.782629i \(0.713878\pi\)
−0.989021 + 0.147776i \(0.952788\pi\)
\(224\) 4.65110 14.7841i 0.310764 0.987805i
\(225\) 3.37230 + 3.84473i 0.224820 + 0.256315i
\(226\) −5.99471 10.3831i −0.398762 0.690676i
\(227\) 10.1042 + 17.5010i 0.670641 + 1.16158i 0.977723 + 0.209901i \(0.0673143\pi\)
−0.307081 + 0.951683i \(0.599352\pi\)
\(228\) 4.26808 + 1.93363i 0.282660 + 0.128058i
\(229\) −20.9871 + 12.1169i −1.38687 + 0.800710i −0.992961 0.118440i \(-0.962211\pi\)
−0.393909 + 0.919150i \(0.628877\pi\)
\(230\) 6.11111 10.5847i 0.402954 0.697937i
\(231\) −0.547461 + 2.61229i −0.0360203 + 0.171876i
\(232\) −6.47244 11.2106i −0.424937 0.736012i
\(233\) 1.70972 0.987109i 0.112008 0.0646676i −0.442950 0.896547i \(-0.646068\pi\)
0.554957 + 0.831879i \(0.312735\pi\)
\(234\) 5.03070 6.65294i 0.328867 0.434916i
\(235\) 6.33903 10.9795i 0.413512 0.716225i
\(236\) −5.38034 + 9.31903i −0.350231 + 0.606617i
\(237\) −9.08434 + 20.0518i −0.590091 + 1.30250i
\(238\) 1.32160 + 1.44044i 0.0856669 + 0.0933699i
\(239\) 15.2639i 0.987340i −0.869649 0.493670i \(-0.835655\pi\)
0.869649 0.493670i \(-0.164345\pi\)
\(240\) −1.43938 2.00848i −0.0929118 0.129647i
\(241\) 6.69319 3.86431i 0.431146 0.248922i −0.268689 0.963227i \(-0.586590\pi\)
0.699835 + 0.714305i \(0.253257\pi\)
\(242\) −7.11928 4.11032i −0.457644 0.264221i
\(243\) 0.506834 15.5802i 0.0325134 0.999471i
\(244\) 4.66135 2.69123i 0.298412 0.172288i
\(245\) 11.5097 5.38485i 0.735326 0.344026i
\(246\) −3.75812 + 2.69326i −0.239609 + 0.171716i
\(247\) 1.40151 + 6.79743i 0.0891759 + 0.432510i
\(248\) 4.29928 7.44657i 0.273005 0.472858i
\(249\) −7.51883 10.4916i −0.476486 0.664878i
\(250\) −8.12782 4.69260i −0.514048 0.296786i
\(251\) 3.19849 5.53994i 0.201887 0.349678i −0.747250 0.664543i \(-0.768626\pi\)
0.949136 + 0.314866i \(0.101959\pi\)
\(252\) 6.58956 9.00056i 0.415103 0.566982i
\(253\) −2.54274 + 4.40415i −0.159861 + 0.276887i
\(254\) 5.18695i 0.325458i
\(255\) 2.99820 0.295422i 0.187755 0.0185000i
\(256\) 6.58669 + 11.4085i 0.411668 + 0.713031i
\(257\) 5.95060 10.3067i 0.371188 0.642917i −0.618560 0.785737i \(-0.712284\pi\)
0.989749 + 0.142820i \(0.0456172\pi\)
\(258\) 0.894252 + 0.405136i 0.0556737 + 0.0252226i
\(259\) −1.03370 4.64874i −0.0642308 0.288859i
\(260\) 2.89585 8.73073i 0.179593 0.541457i
\(261\) −2.88637 14.5045i −0.178662 0.897806i
\(262\) 13.0324i 0.805147i
\(263\) 3.25780i 0.200884i −0.994943 0.100442i \(-0.967974\pi\)
0.994943 0.100442i \(-0.0320257\pi\)
\(264\) −1.54310 2.15320i −0.0949711 0.132520i
\(265\) 10.6638i 0.655074i
\(266\) −0.852428 3.83353i −0.0522657 0.235049i
\(267\) 12.1849 1.20062i 0.745707 0.0734767i
\(268\) 7.13689 + 12.3615i 0.435955 + 0.755096i
\(269\) −12.4166 21.5061i −0.757052 1.31125i −0.944348 0.328949i \(-0.893305\pi\)
0.187295 0.982304i \(-0.440028\pi\)
\(270\) 2.11225 + 6.96007i 0.128548 + 0.423577i
\(271\) −3.05408 1.76328i −0.185522 0.107111i 0.404362 0.914599i \(-0.367493\pi\)
−0.589885 + 0.807487i \(0.700827\pi\)
\(272\) 0.753038 0.0456596
\(273\) 16.5226 + 0.0536826i 0.999995 + 0.00324902i
\(274\) −10.6587 −0.643916
\(275\) 0.859857 + 0.496439i 0.0518514 + 0.0299364i
\(276\) 17.2759 12.3808i 1.03988 0.745235i
\(277\) 9.85684 + 17.0726i 0.592240 + 1.02579i 0.993930 + 0.110014i \(0.0350897\pi\)
−0.401690 + 0.915776i \(0.631577\pi\)
\(278\) 2.70187 + 4.67978i 0.162048 + 0.280675i
\(279\) 7.38513 6.47766i 0.442136 0.387807i
\(280\) −3.78482 + 12.0305i −0.226186 + 0.718963i
\(281\) 7.26918i 0.433643i 0.976211 + 0.216822i \(0.0695690\pi\)
−0.976211 + 0.216822i \(0.930431\pi\)
\(282\) −7.58191 + 5.43359i −0.451496 + 0.323566i
\(283\) 7.65355i 0.454956i 0.973783 + 0.227478i \(0.0730480\pi\)
−0.973783 + 0.227478i \(0.926952\pi\)
\(284\) 15.7906i 0.936999i
\(285\) −5.51293 2.49760i −0.326558 0.147945i
\(286\) 0.509794 1.53698i 0.0301447 0.0908837i
\(287\) −8.73681 2.74861i −0.515718 0.162245i
