Properties

Label 273.2.bf.b.185.11
Level $273$
Weight $2$
Character 273.185
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(152,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.152");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 185.11
Character \(\chi\) \(=\) 273.185
Dual form 273.2.bf.b.152.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.913280 - 0.527282i) q^{2} +(-1.53174 + 0.808559i) q^{3} +(-0.443947 - 0.768938i) q^{4} +(-0.000964697 - 0.00167090i) q^{5} +(1.82525 + 0.0692194i) q^{6} +(1.27194 + 2.31995i) q^{7} +3.04547i q^{8} +(1.69246 - 2.47701i) q^{9} +0.00203467i q^{10} -2.49689i q^{11} +(1.30174 + 0.818857i) q^{12} +(-0.922193 - 3.48562i) q^{13} +(0.0616352 - 2.78943i) q^{14} +(0.00282869 + 0.00177938i) q^{15} +(0.717929 - 1.24349i) q^{16} +(-2.08762 - 3.61586i) q^{17} +(-2.85178 + 1.36979i) q^{18} -5.36837i q^{19} +(-0.000856548 + 0.00148358i) q^{20} +(-3.82410 - 2.52513i) q^{21} +(-1.31657 + 2.28036i) q^{22} +(4.21813 + 2.43534i) q^{23} +(-2.46244 - 4.66487i) q^{24} +(2.50000 - 4.33012i) q^{25} +(-0.995686 + 3.66960i) q^{26} +(-0.589610 + 5.16259i) q^{27} +(1.21923 - 2.00798i) q^{28} +(7.57023 - 4.37067i) q^{29} +(-0.00164515 - 0.00311659i) q^{30} +(-6.57778 - 3.79768i) q^{31} +(3.96357 - 2.28837i) q^{32} +(2.01888 + 3.82459i) q^{33} +4.40306i q^{34} +(0.00264938 - 0.00436333i) q^{35} +(-2.65603 - 0.201741i) q^{36} +(-1.82786 + 3.16594i) q^{37} +(-2.83065 + 4.90282i) q^{38} +(4.23089 + 4.59342i) q^{39} +(0.00508869 - 0.00293796i) q^{40} +(1.83038 + 3.17031i) q^{41} +(2.16101 + 4.32253i) q^{42} +(1.32938 - 2.30256i) q^{43} +(-1.91995 + 1.10849i) q^{44} +(-0.00577156 - 0.000438383i) q^{45} +(-2.56822 - 4.44829i) q^{46} +(1.79190 + 3.10366i) q^{47} +(-0.0942468 + 2.48519i) q^{48} +(-3.76435 + 5.90167i) q^{49} +(-4.56640 + 2.63641i) q^{50} +(6.12133 + 3.85060i) q^{51} +(-2.27082 + 2.25654i) q^{52} +(-12.3735 - 7.14382i) q^{53} +(3.26062 - 4.40400i) q^{54} +(-0.00417206 + 0.00240874i) q^{55} +(-7.06534 + 3.87365i) q^{56} +(4.34064 + 8.22295i) q^{57} -9.21832 q^{58} +(2.61565 + 4.53044i) q^{59} +(0.000112444 - 0.00296504i) q^{60} -7.57921i q^{61} +(4.00490 + 6.93670i) q^{62} +(7.89925 + 0.775837i) q^{63} -7.69818 q^{64} +(-0.00493450 + 0.00490346i) q^{65} +(0.172833 - 4.55744i) q^{66} +14.2543 q^{67} +(-1.85358 + 3.21050i) q^{68} +(-8.43019 - 0.319701i) q^{69} +(-0.00472034 + 0.00258797i) q^{70} +(-1.24050 - 0.716205i) q^{71} +(7.54365 + 5.15435i) q^{72} +(1.61067 + 0.929921i) q^{73} +(3.33869 - 1.92759i) q^{74} +(-0.328189 + 8.65403i) q^{75} +(-4.12794 + 2.38327i) q^{76} +(5.79266 - 3.17589i) q^{77} +(-1.44196 - 6.42596i) q^{78} +(3.64483 + 6.31302i) q^{79} -0.00277034 q^{80} +(-3.27113 - 8.38449i) q^{81} -3.86050i q^{82} +10.4089 q^{83} +(-0.243974 + 4.06152i) q^{84} +(-0.00402784 + 0.00697642i) q^{85} +(-2.42820 + 1.40192i) q^{86} +(-8.06169 + 12.8157i) q^{87} +7.60420 q^{88} +(2.70190 - 4.67983i) q^{89} +(0.00503989 + 0.00344361i) q^{90} +(6.91350 - 6.57294i) q^{91} -4.32464i q^{92} +(13.1461 + 0.498544i) q^{93} -3.77934i q^{94} +(-0.00897003 + 0.00517885i) q^{95} +(-4.22088 + 6.70997i) q^{96} +(-2.07015 - 1.19520i) q^{97} +(6.54975 - 3.40500i) q^{98} +(-6.18481 - 4.22589i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9} + 6 q^{12} - 12 q^{13} - 9 q^{15} - 16 q^{16} + 2 q^{18} + 10 q^{21} + 10 q^{22} - 24 q^{25} - 50 q^{28} - 16 q^{30} - 24 q^{31} - 33 q^{39} + 90 q^{40} - 48 q^{42}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.913280 0.527282i −0.645786 0.372845i 0.141054 0.990002i \(-0.454951\pi\)
−0.786840 + 0.617157i \(0.788284\pi\)
\(3\) −1.53174 + 0.808559i −0.884351 + 0.466822i
\(4\) −0.443947 0.768938i −0.221973 0.384469i
\(5\) −0.000964697 0.00167090i −0.000431425 0.000747251i 0.865810 0.500374i \(-0.166804\pi\)
−0.866241 + 0.499626i \(0.833471\pi\)
\(6\) 1.82525 + 0.0692194i 0.745154 + 0.0282587i
\(7\) 1.27194 + 2.31995i 0.480747 + 0.876859i
\(8\) 3.04547i 1.07674i
\(9\) 1.69246 2.47701i 0.564155 0.825669i
\(10\) 0.00203467i 0.000643419i
\(11\) 2.49689i 0.752840i −0.926449 0.376420i \(-0.877155\pi\)
0.926449 0.376420i \(-0.122845\pi\)
\(12\) 1.30174 + 0.818857i 0.375781 + 0.236384i
\(13\) −0.922193 3.48562i −0.255770 0.966738i
\(14\) 0.0616352 2.78943i 0.0164727 0.745508i
\(15\) 0.00282869 + 0.00177938i 0.000730365 + 0.000459433i
\(16\) 0.717929 1.24349i 0.179482 0.310873i
\(17\) −2.08762 3.61586i −0.506322 0.876975i −0.999973 0.00731523i \(-0.997671\pi\)
0.493651 0.869660i \(-0.335662\pi\)
\(18\) −2.85178 + 1.36979i −0.672170 + 0.322864i
\(19\) 5.36837i 1.23159i −0.787907 0.615794i \(-0.788835\pi\)
0.787907 0.615794i \(-0.211165\pi\)
\(20\) −0.000856548 0.00148358i −0.000191530 0.000331740i
\(21\) −3.82410 2.52513i −0.834486 0.551029i
\(22\) −1.31657 + 2.28036i −0.280693 + 0.486174i
\(23\) 4.21813 + 2.43534i 0.879540 + 0.507803i 0.870507 0.492156i \(-0.163791\pi\)
0.00903348 + 0.999959i \(0.497125\pi\)
\(24\) −2.46244 4.66487i −0.502644 0.952213i
\(25\) 2.50000 4.33012i 0.500000 0.866025i
\(26\) −0.995686 + 3.66960i −0.195270 + 0.719669i
\(27\) −0.589610 + 5.16259i −0.113470 + 0.993541i
\(28\) 1.21923 2.00798i 0.230412 0.379472i
\(29\) 7.57023 4.37067i 1.40576 0.811614i 0.410781 0.911734i \(-0.365256\pi\)
0.994975 + 0.100120i \(0.0319227\pi\)
\(30\) −0.00164515 0.00311659i −0.000300362 0.000569009i
\(31\) −6.57778 3.79768i −1.18140 0.682084i −0.225065 0.974344i \(-0.572260\pi\)
−0.956339 + 0.292260i \(0.905593\pi\)
\(32\) 3.96357 2.28837i 0.700667 0.404530i
\(33\) 2.01888 + 3.82459i 0.351442 + 0.665775i
\(34\) 4.40306i 0.755118i
\(35\) 0.00264938 0.00436333i 0.000447827 0.000737538i
\(36\) −2.65603 0.201741i −0.442672 0.0336235i
\(37\) −1.82786 + 3.16594i −0.300498 + 0.520478i −0.976249 0.216652i \(-0.930486\pi\)
0.675751 + 0.737130i \(0.263820\pi\)
\(38\) −2.83065 + 4.90282i −0.459191 + 0.795343i
\(39\) 4.23089 + 4.59342i 0.677485 + 0.735536i
\(40\) 0.00508869 0.00293796i 0.000804592 0.000464531i
\(41\) 1.83038 + 3.17031i 0.285857 + 0.495119i 0.972817 0.231577i \(-0.0743884\pi\)
−0.686960 + 0.726696i \(0.741055\pi\)
\(42\) 2.16101 + 4.32253i 0.333452 + 0.666981i
\(43\) 1.32938 2.30256i 0.202729 0.351137i −0.746678 0.665186i \(-0.768352\pi\)
0.949407 + 0.314049i \(0.101686\pi\)
\(44\) −1.91995 + 1.10849i −0.289444 + 0.167110i
\(45\) −0.00577156 0.000438383i −0.000860373 6.53503e-5i
\(46\) −2.56822 4.44829i −0.378663 0.655864i
\(47\) 1.79190 + 3.10366i 0.261375 + 0.452715i 0.966608 0.256261i \(-0.0824907\pi\)
−0.705232 + 0.708976i \(0.749157\pi\)
\(48\) −0.0942468 + 2.48519i −0.0136033 + 0.358707i
\(49\) −3.76435 + 5.90167i −0.537765 + 0.843095i
\(50\) −4.56640 + 2.63641i −0.645786 + 0.372845i
\(51\) 6.12133 + 3.85060i 0.857158 + 0.539192i
\(52\) −2.27082 + 2.25654i −0.314907 + 0.312926i
\(53\) −12.3735 7.14382i −1.69962 0.981279i −0.946108 0.323850i \(-0.895023\pi\)
−0.753516 0.657429i \(-0.771644\pi\)
\(54\) 3.26062 4.40400i 0.443715 0.599309i
\(55\) −0.00417206 + 0.00240874i −0.000562561 + 0.000324795i
\(56\) −7.06534 + 3.87365i −0.944146 + 0.517638i
\(57\) 4.34064 + 8.22295i 0.574932 + 1.08916i
\(58\) −9.21832 −1.21042
\(59\) 2.61565 + 4.53044i 0.340529 + 0.589813i 0.984531 0.175211i \(-0.0560607\pi\)
−0.644002 + 0.765023i \(0.722727\pi\)
\(60\) 0.000112444 0.00296504i 1.45165e−5 0.000382785i
\(61\) 7.57921i 0.970418i −0.874398 0.485209i \(-0.838744\pi\)
0.874398 0.485209i \(-0.161256\pi\)
\(62\) 4.00490 + 6.93670i 0.508623 + 0.880961i
\(63\) 7.89925 + 0.775837i 0.995211 + 0.0977463i
\(64\) −7.69818 −0.962273
\(65\) −0.00493450 + 0.00490346i −0.000612050 + 0.000608200i
\(66\) 0.172833 4.55744i 0.0212743 0.560982i
\(67\) 14.2543 1.74143 0.870717 0.491784i \(-0.163655\pi\)
0.870717 + 0.491784i \(0.163655\pi\)
\(68\) −1.85358 + 3.21050i −0.224780 + 0.389330i
\(69\) −8.43019 0.319701i −1.01488 0.0384875i
\(70\) −0.00472034 + 0.00258797i −0.000564188 + 0.000309322i
\(71\) −1.24050 0.716205i −0.147221 0.0849979i 0.424580 0.905390i \(-0.360422\pi\)
−0.571801 + 0.820392i \(0.693755\pi\)
\(72\) 7.54365 + 5.15435i 0.889028 + 0.607446i
\(73\) 1.61067 + 0.929921i 0.188515 + 0.108839i 0.591287 0.806461i \(-0.298620\pi\)