\(288\) 3.42986 + 17.2357i 0.202107 + 1.01562i
\(289\) 8.04094 13.9273i 0.472996 0.819253i
\(290\) 3.45023 + 5.97597i 0.202605 + 0.350921i
\(291\) 1.54841 + 15.7146i 0.0907694 + 0.921208i
\(292\) 11.8574i 0.693902i
\(293\) 1.60733 2.78398i 0.0939012 0.162642i −0.815248 0.579112i \(-0.803400\pi\)
0.909149 + 0.416470i \(0.136733\pi\)
\(294\) −9.34852 + 0.114238i −0.545217 + 0.00666248i
\(295\) 6.94961 12.0371i 0.404622 0.700825i
\(296\) 4.09336 + 2.36330i 0.237922 + 0.137364i
\(297\) −0.878877 2.89598i −0.0509976 0.168042i
\(298\) 8.87667 15.3748i 0.514211 0.890640i
\(299\) 29.8809 + 9.91104i 1.72806 + 0.573170i
\(300\) −2.41720 3.37290i −0.139557 0.194735i
\(301\) 0.422132 + 1.89841i 0.0243313 + 0.109423i
\(302\) −8.85609 + 5.11307i −0.509611 + 0.294224i
\(303\) −4.29745 5.99657i −0.246882 0.344494i
\(304\) −1.31011 0.756395i −0.0751402 0.0433822i
\(305\) −6.02090 + 3.47617i −0.344756 + 0.199045i
\(306\) −2.09904 0.712334i −0.119994 0.0407214i
\(307\) 0.411157i 0.0234660i 0.999931 + 0.0117330i \(0.00373481\pi\)
−0.999931 + 0.0117330i \(0.996265\pi\)
\(308\) 0.649916 2.06584i 0.0370324 0.117712i
\(309\) −2.69953 1.22301i −0.153571 0.0695743i
\(310\) −2.29180 + 3.96951i −0.130165 + 0.225453i
\(311\) −6.37864 + 11.0481i −0.361700 + 0.626482i −0.988241 0.152906i \(-0.951137\pi\)
0.626541 + 0.779388i \(0.284470\pi\)
\(312\) −11.1258 + 12.0474i −0.629876 + 0.682052i
\(313\) −16.6392 + 9.60667i −0.940505 + 0.543001i −0.890119 0.455729i \(-0.849379\pi\)
−0.0503864 + 0.998730i \(0.516045\pi\)
\(314\) −7.24881 12.5553i −0.409074 0.708537i
\(315\) −8.51152 + 11.6257i −0.479570 + 0.655035i
\(316\) 8.93093 15.4688i 0.502404 0.870189i
\(317\) 10.7952 6.23260i 0.606318 0.350058i −0.165205 0.986259i \(-0.552829\pi\)
0.771523 + 0.636201i \(0.219495\pi\)
\(318\) −3.23777 + 7.14669i −0.181565 + 0.400766i
\(319\) −1.43559 2.48651i −0.0803775 0.139218i
\(320\) −2.67327 4.63024i −0.149440 0.258838i
\(321\) −3.11360 31.5995i −0.173784 1.76371i
\(322\) −16.9925 5.34587i −0.946957 0.297914i
\(323\) 1.59734 0.922222i 0.0888781 0.0513138i
\(324\) −1.64890 + 12.5406i −0.0916053 + 0.696698i
\(325\) 1.93501 5.83389i 0.107335 0.323606i
\(326\) 3.56360 + 2.05745i 0.197370 + 0.113952i
\(327\) 26.5135 2.61246i 1.46620 0.144469i
\(328\) 7.87248 4.54518i 0.434685 0.250965i
\(329\) −17.6263 5.54525i −0.971769 0.305720i
\(330\) 0.822571 + 1.14780i 0.0452810 + 0.0631841i
\(331\) 5.59840 0.307716 0.153858 0.988093i \(-0.450830\pi\)
0.153858 + 0.988093i \(0.450830\pi\)
\(332\) 5.23663 + 9.07011i 0.287397 + 0.497787i
\(333\) 3.56075 + 4.05958i 0.195128 + 0.222464i
\(334\) 6.12077i 0.334914i
\(335\) −9.21848 15.9669i −0.503660 0.872364i
\(336\) −2.40217 + 2.68326i −0.131049 + 0.146384i
\(337\) −2.46442 −0.134246 −0.0671229 0.997745i \(-0.521382\pi\)
−0.0671229 + 0.997745i \(0.521382\pi\)
\(338\) −9.95598 1.16952i −0.541534 0.0636135i
\(339\) 2.64074 + 26.8006i 0.143425 + 1.45561i
\(340\) −2.44453 −0.132573
\(341\) 0.953582 1.65165i 0.0516393 0.0894420i
\(342\) 2.93633 + 3.34769i 0.158779 + 0.181022i
\(343\) −11.3024 14.6716i −0.610271 0.792192i
\(344\) −1.67161 0.965104i −0.0901272 0.0520349i
\(345\) −22.3146 + 15.9918i −1.20138 + 0.860971i
\(346\) 12.4626 + 7.19531i 0.669995 + 0.386822i
\(347\) −22.2903 + 12.8693i −1.19661 + 0.690861i −0.959797 0.280695i \(-0.909435\pi\)
−0.236810 + 0.971556i \(0.576102\pi\)
\(348\) 1.17667 + 11.9419i 0.0630762 + 0.640154i
\(349\) −16.4024 + 9.46994i −0.878001 + 0.506914i −0.869999 0.493054i \(-0.835881\pi\)
−0.00800232 + 0.999968i \(0.502547\pi\)
\(350\) −1.04372 + 3.31759i −0.0557890 + 0.177333i
\(351\) −16.4596 + 8.94881i −0.878549 + 0.477652i
\(352\) 1.70591 + 2.95472i 0.0909251 + 0.157487i
\(353\) 29.4551 1.56774 0.783869 0.620927i \(-0.213243\pi\)
0.783869 + 0.620927i \(0.213243\pi\)
\(354\) −8.31221 + 5.95696i −0.441789 + 0.316609i