−0.402772 + 0.915300i \(0.631953\pi\)
\(74\) 3.33869 1.92759i 0.388115 0.224078i
\(75\) −0.328189 + 8.65403i −0.0378960 + 0.999281i
\(76\) −4.12794 + 2.38327i −0.473508 + 0.273380i
\(77\) 5.79266 3.17589i 0.660135 0.361926i
\(78\) −1.44196 6.42596i −0.163270 0.727596i
\(79\) 3.64483 + 6.31302i 0.410075 + 0.710271i 0.994898 0.100891i \(-0.0321692\pi\)
−0.584823 + 0.811161i \(0.698836\pi\)
\(80\) −0.00277034 −0.000309733
\(81\) −3.27113 8.38449i −0.363459 0.931610i
\(82\) 3.86050i 0.426321i
\(83\) 10.4089 1.14253 0.571263 0.820767i \(-0.306454\pi\)
0.571263 + 0.820767i \(0.306454\pi\)
\(84\) −0.243974 + 4.06152i −0.0266197 + 0.443148i
\(85\) −0.00402784 + 0.00697642i −0.000436880 + 0.000756699i
\(86\) −2.42820 + 1.40192i −0.261839 + 0.151173i
\(87\) −8.06169 + 12.8157i −0.864303 + 1.37399i
\(88\) 7.60420 0.810611
\(89\) 2.70190 4.67983i 0.286401 0.496061i −0.686547 0.727085i \(-0.740874\pi\)
0.972948 + 0.231025i \(0.0742078\pi\)
\(90\) 0.00503989 + 0.00344361i 0.000531251 + 0.000362988i
\(91\) 6.91350 6.57294i 0.724732 0.689031i
\(92\) 4.32464i 0.450875i
\(93\) 13.1461 + 0.498544i 1.36319 + 0.0516966i
\(94\) 3.77934i 0.389809i
\(95\) −0.00897003 + 0.00517885i −0.000920305 + 0.000531339i
\(96\) −4.22088 + 6.70997i −0.430792 + 0.684833i
\(97\) −2.07015 1.19520i −0.210192 0.121354i 0.391209 0.920302i \(-0.372057\pi\)
−0.601401 + 0.798948i \(0.705390\pi\)
\(98\) 6.54975 3.40500i 0.661625 0.343956i
\(99\) −6.18481 4.22589i −0.621597 0.424718i
\(100\) −4.43946 −0.443946
\(101\) −18.0599 −1.79703 −0.898514 0.438946i \(-0.855352\pi\)
−0.898514 + 0.438946i \(0.855352\pi\)
\(102\) −3.56013 6.74434i −0.352506 0.667790i
\(103\) −8.45144 + 4.87944i −0.832745 + 0.480786i −0.854792 0.518971i \(-0.826315\pi\)
0.0220466 + 0.999757i \(0.492982\pi\)
\(104\) 10.6154 2.80851i 1.04092 0.275397i
\(105\) −0.000530155 0.00882568i −5.17378e−5 0.000861298i
\(106\) 7.53362 + 13.0486i 0.731730 + 1.26739i
\(107\) −4.73086 2.73136i −0.457349 0.264051i 0.253580 0.967314i \(-0.418392\pi\)
−0.710929 + 0.703264i \(0.751725\pi\)
\(108\) 4.23147 1.83854i 0.407173 0.176914i
\(109\) −3.68535 + 6.38321i −0.352993 + 0.611401i −0.986772 0.162113i \(-0.948169\pi\)
0.633780 + 0.773514i \(0.281503\pi\)
\(110\) 0.00508035 0.000484392
\(111\) 0.239954 6.32734i 0.0227754 0.600564i
\(112\) 3.79800 + 0.0839203i 0.358877 + 0.00792972i
\(113\) −0.390686 0.225562i −0.0367526 0.0212191i 0.481511 0.876440i \(-0.340088\pi\)
−0.518264 + 0.855221i \(0.673421\pi\)
\(114\) 0.371595 9.79860i 0.0348031 0.917723i
\(115\) 0.00939745i 0.000876316i
\(116\) −6.72156 3.88069i −0.624081 0.360313i
\(117\) −10.1947 3.61501i −0.942499 0.334208i
\(118\) 5.51674i 0.507857i
\(119\) 5.73330 9.44232i 0.525571 0.865576i
\(120\) −0.00541904 + 0.00861469i −0.000494689 + 0.000786410i
\(121\) 4.76555 0.433231
\(122\) −3.99638 + 6.92194i −0.361815 + 0.626683i
\(123\) −5.36705 3.37612i −0.483930 0.304415i
\(124\) 6.74388i 0.605618i
\(125\) −0.0192939 −0.00172570
\(126\) −6.80514 4.87369i −0.606250 0.434183i
\(127\) −4.71924 8.17397i −0.418765 0.725322i 0.577051 0.816708i \(-0.304204\pi\)
−0.995816 + 0.0913863i \(0.970870\pi\)
\(128\) −0.896545 0.517620i −0.0792441 0.0457516i
\(129\) −0.174516 + 4.60181i −0.0153653 + 0.405167i
\(130\) 0.00709209 0.00187636i 0.000622017 0.000164568i
\(131\) −3.11100 5.38841i −0.271809 0.470788i 0.697516 0.716569i \(-0.254289\pi\)
−0.969325 + 0.245782i \(0.920955\pi\)
\(132\) 2.04460 3.25031i 0.177959 0.282903i
\(133\) 12.4544 6.82823i 1.07993 0.592082i
\(134\) −13.0181 7.51602i −1.12459 0.649285i
\(135\) 0.00919499 0.00399515i 0.000791379 0.000343848i
\(136\) 11.0120 6.35778i 0.944271 0.545175i
\(137\) −5.33148 + 3.07813i −0.455499 + 0.262983i −0.710150 0.704051i \(-0.751373\pi\)
0.254651 + 0.967033i \(0.418040\pi\)
\(138\) 7.53055 + 4.73707i 0.641043 + 0.403246i
\(139\) 10.6666 + 6.15838i 0.904731 + 0.522347i 0.878732 0.477315i \(-0.158390\pi\)
0.0259992 + 0.999662i \(0.491723\pi\)
\(140\) −0.00453132 0.000100124i −0.000382966 8.46200e-6i
\(141\) −5.25421 3.30515i −0.442485 0.278343i
\(142\) 0.755285 + 1.30819i 0.0633821 + 0.109781i
\(143\) −8.70321 + 2.30261i −0.727799 + 0.192554i
\(144\) −1.86506 3.88288i −0.155422 0.323573i
\(145\) −0.0146060 0.00843275i −0.00121296 0.000700302i
\(146\) −0.980661 1.69856i −0.0811601 0.140573i
\(147\) 0.994169 12.0835i 0.0819977 0.996633i
\(148\) 3.24589 0.266810
\(149\) 7.16171i 0.586710i −0.956004 0.293355i \(-0.905228\pi\)
0.956004 0.293355i \(-0.0947718\pi\)
\(150\) 4.86284 7.73050i 0.397050 0.631193i
\(151\) −8.14880 + 14.1141i −0.663140 + 1.14859i 0.316646 + 0.948544i \(0.397443\pi\)
−0.979786 + 0.200049i \(0.935890\pi\)
\(152\) 16.3492 1.32610
\(153\) −12.4897 0.948668i −1.00974 0.0766953i
\(154\) −6.96491 0.153896i −0.561248 0.0124013i
\(155\) 0.0146545i 0.00117707i
\(156\) 1.65377 5.29253i 0.132407 0.423742i
\(157\) 4.07713 + 2.35393i 0.325391 + 0.187864i 0.653793 0.756674i \(-0.273177\pi\)
−0.328402 + 0.944538i \(0.606510\pi\)
\(158\) 7.68741i 0.611577i
\(159\) 24.7291 + 0.937811i 1.96115 + 0.0743732i
\(160\) −0.00764728 0.00441516i −0.000604571 0.000349049i
\(161\) −0.284672 + 12.8834i −0.0224353 + 1.01536i
\(162\) −1.43354 + 9.38220i −0.112629 + 0.737135i
\(163\) −4.20632 −0.329464 −0.164732 0.986338i \(-0.552676\pi\)
−0.164732 + 0.986338i \(0.552676\pi\)
\(164\) 1.62518 2.81490i 0.126905 0.219806i
\(165\) 0.00444291 0.00706293i 0.000345880 0.000549848i
\(166\) −9.50624 5.48843i −0.737828 0.425985i
\(167\) 7.24993 + 12.5573i 0.561017 + 0.971709i 0.997408 + 0.0719525i \(0.0229230\pi\)
−0.436391 + 0.899757i \(0.643744\pi\)
\(168\) 7.69021 11.6462i 0.593312 0.898522i
\(169\) −11.2991 + 6.42883i −0.869163 + 0.494526i
\(170\) 0.00735708 0.00424761i 0.000564263 0.000325777i
\(171\) −13.2975 9.08577i −1.01688 0.694806i
\(172\) −2.36070 −0.180002
\(173\) −15.6967 −1.19340 −0.596700 0.802465i \(-0.703522\pi\)
−0.596700 + 0.802465i \(0.703522\pi\)
\(174\) 14.1201 7.45356i 1.07044 0.565053i
\(175\) 13.2255 + 0.292230i 0.999755 + 0.0220905i
\(176\) −3.10486 1.79259i −0.234037 0.135122i
\(177\) −7.66963 4.82455i −0.576484 0.362636i
\(178\) −4.93518 + 2.84933i −0.369907 + 0.213566i
\(179\) 6.46461i 0.483188i −0.970377 0.241594i \(-0.922330\pi\)
0.970377 0.241594i \(-0.0776702\pi\)
\(180\) 0.00222517 + 0.00463259i 0.000165855 + 0.000345293i
\(181\) 0.939369i 0.0698227i 0.999390 + 0.0349114i \(0.0111149\pi\)
−0.999390 + 0.0349114i \(0.988885\pi\)
\(182\) −9.77976 + 2.35756i −0.724924 + 0.174754i
\(183\) 6.12824 + 11.6094i 0.453012 + 0.858190i
\(184\) −7.41675 + 12.8462i −0.546770 + 0.947033i
\(185\) 0.00705331 0.000518570
\(186\) −11.7432 7.38702i −0.861054 0.541643i
\(187\) −9.02840 + 5.21255i −0.660222 + 0.381179i
\(188\) 1.59101 2.75572i 0.116037 0.200981i
\(189\) −12.7269 + 5.19863i −0.925747 + 0.378144i
\(190\) 0.0109229 0.000792428
\(191\) 5.37944i 0.389243i −0.980878 0.194621i \(-0.937652\pi\)
0.980878 0.194621i \(-0.0623478\pi\)
\(192\) 11.7916 6.22443i 0.850987 0.449210i
\(193\) 21.1426 1.52188 0.760938 0.648825i \(-0.224739\pi\)
0.760938 + 0.648825i \(0.224739\pi\)
\(194\) 1.26042 + 2.18311i 0.0904928 + 0.156738i
\(195\) 0.00359364 0.0115007i 0.000257346 0.000823581i
\(196\) 6.20919 + 0.274530i 0.443513 + 0.0196093i
\(197\) 22.4348 12.9527i 1.59841 0.922843i 0.606616 0.794995i \(-0.292526\pi\)
0.991794 0.127848i \(-0.0408069\pi\)
\(198\) 3.42022 + 7.12057i 0.243065 + 0.506037i
\(199\) 2.39732 1.38409i 0.169941 0.0981157i −0.412617 0.910905i \(-0.635385\pi\)
0.582558 + 0.812789i \(0.302052\pi\)
\(200\) 13.1873 + 7.61367i 0.932480 + 0.538368i
\(201\) −21.8338 + 11.5254i −1.54004 + 0.812940i
\(202\) 16.4937 + 9.52267i 1.16050 + 0.670012i
\(203\) 19.7686 + 12.0033i 1.38748 + 0.842470i
\(204\) 0.243331 6.41639i 0.0170365 0.449237i
\(205\) 0.00353152 0.00611677i 0.000246652 0.000427214i
\(206\) 10.2914 0.717034
\(207\) 13.1714 6.32661i 0.915474 0.439730i
\(208\) −4.99641 1.35569i −0.346438 0.0940003i
\(209\) −13.4042 −0.927189
\(210\) 0.00513781 0.00778078i 0.000354542 0.000536925i
\(211\) −3.90647 6.76621i −0.268933 0.465805i 0.699654 0.714482i \(-0.253338\pi\)
−0.968586 + 0.248677i \(0.920004\pi\)