\(355\) 20.3962i 1.08252i
\(356\) −9.93476 −0.526541
\(357\) −1.36882 4.17218i −0.0724454 0.220815i
\(358\) 4.61483 7.99313i 0.243902 0.422450i
\(359\) 15.2203 8.78743i 0.803295 0.463783i −0.0413270 0.999146i \(-0.513159\pi\)
0.844622 + 0.535363i \(0.179825\pi\)
\(360\) −2.79104 14.0255i −0.147101 0.739208i
\(361\) 15.2947 0.804983
\(362\) −9.92503 + 17.1906i −0.521648 + 0.903520i
\(363\) 10.7561 + 15.0088i 0.564547 + 0.787756i
\(364\) −13.3376 1.35796i −0.699080 0.0711766i
\(365\) 15.3158i 0.801666i
\(366\) 5.09053 0.501585i 0.266086 0.0262183i
\(367\) 0.747560i 0.0390223i 0.999810 + 0.0195112i \(0.00621099\pi\)
−0.999810 + 0.0195112i \(0.993789\pi\)
\(368\) −5.94268 + 3.43101i −0.309783 + 0.178854i
\(369\) 10.1856 2.02691i 0.530240 0.105517i
\(370\) −2.18203 1.25979i −0.113438 0.0654935i
\(371\) −15.1717 + 3.37360i −0.787678 + 0.175149i
\(372\) −6.47882 + 4.64306i −0.335911 + 0.240731i
\(373\) 30.7769 1.59356 0.796782 0.604266i \(-0.206534\pi\)
0.796782 + 0.604266i \(0.206534\pi\)
\(374\) −0.430342 −0.0222525
\(375\) 12.2798 + 17.1350i 0.634127 + 0.884846i
\(376\) 15.8825 9.16978i 0.819079 0.472895i
\(377\) −13.2811 + 11.8123i −0.684010 + 0.608363i
\(378\) 9.23407 5.20705i 0.474949 0.267822i
\(379\) 4.18402 + 7.24693i 0.214918 + 0.372250i 0.953247 0.302191i \(-0.0977181\pi\)
−0.738329 + 0.674441i \(0.764385\pi\)
\(380\) 4.25292 + 2.45543i 0.218170 + 0.125961i
\(381\) −4.80794 + 10.6125i −0.246318 + 0.543695i
\(382\) −3.41044 + 5.90706i −0.174493 + 0.302231i
\(383\) 17.7810 0.908568 0.454284 0.890857i \(-0.349895\pi\)
0.454284 + 0.890857i \(0.349895\pi\)
\(384\) −1.60409 16.2797i −0.0818583 0.830771i
\(385\) −0.839474 + 2.66838i −0.0427836 + 0.135993i
\(386\) 6.46215 + 3.73092i 0.328915 + 0.189899i
\(387\) −1.45411 1.65782i −0.0739164 0.0842715i
\(388\) 12.8126i 0.650463i
\(389\) −3.30858 1.91021i −0.167752 0.0968516i 0.413773 0.910380i \(-0.364211\pi\)
−0.581525 + 0.813528i \(0.697544\pi\)
\(390\) 5.93079 6.42207i 0.300317 0.325194i
\(391\) 8.36640i 0.423107i
\(392\) 18.3136 + 1.57880i 0.924976 + 0.0797415i
\(393\) −12.0802 + 26.6644i −0.609363 + 1.34504i
\(394\) 5.78480 0.291434
\(395\) −11.5358 + 19.9806i −0.580428 + 1.00533i
\(396\) 0.479268 + 2.40841i 0.0240841 + 0.121027i
\(397\) 1.33365i 0.0669341i −0.999440 0.0334670i \(-0.989345\pi\)
0.999440 0.0334670i \(-0.0106549\pi\)
\(398\) 9.15748 0.459023
\(399\) −1.80935 + 8.63355i −0.0905806 + 0.432218i
\(400\) 0.669862 + 1.16024i 0.0334931 + 0.0580118i
\(401\) −3.52277 2.03387i −0.175919 0.101567i 0.409455 0.912330i \(-0.365719\pi\)
−0.585374 + 0.810764i \(0.699052\pi\)
\(402\) 1.33016 + 13.4996i 0.0663423 + 0.673300i
\(403\) −11.2060 3.71685i −0.558210 0.185150i
\(404\) 2.99304 + 5.18410i 0.148909 + 0.257919i
\(405\) 2.12982 16.1982i 0.105832 0.804896i
\(406\) 7.41069 6.79930i 0.367786 0.337444i
\(407\) 0.907908 + 0.524181i 0.0450033 + 0.0259827i
\(408\) 3.96970 + 1.79845i 0.196529 + 0.0890365i
\(409\) 26.0937 15.0652i 1.29025 0.744928i 0.311554 0.950229i \(-0.399151\pi\)
0.978699 + 0.205301i \(0.0658172\pi\)
\(410\) −4.19654 + 2.42287i −0.207252 + 0.119657i
\(411\) 21.8077 + 9.87986i 1.07570 + 0.487338i
\(412\) 2.08254 + 1.20235i 0.102599 + 0.0592357i
\(413\) −19.3241 6.07937i −0.950876 0.299146i
\(414\) 19.8103 3.94221i 0.973623 0.193749i
\(415\) −6.76398 11.7155i −0.332030 0.575094i
\(416\) 15.7819 14.0365i 0.773770 0.688196i
\(417\) −1.19021 12.0793i −0.0582847 0.591525i
\(418\) 0.748697 + 0.432260i 0.0366199 + 0.0211425i
\(419\) 2.07087 + 3.58686i 0.101169 + 0.175229i 0.912166 0.409820i \(-0.134408\pi\)
−0.810998 + 0.585049i \(0.801075\pi\)
\(420\) 7.79797 8.71045i 0.380502 0.425027i
\(421\) 15.5075 0.755792 0.377896 0.925848i \(-0.376648\pi\)
0.377896 + 0.925848i \(0.376648\pi\)
\(422\) 16.8490i 0.820196i
\(423\) 20.5491 4.08924i 0.999134 0.198826i
\(424\) 7.71293 13.3592i 0.374573 0.648780i