\(212\) 12.6859i 0.871271i
\(213\) 2.47923 + 0.0940204i 0.169874 + 0.00644217i
\(214\) 2.88040 + 4.98900i 0.196900 + 0.341041i
\(215\) −0.00512981 −0.000349850
\(216\) −15.7225 1.79564i −1.06978 0.122178i
\(217\) 0.443919 20.0906i 0.0301352 1.36384i
\(218\) 6.73151 3.88644i 0.455916 0.263223i
\(219\) −3.21903 0.122076i −0.217522 0.00824914i
\(220\) 0.00370435 + 0.00213870i 0.000249747 + 0.000144191i
\(221\) −10.6783 + 10.6112i −0.718303 + 0.713785i
\(222\) −3.55544 + 5.65211i −0.238625 + 0.379345i
\(223\) −6.48830 + 3.74602i −0.434489 + 0.250852i −0.701257 0.712909i \(-0.747377\pi\)
0.266768 + 0.963761i \(0.414044\pi\)
\(224\) 10.3503 + 6.28463i 0.691559 + 0.419909i
\(225\) −6.49459 13.5211i −0.432973 0.901406i
\(226\) 0.237870 + 0.412003i 0.0158229 + 0.0274061i
\(227\) 4.27068 + 7.39703i 0.283455 + 0.490958i 0.972233 0.234014i \(-0.0751861\pi\)
−0.688779 + 0.724972i \(0.741853\pi\)
\(228\) 4.39593 6.98824i 0.291127 0.462808i
\(229\) 8.92049 5.15025i 0.589482 0.340338i −0.175410 0.984495i \(-0.556125\pi\)
0.764893 + 0.644158i \(0.222792\pi\)
\(230\) −0.00495511 + 0.00858250i −0.000326730 + 0.000565913i
\(231\) −6.30497 + 9.54835i −0.414837 + 0.628235i
\(232\) 13.3108 + 23.0549i 0.873894 + 1.51363i
\(233\) 1.09700 0.633351i 0.0718666 0.0414922i −0.463636 0.886026i \(-0.653456\pi\)
0.535503 + 0.844534i \(0.320122\pi\)
\(234\) 7.40447 + 8.67700i 0.484046 + 0.567233i
\(235\) 0.00345727 0.00598818i 0.000225528 0.000390626i
\(236\) 2.32242 4.02255i 0.151177 0.261845i
\(237\) −10.6874 6.72286i −0.694220 0.436697i
\(238\) −10.2149 + 5.60041i −0.662132 + 0.363021i
\(239\) 18.8399i 1.21865i 0.792921 + 0.609325i \(0.208559\pi\)
−0.792921 + 0.609325i \(0.791441\pi\)
\(240\) 0.00424344 0.00223998i 0.000273913 0.000144590i
\(241\) −1.05943 + 0.611661i −0.0682438 + 0.0394006i −0.533734 0.845653i \(-0.679212\pi\)
0.465490 + 0.885053i \(0.345878\pi\)
\(242\) −4.35228 2.51279i −0.279775 0.161528i
\(243\) 11.7899 + 10.1980i 0.756322 + 0.654200i
\(244\) −5.82794 + 3.36476i −0.373096 + 0.215407i
\(245\) 0.0134926 0.000596553i 0.000862009 3.81124e-5i
\(246\) 3.12145 + 5.91329i 0.199016 + 0.377018i
\(247\) −18.7121 + 4.95067i −1.19062 + 0.315004i
\(248\) 11.5657 20.0324i 0.734425 1.27206i
\(249\) −15.9438 + 8.41622i −1.01039 + 0.533356i
\(250\) 0.0176208 + 0.0101733i 0.00111443 + 0.000643419i
\(251\) 4.42278 7.66048i 0.279163 0.483525i −0.692014 0.721884i \(-0.743276\pi\)
0.971177 + 0.238359i \(0.0766096\pi\)
\(252\) −2.91027 6.41846i −0.183330 0.404325i
\(253\) 6.08077 10.5322i 0.382294 0.662153i
\(254\) 9.95349i 0.624538i
\(255\) 0.000528758 0.0139428i 3.31121e−5 0.000873133i
\(256\) 8.24404 + 14.2791i 0.515253 + 0.892444i
\(257\) −5.47193 + 9.47765i −0.341329 + 0.591200i −0.984680 0.174372i \(-0.944210\pi\)
0.643350 + 0.765572i \(0.277544\pi\)
\(258\) 2.58584 4.11072i 0.160987 0.255922i
\(259\) −9.66976 0.213662i −0.600849 0.0132763i
\(260\) 0.00596112 + 0.00161745i 0.000369693 + 0.000100310i
\(261\) 1.98615 26.1487i 0.122940 1.61857i
\(262\) 6.56150i 0.405371i
\(263\) 12.7145i 0.784011i 0.919963 + 0.392005i \(0.128219\pi\)
−0.919963 + 0.392005i \(0.871781\pi\)
\(264\) −11.6477 + 6.14845i −0.716865 + 0.378411i
\(265\) 0.0275665i 0.00169339i
\(266\) −14.9747 0.330880i −0.918159 0.0202876i
\(267\) −0.354694 + 9.35293i −0.0217069 + 0.572390i
\(268\) −6.32813 10.9606i −0.386552 0.669528i
\(269\) 11.5793 + 20.0560i 0.706003 + 1.22283i 0.966328 + 0.257313i \(0.0828370\pi\)
−0.260325 + 0.965521i \(0.583830\pi\)
\(270\) −0.0105042 0.00119966i −0.000639264 7.30091e-5i
\(271\) −22.8158 13.1727i −1.38596 0.800185i −0.393104 0.919494i \(-0.628599\pi\)
−0.992857 + 0.119309i \(0.961932\pi\)
\(272\) −5.99505 −0.363503
\(273\) −5.27509 + 15.6580i −0.319263 + 0.947666i
\(274\) 6.49218 0.392207
\(275\) −10.8118 6.24222i −0.651978 0.376420i
\(276\) 3.49673 + 6.62423i 0.210478 + 0.398732i
\(277\) 2.20225 + 3.81442i 0.132321 + 0.229186i 0.924571 0.381010i \(-0.124424\pi\)
−0.792250 + 0.610196i \(0.791090\pi\)
\(278\) −6.49441 11.2486i −0.389509 0.674649i