\(425\) −1.63344 −0.0792334
\(426\) −6.19272 + 13.6691i −0.300038 + 0.662271i
\(427\) 6.85042 + 7.46640i 0.331515 + 0.361325i
\(428\) 25.7641i 1.24535i
\(429\) −2.46771 + 2.67212i −0.119142 + 0.129011i
\(430\) 0.891076 + 0.514463i 0.0429715 + 0.0248096i
\(431\) 7.98464i 0.384607i 0.981336 + 0.192303i \(0.0615957\pi\)
−0.981336 + 0.192303i \(0.938404\pi\)
\(432\) 0.926805 3.97707i 0.0445909 0.191347i
\(433\) −27.4285 15.8358i −1.31813 0.761022i −0.334701 0.942324i \(-0.608635\pi\)
−0.983427 + 0.181302i \(0.941969\pi\)
\(434\) 6.37257 + 2.00482i 0.305893 + 0.0962342i
\(435\) −1.51987 15.4250i −0.0728721 0.739570i
\(436\) −21.6173 −1.03528
\(437\) −8.40369 + 14.5556i −0.402003 + 0.696290i
\(438\) −4.65021 + 10.2644i −0.222196 + 0.490450i
\(439\) −26.6894 15.4091i −1.27381 0.735437i −0.298111 0.954531i \(-0.596357\pi\)
−0.975704 + 0.219094i \(0.929690\pi\)
\(440\) −1.38818 2.40440i −0.0661788 0.114625i
\(441\) 19.2330 + 8.43168i 0.915855 + 0.401509i
\(442\) 0.537961 + 2.60915i 0.0255882 + 0.124105i
\(443\) 6.41453 3.70343i 0.304763 0.175955i −0.339817 0.940491i \(-0.610365\pi\)
0.644581 + 0.764536i \(0.277032\pi\)
\(444\) −2.55227 3.56138i −0.121126 0.169016i
\(445\) 12.8324 0.608314
\(446\) 21.4275 1.01462
\(447\) −32.4130 + 23.2289i −1.53308 + 1.09869i
\(448\) −5.74186 + 5.26816i −0.271278 + 0.248897i
\(449\) 15.2937 + 8.82982i 0.721754 + 0.416705i 0.815398 0.578901i \(-0.196518\pi\)
−0.0936437 + 0.995606i \(0.529851\pi\)
\(450\) −0.769669 3.86772i −0.0362825 0.182326i
\(451\) 1.74612 1.00812i 0.0822215 0.0474706i
\(452\) 21.8513i 1.02780i
\(453\) 22.8590 2.25237i 1.07401 0.105825i
\(454\) 15.5830i 0.731344i
\(455\) 17.2277 + 1.75403i 0.807648 + 0.0822304i
\(456\) −5.09990 7.11628i −0.238825 0.333250i
\(457\) 0.815642 1.41273i 0.0381541 0.0660849i −0.846318 0.532678i \(-0.821186\pi\)
0.884472 + 0.466593i \(0.154519\pi\)
\(458\) 18.6870 0.873186
\(459\) 3.63434 + 3.40309i 0.169637 + 0.158843i
\(460\) 19.2913 11.1378i 0.899459 0.519303i
\(461\) 4.15756 7.20111i 0.193637 0.335389i −0.752816 0.658231i \(-0.771305\pi\)
0.946453 + 0.322842i \(0.104638\pi\)
\(462\) 1.37278 1.53341i 0.0638674 0.0713408i
\(463\) −33.1765 −1.54184 −0.770922 0.636930i \(-0.780204\pi\)
−0.770922 + 0.636930i \(0.780204\pi\)
\(464\) 3.87418i 0.179854i
\(465\) 8.36847 5.99728i 0.388078 0.278117i
\(466\) −1.52234 −0.0705210
\(467\) −13.1401 22.7593i −0.608050 1.05317i −0.991562 0.129637i \(-0.958619\pi\)
0.383512 0.923536i \(-0.374714\pi\)
\(468\) 14.0030 5.91649i 0.647289 0.273490i
\(469\) −19.8002 + 18.1667i −0.914289 + 0.838860i
\(470\) −8.46642 + 4.88809i −0.390527 + 0.225471i
\(471\) 3.19318 + 32.4073i 0.147134 + 1.49325i
\(472\) 17.4123 10.0530i 0.801468 0.462728i
\(473\) −0.370763 0.214060i −0.0170477 0.00984251i
\(474\) 13.7976 9.88807i 0.633744 0.454174i
\(475\) 2.84181 + 1.64072i 0.130391 + 0.0752813i
\(476\) 0.773350 + 3.47791i 0.0354464 + 0.159410i
\(477\) 13.2489 11.6209i 0.606628 0.532087i
\(478\) −5.88508 + 10.1932i −0.269177 + 0.466228i
\(479\) −33.6107 −1.53571 −0.767857 0.640621i \(-0.778677\pi\)
−0.767857 + 0.640621i \(0.778677\pi\)
\(480\) 1.80605 + 18.3294i 0.0824347 + 0.836621i
\(481\) 2.04314 6.15989i 0.0931592 0.280867i
\(482\) −5.95962 −0.271453
\(483\) 29.8115 + 26.6885i 1.35647 + 1.21437i
\(484\) −7.49127 12.9753i −0.340512 0.589784i
\(485\) 16.5496i 0.751481i
\(486\) −6.34550 + 10.2091i −0.287838 + 0.463093i
\(487\) 6.04322 + 10.4672i 0.273844 + 0.474312i 0.969843 0.243731i \(-0.0783713\pi\)
−0.695999 + 0.718043i \(0.745038\pi\)
\(488\) −10.0570 −0.455258
\(489\) −5.38403 7.51275i −0.243474 0.339738i
\(490\) −9.76233 0.841603i −0.441017 0.0380198i
\(491\) −0.903219 + 0.521474i −0.0407617 + 0.0235338i −0.520242 0.854019i \(-0.674158\pi\)
0.479481 + 0.877552i \(0.340825\pi\)
\(492\) −8.38604 + 0.826301i −0.378072 + 0.0372525i