\(279\) −20.5395 + 9.86577i −1.22967 + 0.590648i
\(280\) 0.0132884 + 0.00806862i 0.000794134 + 0.000482192i
\(281\) 13.2912i 0.792885i 0.918060 + 0.396442i \(0.129755\pi\)
−0.918060 + 0.396442i \(0.870245\pi\)
\(282\) 3.05582 + 5.78898i 0.181972 + 0.344729i
\(283\) 16.3786i 0.973605i 0.873512 + 0.486803i \(0.161837\pi\)
−0.873512 + 0.486803i \(0.838163\pi\)
\(284\) 1.27183i 0.0754691i
\(285\) 0.00955236 0.0151855i 0.000565833 0.000899509i
\(286\) 9.16259 + 2.48612i 0.541796 + 0.147007i
\(287\) −5.02684 + 8.27882i −0.296725 + 0.488683i
\(288\) 1.03989 13.6908i 0.0612763 0.806736i
\(289\) −0.216300 + 0.374642i −0.0127235 + 0.0220378i
\(290\) 0.00889288 + 0.0154029i 0.000522208 + 0.000904491i
\(291\) 4.13733 + 0.156901i 0.242534 + 0.00919771i
\(292\) 1.65134i 0.0966374i
\(293\) −9.96323 + 17.2568i −0.582058 + 1.00815i 0.413177 + 0.910651i \(0.364419\pi\)
−0.995235 + 0.0975037i \(0.968914\pi\)
\(294\) −7.27938 + 10.5114i −0.424542 + 0.613039i
\(295\) 0.00504662 0.00874100i 0.000293825 0.000508920i
\(296\) −9.64179 5.56669i −0.560417 0.323557i
\(297\) 12.8904 + 1.47219i 0.747978 + 0.0854252i
\(298\) −3.77624 + 6.54065i −0.218752 + 0.378889i
\(299\) 4.59874 16.9486i 0.265952 0.980166i
\(300\) 6.80011 3.58957i 0.392605 0.207244i
\(301\) 7.03272 + 0.155395i 0.405359 + 0.00895679i
\(302\) 14.8843 8.59344i 0.856494 0.494497i
\(303\) 27.6631 14.6025i 1.58920 0.838892i
\(304\) −6.67551 3.85411i −0.382867 0.221048i
\(305\) −0.0126641 + 0.00731164i −0.000725146 + 0.000418663i
\(306\) 10.9064 + 7.45201i 0.623478 + 0.426003i
\(307\) 4.93316i 0.281551i −0.990042 0.140775i \(-0.955040\pi\)
0.990042 0.140775i \(-0.0449595\pi\)
\(308\) −5.01369 3.04428i −0.285682 0.173464i
\(309\) 9.00010 14.3075i 0.511998 0.813927i
\(310\) 0.00772703 0.0133836i 0.000438866 0.000760138i
\(311\) 6.69213 11.5911i 0.379476 0.657272i −0.611510 0.791237i \(-0.709438\pi\)
0.990986 + 0.133965i \(0.0427710\pi\)
\(312\) −13.9891 + 12.8851i −0.791979 + 0.729473i
\(313\) 23.9599 13.8332i 1.35429 0.781901i 0.365445 0.930833i \(-0.380917\pi\)
0.988847 + 0.148932i \(0.0475835\pi\)
\(314\) −2.48238 4.29960i −0.140089 0.242641i
\(315\) −0.00632403 0.0139473i −0.000356319 0.000785843i
\(316\) 3.23622 5.60529i 0.182051 0.315322i
\(317\) 12.8384 7.41223i 0.721075 0.416313i −0.0940735 0.995565i \(-0.529989\pi\)
0.815148 + 0.579253i \(0.196656\pi\)
\(318\) −22.0901 13.8957i −1.23875 0.779233i
\(319\) −10.9131 18.9020i −0.611016 1.05831i
\(320\) 0.00742641 + 0.0128629i 0.000415149 + 0.000719059i
\(321\) 9.45492 + 0.358562i 0.527722 + 0.0200130i
\(322\) 7.05320 11.6161i 0.393059 0.647339i
\(323\) −19.4113 + 11.2071i −1.08007 + 0.623580i
\(324\) −4.99495 + 6.23757i −0.277497 + 0.346531i
\(325\) −17.3987 4.72084i −0.965104 0.261865i
\(326\) 3.84155 + 2.21792i 0.212764 + 0.122839i
\(327\) 0.483797 12.7573i 0.0267541 0.705478i
\(328\) −9.65508 + 5.57436i −0.533113 + 0.307793i
\(329\) −4.92115 + 8.10477i −0.271312 + 0.446831i
\(330\) −0.00778178 + 0.00410776i −0.000428373 + 0.000226125i
\(331\) 5.80880 0.319280 0.159640 0.987175i \(-0.448967\pi\)
0.159640 + 0.987175i \(0.448967\pi\)
\(332\) −4.62100 8.00380i −0.253610 0.439266i
\(333\) 4.74848 + 9.88586i 0.260215 + 0.541742i
\(334\) 15.2910i 0.836689i
\(335\) −0.0137510 0.0238175i −0.000751299 0.00130129i
\(336\) −5.88541 + 2.94236i −0.321075 + 0.160519i
\(337\) −9.55520 −0.520505 −0.260252 0.965541i \(-0.583806\pi\)
−0.260252 + 0.965541i \(0.583806\pi\)
\(338\) 13.7091 + 0.0865022i 0.745675 + 0.00470510i
\(339\) 0.780810 + 0.0296109i 0.0424078 + 0.00160824i
\(340\) 0.00715258 0.000387903
\(341\) −9.48239 + 16.4240i −0.513500 + 0.889409i
\(342\) 7.35356 + 15.3094i 0.397635 + 0.827837i
\(343\) −18.4796 1.22657i −0.997804 0.0662285i
\(344\) 7.01238 + 4.04860i 0.378082 + 0.218286i
\(345\) 0.00759839 + 0.0143945i 0.000409084 + 0.000774972i
\(346\) 14.3355 + 8.27660i 0.770681 + 0.444953i
\(347\) 25.2168 14.5589i 1.35371 0.781563i 0.364941 0.931031i \(-0.381089\pi\)
0.988767 + 0.149467i \(0.0477558\pi\)
\(348\) 13.4335 + 0.509441i 0.720109 + 0.0273089i