\(493\) 4.09070 + 2.36177i 0.184236 + 0.106369i
\(494\) 1.68486 5.07969i 0.0758052 0.228546i
\(495\) −0.619054 3.11086i −0.0278244 0.139823i
\(496\) 2.22863 1.28670i 0.100069 0.0577746i
\(497\) −29.0182 + 6.45252i −1.30165 + 0.289435i
\(498\) 0.975991 + 9.90522i 0.0437352 + 0.443864i
\(499\) 8.90725 + 15.4278i 0.398743 + 0.690643i 0.993571 0.113210i \(-0.0361132\pi\)
−0.594828 + 0.803853i \(0.702780\pi\)
\(500\) −8.55251 14.8134i −0.382480 0.662474i
\(501\) 5.67352 12.5231i 0.253474 0.559491i
\(502\) −4.27190 + 2.46639i −0.190664 + 0.110080i
\(503\) −9.42384 + 16.3226i −0.420188 + 0.727787i −0.995958 0.0898249i \(-0.971369\pi\)
0.575769 + 0.817612i \(0.304703\pi\)
\(504\) −19.0715 + 8.40800i −0.849513 + 0.374522i
\(505\) −3.86601 6.69613i −0.172035 0.297974i
\(506\) 3.39609 1.96073i 0.150975 0.0871652i
\(507\) 19.2859 + 11.6213i 0.856516 + 0.516121i
\(508\) 4.72675 8.18697i 0.209715 0.363238i
\(509\) 9.26456 16.0467i 0.410644 0.711257i −0.584316 0.811526i \(-0.698637\pi\)
0.994960 + 0.100269i \(0.0319705\pi\)
\(510\) −2.11611 0.958690i −0.0937027 0.0424515i
\(511\) −21.7902 + 4.84530i −0.963944 + 0.214343i
\(512\) 8.73109i 0.385863i
\(513\) −2.90467 9.57115i −0.128244 0.422576i
\(514\) −7.94763 + 4.58857i −0.350555 + 0.202393i
\(515\) −2.68994 1.55304i −0.118533 0.0684350i
\(516\) 1.04228 + 1.45437i 0.0458836 + 0.0640249i
\(517\) 3.52275 2.03386i 0.154930 0.0894491i
\(518\) −1.10204 + 3.50298i −0.0484209 + 0.153912i
\(519\) −18.8290 26.2736i −0.826502 1.15328i
\(520\) −12.8425 + 11.4222i −0.563180 + 0.500896i
\(521\) −15.3273 + 26.5477i −0.671502 + 1.16307i 0.305977 + 0.952039i \(0.401017\pi\)
−0.977478 + 0.211036i \(0.932316\pi\)
\(522\) −3.66477 + 10.7990i −0.160403 + 0.472658i
\(523\) −4.24906 2.45319i −0.185798 0.107271i 0.404216 0.914664i \(-0.367544\pi\)
−0.590014 + 0.807393i \(0.700878\pi\)
\(524\) 11.8762 20.5701i 0.518812 0.898609i
\(525\) 5.21061 5.82034i 0.227410 0.254020i
\(526\) −1.25606 + 2.17556i −0.0547668 + 0.0948589i
\(527\) 3.13758i 0.136675i
\(528\) −0.0777417 0.788992i −0.00338328 0.0343365i
\(529\) 26.6191 + 46.1057i 1.15735 + 2.00460i
\(530\) −4.11149 + 7.12131i −0.178592 + 0.309330i
\(531\) 22.5285 4.48312i 0.977652 0.194551i
\(532\) 2.14796 6.82756i 0.0931257 0.296012i
\(533\) −8.29500 9.32645i −0.359297 0.403973i
\(534\) −8.60002 3.89619i −0.372159 0.168605i
\(535\) 33.2786i 1.43876i
\(536\) 26.6702i 1.15198i
\(537\) −16.8510 + 12.0763i −0.727175 + 0.521131i
\(538\) 19.1491i 0.825577i
\(539\) 4.06196 + 0.350178i 0.174961 + 0.0150833i
\(540\) −3.00862 + 12.9105i −0.129470 + 0.555578i
\(541\) −5.85957 10.1491i −0.251923 0.436343i 0.712132 0.702045i \(-0.247730\pi\)
−0.964055 + 0.265702i \(0.914396\pi\)
\(542\) 1.35968 + 2.35504i 0.0584033 + 0.101157i
\(543\) 36.2411 25.9723i 1.55526 1.11458i
\(544\) −4.86097 2.80648i −0.208412 0.120327i
\(545\) 27.9224 1.19606
\(546\) −11.0131 6.40623i −0.471318 0.274161i
\(547\) −18.8378 −0.805447 −0.402724 0.915322i \(-0.631936\pi\)
−0.402724 + 0.915322i \(0.631936\pi\)
\(548\) −16.8235 9.71302i −0.718662 0.414920i
\(549\) −10.8802 3.69232i −0.464354 0.157584i
\(550\) −0.382809 0.663045i −0.0163230 0.0282723i
\(551\) −4.74459 8.21786i −0.202126 0.350093i
\(552\) −39.5214 + 3.89416i −1.68214 + 0.165746i
\(553\) 32.0764 + 10.0913i 1.36403 + 0.429124i
\(554\) 15.2014i 0.645847i
\(555\) 3.29669 + 4.60012i 0.139936 + 0.195264i
\(556\) 9.84861i 0.417674i
\(557\) 18.1001i 0.766928i 0.923556 + 0.383464i \(0.125269\pi\)
−0.923556 + 0.383464i \(0.874731\pi\)
\(558\) −7.42929 + 1.47841i −0.314507 + 0.0625862i
\(559\) −0.834360 + 2.51552i −0.0352897 + 0.106395i
\(560\) −2.78124 + 2.55179i −0.117529 + 0.107833i
\(561\) 0.880480 + 0.398896i 0.0371739 + 0.0168414i
\(562\) 2.80267 4.85437i 0.118224 0.204769i
\(563\) −20.7050 35.8622i −0.872613 1.51141i −0.859284 0.511499i \(-0.829091\pi\)
−0.0133288 0.999911i \(-0.504243\pi\)
\(564\) −16.9186 + 1.66704i −0.712402 + 0.0701951i
\(565\) 28.2246i 1.18742i
\(566\) 2.95086 5.11105i 0.124034 0.214833i
\(567\) −23.7195 + 2.09430i −0.996125 + 0.0879522i
\(568\) 14.7521 25.5515i 0.618986 1.07212i
\(569\) 31.9924 + 18.4708i 1.34119 + 0.774337i 0.986982 0.160830i \(-0.0514171\pi\)
0.354208 + 0.935167i \(0.384750\pi\)
\(570\) 2.71858 + 3.79344i 0.113869 + 0.158890i
\(571\) 4.11160 7.12150i 0.172065 0.298026i −0.767077 0.641556i \(-0.778289\pi\)
0.939142 + 0.343530i \(0.111623\pi\)
\(572\) 2.20526 1.96138i 0.0922067 0.0820092i
\(573\) 12.4532 8.92460i 0.520239 0.372831i
\(574\) 4.77471 + 5.20405i 0.199293 + 0.217213i
\(575\) 12.8904 7.44230i 0.537569 0.310365i
\(576\) 2.83949 8.36714i 0.118312 0.348631i
\(577\) 6.19495 + 3.57666i 0.257899 + 0.148898i 0.623376 0.781922i \(-0.285761\pi\)
−0.365477 + 0.930821i \(0.619094\pi\)
\(578\) −10.7395 + 6.20045i −0.446704 + 0.257905i
\(579\) −9.76326 13.6234i −0.405747 0.566170i
\(580\) 12.5765i 0.522209i
\(581\) −14.5282 + 13.3296i −0.602732 + 0.553006i
\(582\) 5.02483 11.0913i 0.208286 0.459747i
\(583\) 1.71073 2.96307i 0.0708512 0.122718i
\(584\) 11.0776 19.1870i 0.458395 0.793963i
\(585\) −18.0872 + 7.64213i −0.747814 + 0.315963i
\(586\) −2.14675 + 1.23943i −0.0886815 + 0.0512003i
\(587\) 19.5383 + 33.8414i 0.806433 + 1.39678i 0.915319 + 0.402729i \(0.131938\pi\)
−0.108886 + 0.994054i \(0.534728\pi\)
\(588\) −14.8596 8.33877i −0.612799 0.343885i
\(589\) 3.15156 5.45867i 0.129858 0.224921i
\(590\) −9.28191 + 5.35891i −0.382130 + 0.220623i
\(591\) −11.8357 5.36210i −0.486856 0.220567i
\(592\) 0.707295 + 1.22507i 0.0290697 + 0.0503501i
\(593\) −11.8909 20.5957i −0.488302 0.845763i 0.511608 0.859219i \(-0.329050\pi\)
−0.999909 + 0.0134558i \(0.995717\pi\)
\(594\) −0.529646 + 2.27279i −0.0217316 + 0.0932539i
\(595\) −0.998910 4.49229i −0.0409513 0.184166i
\(596\) 28.0214 16.1782i 1.14780 0.662684i
\(597\) −18.7362 8.48833i −0.766822 0.347404i
\(598\) −16.1333 18.1393i −0.659738 0.741773i
\(599\) 23.4451 + 13.5361i 0.957942 + 0.553068i 0.895539 0.444983i \(-0.146790\pi\)
0.0624030 + 0.998051i \(0.480124\pi\)
\(600\) 0.760288 + 7.71607i 0.0310386 + 0.315007i
\(601\) 14.6961 8.48480i 0.599467 0.346102i −0.169365 0.985553i \(-0.554172\pi\)
0.768832 + 0.639451i \(0.220838\pi\)
\(602\) 0.450042 1.43052i 0.0183423 0.0583035i
\(603\) 9.79169 28.8532i 0.398749 1.17499i
\(604\) −18.6377 −0.758356
\(605\) 9.67621 + 16.7597i 0.393394 + 0.681379i
\(606\) 0.557837 + 5.66142i 0.0226606 + 0.229980i
\(607\) 13.4733i 0.546866i 0.961891 + 0.273433i \(0.0881592\pi\)
−0.961891 + 0.273433i \(0.911841\pi\)
\(608\) 5.63798 + 9.76527i 0.228650 + 0.396034i
\(609\) −21.4647 + 7.04220i −0.869795 + 0.285364i
\(610\) 5.36102 0.217061
\(611\) −16.7350 18.8159i −0.677024 0.761209i
\(612\) −2.66394 3.03713i −0.107683 0.122769i
\(613\) −36.1412 −1.45973 −0.729864 0.683592i \(-0.760417\pi\)
−0.729864 + 0.683592i \(0.760417\pi\)
\(614\) 0.158524 0.274571i 0.00639750 0.0110808i
\(615\) 10.8320 1.06731i 0.436787 0.0430379i
\(616\) −2.98164 + 2.73566i −0.120134 + 0.110223i
\(617\) 7.10815 + 4.10389i 0.286163 + 0.165216i 0.636210 0.771516i \(-0.280501\pi\)
−0.350047 + 0.936732i \(0.613834\pi\)
\(618\) 1.33121 + 1.85754i 0.0535491 + 0.0747212i
\(619\) 10.3240 + 5.96058i 0.414958 + 0.239576i 0.692918 0.721017i \(-0.256325\pi\)
−0.277960 + 0.960593i \(0.589658\pi\)
\(620\) −7.23463 + 4.17692i −0.290550 + 0.167749i
\(621\) −44.1860 10.2970i −1.77312 0.413204i
\(622\) 8.51933 4.91864i 0.341594 0.197219i
\(623\) −4.05965 18.2570i −0.162646 0.731453i
\(624\) −4.68646 + 1.45765i −0.187609 + 0.0583526i
\(625\) 6.78521 + 11.7523i 0.271408 + 0.470093i
\(626\) 14.8156 0.592150
\(627\) −1.13116 1.57839i −0.0451741 0.0630349i
\(628\) 26.4227i 1.05438i
\(629\) −1.72472 −0.0687689
\(630\) 10.1664 4.48201i 0.405037 0.178568i