\(349\) 27.1567 15.6790i 1.45367 0.839275i 0.454980 0.890501i \(-0.349646\pi\)
0.998687 + 0.0512262i \(0.0163129\pi\)
\(350\) −11.9245 7.24047i −0.637392 0.387019i
\(351\) 18.5386 2.70575i 0.989516 0.144422i
\(352\) −5.71380 9.89659i −0.304547 0.527490i
\(353\) −1.59546 −0.0849177 −0.0424588 0.999098i \(-0.513519\pi\)
−0.0424588 + 0.999098i \(0.513519\pi\)
\(354\) 4.46061 + 8.45022i 0.237079 + 0.449124i
\(355\) 0.00276368i 0.000146681i
\(356\) −4.79800 −0.254293
\(357\) −1.14726 + 19.0989i −0.0607196 + 1.01082i
\(358\) −3.40868 + 5.90400i −0.180154 + 0.312036i
\(359\) 11.1728 6.45064i 0.589680 0.340452i −0.175291 0.984517i \(-0.556087\pi\)
0.764971 + 0.644065i \(0.222753\pi\)
\(360\) 0.00133508 0.0175771i 7.03651e−5 0.000926395i
\(361\) −9.81939 −0.516810
\(362\) 0.495312 0.857906i 0.0260330 0.0450906i
\(363\) −7.29958 + 3.85323i −0.383129 + 0.202242i
\(364\) −8.12341 2.39802i −0.425782 0.125691i
\(365\) 0.00358837i 0.000187824i
\(366\) 0.524628 13.8339i 0.0274228 0.723111i
\(367\) 13.0999i 0.683807i 0.939735 + 0.341903i \(0.111072\pi\)
−0.939735 + 0.341903i \(0.888928\pi\)
\(368\) 6.05663 3.49680i 0.315724 0.182283i
\(369\) 10.9507 + 0.831772i 0.570072 + 0.0433003i
\(370\) −0.00644165 0.00371909i −0.000334885 0.000193346i
\(371\) 0.835056 37.7923i 0.0433540 1.96208i
\(372\) −5.45282 10.3299i −0.282716 0.535579i
\(373\) 6.13740 0.317783 0.158891 0.987296i \(-0.449208\pi\)
0.158891 + 0.987296i \(0.449208\pi\)
\(374\) 10.9939 0.568483
\(375\) 0.0295533 0.0156003i 0.00152613 0.000805595i
\(376\) −9.45210 + 5.45717i −0.487455 + 0.281432i
\(377\) −22.2157 22.3564i −1.14417 1.15141i
\(378\) 14.3644 + 1.96288i 0.738824 + 0.100959i
\(379\) 6.45103 + 11.1735i 0.331367 + 0.573945i 0.982780 0.184779i \(-0.0591568\pi\)
−0.651413 + 0.758723i \(0.725823\pi\)
\(380\) 0.00796443 + 0.00459826i 0.000408567 + 0.000235886i
\(381\) 13.8378 + 8.70462i 0.708932 + 0.445951i
\(382\) −2.83648 + 4.91293i −0.145127 + 0.251368i
\(383\) 9.23976 0.472130 0.236065 0.971737i \(-0.424142\pi\)
0.236065 + 0.971737i \(0.424142\pi\)
\(384\) 1.79180 + 0.0679510i 0.0914375 + 0.00346761i
\(385\) −0.0108948 0.00661521i −0.000555248 0.000337143i
\(386\) −19.3091 11.1481i −0.982806 0.567423i
\(387\) −3.45352 7.18989i −0.175553 0.365483i
\(388\) 2.12242i 0.107750i
\(389\) 11.3864 + 6.57391i 0.577311 + 0.333311i 0.760064 0.649848i \(-0.225168\pi\)
−0.182753 + 0.983159i \(0.558501\pi\)
\(390\) −0.00934610 + 0.00860847i −0.000473258 + 0.000435907i
\(391\) 20.3362i 1.02845i
\(392\) −17.9733 11.4642i −0.907791 0.579031i
\(393\) 9.12210 + 5.73823i 0.460149 + 0.289455i
\(394\) −27.3189 −1.37631
\(395\) 0.00703230 0.0121803i 0.000353834 0.000612858i
\(396\) −0.503725 + 6.63181i −0.0253131 + 0.333261i
\(397\) 18.5599i 0.931495i −0.884918 0.465747i \(-0.845786\pi\)
0.884918 0.465747i \(-0.154214\pi\)
\(398\) −2.91923 −0.146328
\(399\) −13.5558 + 20.5292i −0.678640 + 1.02774i
\(400\) −3.58964 6.21745i −0.179482 0.310872i
\(401\) −10.6982 6.17658i −0.534240 0.308444i 0.208501 0.978022i \(-0.433142\pi\)
−0.742741 + 0.669578i \(0.766475\pi\)
\(402\) 26.0176 + 0.986671i 1.29764 + 0.0492107i
\(403\) −7.17130 + 26.4299i −0.357228 + 1.31656i
\(404\) 8.01763 + 13.8869i 0.398892 + 0.690901i
\(405\) −0.0108540 + 0.0135542i −0.000539341 + 0.000673515i
\(406\) −11.7251 21.3861i −0.581908 1.06137i
\(407\) 7.90501 + 4.56396i 0.391837 + 0.226227i
\(408\) −11.7269 + 18.6423i −0.580568 + 0.922933i
\(409\) 4.99900 2.88618i 0.247185 0.142712i −0.371290 0.928517i \(-0.621084\pi\)
0.618475 + 0.785805i \(0.287751\pi\)
\(410\) −0.00645053 + 0.00372422i −0.000318569 + 0.000183926i
\(411\) 5.67760 9.02572i 0.280055 0.445206i
\(412\) 7.50398 + 4.33242i 0.369694 + 0.213443i
\(413\) −7.18346 + 11.8306i −0.353475 + 0.582146i
\(414\) −15.3651 1.16707i −0.755152 0.0573582i
\(415\) −0.0100414 0.0173923i −0.000492915 0.000853753i
\(416\) −11.6316 11.7052i −0.570284 0.573894i
\(417\) −21.3179 0.808446i −1.04394 0.0395898i
\(418\) 12.2418 + 7.06781i 0.598766 + 0.345698i
\(419\) −17.6169 30.5134i −0.860644 1.49068i −0.871309 0.490736i \(-0.836728\pi\)