\(631\) −19.3093 + 33.4446i −0.768690 + 1.33141i 0.169583 + 0.985516i \(0.445758\pi\)
−0.938273 + 0.345895i \(0.887575\pi\)
\(632\) −28.9031 + 16.6872i −1.14970 + 0.663781i
\(633\) −15.6178 + 34.4730i −0.620752 + 1.37018i
\(634\) −9.61205 −0.381743
\(635\) −6.10538 + 10.5748i −0.242285 + 0.419649i
\(636\) −11.6230 + 8.32967i −0.460883 + 0.330293i
\(637\) −2.95464 25.0653i −0.117067 0.993124i
\(638\) 2.21399i 0.0876529i
\(639\) 25.3406 22.2268i 1.00246 0.879279i
\(640\) 17.1447i 0.677706i
\(641\) 14.5750 8.41486i 0.575676 0.332367i −0.183737 0.982975i \(-0.558819\pi\)
0.759413 + 0.650609i \(0.225486\pi\)
\(642\) −10.1041 + 22.3027i −0.398777 + 0.880216i
\(643\) −7.41784 4.28269i −0.292531 0.168893i 0.346552 0.938031i \(-0.387353\pi\)
−0.639083 + 0.769138i \(0.720686\pi\)
\(644\) −21.9491 23.9227i −0.864915 0.942686i
\(645\) −1.34627 1.87856i −0.0530094 0.0739681i
\(646\) −1.42227 −0.0559584
\(647\) 35.6349 1.40095 0.700476 0.713676i \(-0.252971\pi\)
0.700476 + 0.713676i \(0.252971\pi\)
\(648\) 14.3840 18.7520i 0.565057 0.736648i
\(649\) 3.86206 2.22976i 0.151599 0.0875259i
\(650\) −3.54149 + 3.14982i −0.138909 + 0.123546i
\(651\) −11.1800 10.0088i −0.438177 0.392275i
\(652\) 3.74981 + 6.49486i 0.146854 + 0.254358i
\(653\) −2.88292 1.66445i −0.112817 0.0651350i 0.442530 0.896754i \(-0.354081\pi\)
−0.555347 + 0.831619i \(0.687414\pi\)
\(654\) −18.7130 8.47783i −0.731737 0.331509i
\(655\) −15.3400 + 26.5697i −0.599384 + 1.03816i
\(656\) 2.72059 0.106221
\(657\) 19.0287 16.6905i 0.742379 0.651157i
\(658\) 9.63286 + 10.4990i 0.375528 + 0.409295i
\(659\) 33.3537 + 19.2568i 1.29928 + 0.750137i 0.980279 0.197618i \(-0.0633206\pi\)
0.318997 + 0.947756i \(0.396654\pi\)
\(660\) 0.252367 + 2.56124i 0.00982337 + 0.0996963i
\(661\) 17.3162i 0.673521i 0.941590 + 0.336761i \(0.109331\pi\)
−0.941590 + 0.336761i \(0.890669\pi\)
\(662\) −3.73862 2.15849i −0.145305 0.0838921i
\(663\) 1.31783 5.83698i 0.0511804 0.226690i
\(664\) 19.5690i 0.759424i
\(665\) −2.77444 + 8.81892i −0.107588 + 0.341983i
\(666\) −0.812679 4.08386i −0.0314907 0.158246i
\(667\) −43.0429 −1.66663
\(668\) −5.57771 + 9.66088i −0.215808 + 0.373791i
\(669\) −43.8406 19.8618i −1.69498 0.767900i
\(670\) 14.2169i 0.549248i
\(671\) −2.23064 −0.0861129
\(672\) 25.5065 8.36822i 0.983934 0.322811i
\(673\) 2.57882 + 4.46665i 0.0994064 + 0.172177i 0.911439 0.411435i \(-0.134972\pi\)
−0.812033 + 0.583612i \(0.801639\pi\)
\(674\) 1.64575 + 0.950171i 0.0633917 + 0.0365992i
\(675\) −2.01036 + 8.62679i −0.0773789 + 0.332045i
\(676\) −14.6485 10.9186i −0.563405 0.419946i
\(677\) −5.51366 9.54995i −0.211907 0.367034i 0.740404 0.672162i \(-0.234634\pi\)
−0.952311 + 0.305128i \(0.901301\pi\)
\(678\) 8.56961 18.9156i 0.329114 0.726449i
\(679\) 23.5457 5.23564i 0.903600 0.200925i
\(680\) 3.95560 + 2.28377i 0.151690 + 0.0875785i
\(681\) −14.4443 + 31.8827i −0.553506 + 1.22175i
\(682\) −1.27361 + 0.735317i −0.0487689 + 0.0281567i
\(683\) 31.4124 18.1360i 1.20196 0.693954i 0.240972 0.970532i \(-0.422534\pi\)
0.960991 + 0.276578i \(0.0892005\pi\)
\(684\) 1.58397 + 7.95972i 0.0605646 + 0.304348i
\(685\) 21.7303 + 12.5460i 0.830271 + 0.479357i
\(686\) 1.89103 + 14.1554i 0.0721999 + 0.540456i
\(687\) −38.2336 17.3215i −1.45870 0.660857i
\(688\) −0.288839 0.500284i −0.0110119 0.0190731i
\(689\) −20.1036 6.66805i −0.765886 0.254032i
\(690\) 21.0675 2.07584i 0.802025 0.0790259i
\(691\) 19.7889 + 11.4251i 0.752804 + 0.434632i 0.826706 0.562634i \(-0.190212\pi\)
−0.0739021 + 0.997266i \(0.523545\pi\)
\(692\) 13.1138 + 22.7138i 0.498513 + 0.863449i
\(693\) −4.23007 + 1.86490i −0.160687 + 0.0708416i
\(694\) 19.8473 0.753394
\(695\) 12.7211i 0.482539i
\(696\) 9.25254 20.4230i 0.350717 0.774133i
\(697\) −1.65852 + 2.87263i −0.0628208 + 0.108809i
\(698\) 14.6047 0.552797
\(699\) 3.11471 + 1.41110i 0.117809 + 0.0533727i
\(700\) −4.67062 + 4.28529i −0.176533 + 0.161969i
\(701\) 27.8049i 1.05018i 0.851047 + 0.525089i \(0.175968\pi\)
−0.851047 + 0.525089i \(0.824032\pi\)
\(702\) 14.4420 + 0.370059i 0.545078 + 0.0139670i
\(703\) 3.00061 + 1.73240i 0.113170 + 0.0653389i
\(704\) 1.71542i 0.0646524i
\(705\) 21.8532 2.15326i 0.823039 0.0810965i
\(706\) −19.6702 11.3566i −0.740296 0.427410i
\(707\) −8.30374 + 7.61868i −0.312294 + 0.286530i
\(708\) −18.5482 + 1.82761i −0.697085 + 0.0686859i
\(709\) 24.8884 0.934703 0.467351 0.884072i \(-0.345208\pi\)
0.467351 + 0.884072i \(0.345208\pi\)
\(710\) −7.86385 + 13.6206i −0.295125 + 0.511171i
\(711\) −37.3954 + 7.44161i −1.40244 + 0.279082i
\(712\) 16.0759 + 9.28142i 0.602469 + 0.347836i
\(713\) −14.2955 24.7605i −0.535370 0.927289i
\(714\) −0.694507 + 3.31394i −0.0259913 + 0.124021i
\(715\) −2.84846 + 2.53344i −0.106526 + 0.0947454i
\(716\) 14.5679 8.41078i 0.544428 0.314325i
\(717\) 21.4893 15.4003i 0.802532 0.575136i
\(718\) −13.5522 −0.505762
\(719\) 11.5068 0.429130 0.214565 0.976710i \(-0.431167\pi\)
0.214565 + 0.976710i \(0.431167\pi\)
\(720\) 1.37539 4.05287i 0.0512579 0.151042i
\(721\) −1.35857 + 4.31838i −0.0505956 + 0.160825i
\(722\) −10.2138 5.89694i −0.380118 0.219461i
\(723\) 12.1934 + 5.52415i 0.453477 + 0.205445i
\(724\) −31.3309 + 18.0889i −1.16440 + 0.672268i
\(725\) 8.40360i 0.312102i
\(726\) −1.39621 14.1699i −0.0518180 0.525896i
\(727\) 18.2661i 0.677452i 0.940885 + 0.338726i \(0.109996\pi\)
−0.940885 + 0.338726i \(0.890004\pi\)
\(728\) 20.3135 + 14.6579i 0.752869 + 0.543256i
\(729\) 22.4460 15.0059i 0.831332 0.555776i
\(730\) −5.90509 + 10.2279i −0.218557 + 0.378552i
\(731\) 0.704325 0.0260504
\(732\) 8.49186 + 3.84719i 0.313868 + 0.142196i
\(733\) −10.3435 + 5.97185i −0.382048 + 0.220575i −0.678709 0.734408i \(-0.737460\pi\)
0.296661 + 0.954983i \(0.404127\pi\)
\(734\) 0.288226 0.499222i 0.0106386 0.0184266i
\(735\) 19.1936 + 10.7709i 0.707967 + 0.397291i
\(736\) 51.1477 1.88533
\(737\) 5.91545i 0.217898i
\(738\) −7.58343 2.57353i −0.279150 0.0947330i
\(739\) 15.5335 0.571411 0.285705 0.958318i \(-0.407772\pi\)
0.285705 + 0.958318i \(0.407772\pi\)
\(740\) −2.29604 3.97685i −0.0844040 0.146192i
\(741\) −8.15573 + 8.83131i −0.299608 + 0.324426i
\(742\) 11.4324 + 3.59665i 0.419697 + 0.132037i
\(743\) −22.7023 + 13.1072i −0.832868 + 0.480856i −0.854833 0.518902i \(-0.826341\pi\)
0.0219659 + 0.999759i \(0.493007\pi\)
\(744\) 14.8214 1.46039i 0.543378 0.0535406i
\(745\) −36.1944 + 20.8968i −1.32606 + 0.765600i
\(746\) −20.5528 11.8662i −0.752492 0.434451i
\(747\) 7.18456 21.1708i 0.262869 0.774598i
\(748\) −0.679242 0.392160i −0.0248355 0.0143388i
\(749\) −47.3464 + 10.5280i −1.73000 + 0.384685i
\(750\) −1.59400 16.1773i −0.0582045 0.590711i
\(751\) 1.13007 1.95735i 0.0412370 0.0714245i −0.844670 0.535287i \(-0.820203\pi\)
0.885907 + 0.463862i \(0.153537\pi\)
\(752\) 5.48872 0.200153
\(753\) 11.0265 1.08647i 0.401827 0.0395932i
\(754\) 13.4234 2.76767i 0.488852 0.100792i
\(755\) 24.0736 0.876130
\(756\) 19.3199 + 0.196102i 0.702658 + 0.00713217i
\(757\) 17.0033 + 29.4506i 0.617995 + 1.07040i 0.989851 + 0.142109i \(0.0453883\pi\)
−0.371856 + 0.928291i \(0.621278\pi\)
\(758\) 6.45267i 0.234372i
\(759\) −8.76586 + 0.863726i −0.318180 + 0.0313513i
\(760\) −4.58790 7.94647i −0.166420 0.288249i
\(761\) −37.5013 −1.35942 −0.679710 0.733481i \(-0.737894\pi\)
−0.679710 + 0.733481i \(0.737894\pi\)
\(762\) 7.30245 5.23332i 0.264540 0.189583i
\(763\) −8.83350 39.7260i −0.319794 1.43818i
\(764\) −10.7659 + 6.21571i −0.389497 + 0.224876i
\(765\) 3.44092 + 3.92296i 0.124407 + 0.141835i
\(766\) −11.8742 6.85557i −0.429032 0.247702i
\(767\) −18.3469 20.6282i −0.662468 0.744842i
\(768\) −9.41587 + 20.7835i −0.339766 + 0.749962i
\(769\) −20.8816 + 12.0560i −0.753009 + 0.434750i −0.826780 0.562525i \(-0.809830\pi\)
0.0737708 + 0.997275i \(0.476497\pi\)
\(770\)