0.0106648 0.999943i \(-0.496605\pi\)
\(420\) 0.00702177 0.00351048i 0.000342627 0.000171294i
\(421\) 27.0300 1.31736 0.658682 0.752421i \(-0.271114\pi\)
0.658682 + 0.752421i \(0.271114\pi\)
\(422\) 8.23926i 0.401081i
\(423\) 10.7205 + 0.814285i 0.521249 + 0.0395919i
\(424\) 21.7563 37.6830i 1.05658 1.83005i
\(425\) −20.8762 −1.01264
\(426\) −2.21465 1.39312i −0.107300 0.0674968i
\(427\) 17.5834 9.64027i 0.850920 0.466526i
\(428\) 4.85032i 0.234449i
\(429\) 11.4693 10.5641i 0.553742 0.510038i
\(430\) 0.00468495 + 0.00270486i 0.000225928 + 0.000130440i
\(431\) 31.3272i 1.50898i 0.656312 + 0.754490i \(0.272116\pi\)
−0.656312 + 0.754490i \(0.727884\pi\)
\(432\) 5.99633 + 4.43955i 0.288499 + 0.213598i
\(433\) −3.41909 1.97401i −0.164311 0.0948649i 0.415590 0.909552i \(-0.363575\pi\)
−0.579900 + 0.814687i \(0.696909\pi\)
\(434\) −10.9988 + 18.1142i −0.527960 + 0.869511i
\(435\) 0.0291909 + 0.00110702i 0.00139960 + 5.30774e-5i
\(436\) 6.54440 0.313420
\(437\) 13.0738 22.6445i 0.625404 1.08323i
\(438\) 2.87550 + 1.80883i 0.137397 + 0.0864290i
\(439\) 26.7313 + 15.4333i 1.27582 + 0.736593i 0.976076 0.217429i \(-0.0697669\pi\)
0.299739 + 0.954021i \(0.403100\pi\)
\(440\) −0.00733575 0.0127059i −0.000349718 0.000605729i
\(441\) 8.24744 + 19.3127i 0.392735 + 0.919652i
\(442\) 15.3474 4.06047i 0.730001 0.193137i
\(443\) −16.2769 + 9.39748i −0.773340 + 0.446488i −0.834065 0.551667i \(-0.813992\pi\)
0.0607250 + 0.998155i \(0.480659\pi\)
\(444\) −4.97186 + 2.62449i −0.235954 + 0.124553i
\(445\) −0.0104261 −0.000494242
\(446\) 7.90084 0.374116
\(447\) 5.79067 + 10.9699i 0.273889 + 0.518858i
\(448\) −9.79160 17.8594i −0.462610 0.843778i
\(449\) −4.95835 2.86270i −0.233999 0.135099i 0.378417 0.925635i \(-0.376469\pi\)
−0.612415 + 0.790536i \(0.709802\pi\)
\(450\) −1.19805 + 15.7730i −0.0564768 + 0.743547i
\(451\) 7.91591 4.57025i 0.372745 0.215205i
\(452\) 0.400551i 0.0188403i
\(453\) 1.06974 28.2080i 0.0502608 1.32533i
\(454\) 9.00741i 0.422739i
\(455\) −0.0176522 0.00521091i −0.000827547 0.000244291i
\(456\) −25.0428 + 13.2193i −1.17273 + 0.619051i
\(457\) −16.9493 + 29.3570i −0.792854 + 1.37326i 0.131339 + 0.991337i \(0.458072\pi\)
−0.924193 + 0.381926i \(0.875261\pi\)
\(458\) −10.8625 −0.507573
\(459\) 19.8981 8.64557i 0.928764 0.403541i
\(460\) −0.00722605 + 0.00417196i −0.000336917 + 0.000194519i
\(461\) 9.37925 16.2453i 0.436835 0.756621i −0.560608 0.828081i \(-0.689433\pi\)
0.997443 + 0.0714602i \(0.0227659\pi\)
\(462\) 10.7929 5.39581i 0.502130 0.251036i
\(463\) −20.1902 −0.938317 −0.469158 0.883114i \(-0.655443\pi\)
−0.469158 + 0.883114i \(0.655443\pi\)
\(464\) 12.5513i 0.582681i
\(465\) −0.0118490 0.0224468i −0.000549484 0.00104095i
\(466\) −1.33582 −0.0618806
\(467\) −3.57259 6.18791i −0.165320 0.286342i 0.771449 0.636291i \(-0.219532\pi\)
−0.936769 + 0.349949i \(0.886199\pi\)
\(468\) 1.74618 + 9.44396i 0.0807172 + 0.436547i
\(469\) 18.1305 + 33.0692i 0.837190 + 1.52699i
\(470\) −0.00631492 + 0.00364592i −0.000291285 + 0.000168174i
\(471\) −8.14841 0.309015i −0.375459 0.0142386i
\(472\) −13.7973 + 7.96588i −0.635073 + 0.366659i
\(473\) −5.74924 3.31932i −0.264350 0.152623i
\(474\) 6.21572 + 11.7751i 0.285498 + 0.540849i
\(475\) −23.2457 13.4209i −1.06659 0.615794i
\(476\) −9.80584 0.216669i −0.449450 0.00993102i
\(477\) −38.6369 + 18.5585i −1.76906 + 0.849735i
\(478\) 9.93393 17.2061i 0.454367 0.786987i
\(479\) 9.23925 0.422152 0.211076 0.977470i \(-0.432303\pi\)
0.211076 + 0.977470i \(0.432303\pi\)
\(480\) 0.0152836 0.000579604i 0.000697597 2.64552e-5i
\(481\) 12.7209 + 3.45161i 0.580024 + 0.157380i
\(482\) 1.29007 0.0587612
\(483\) −9.98099 19.9643i −0.454151 0.908406i
\(484\) −2.11565 3.66441i −0.0961658 0.166564i
\(485\) 0.00461203i 0.000209422i
\(486\) −5.39026 15.5302i −0.244507 0.704464i
\(487\) −0.650774 1.12717i −0.0294894 0.0510771i 0.850904 0.525321i \(-0.176055\pi\)
−0.880393 + 0.474244i \(0.842721\pi\)
\(488\) 23.0822 1.04488
\(489\) 6.44299 3.40106i 0.291362 0.153801i
\(490\) −0.0120079 0.00765922i −0.000542464 0.000346008i
\(491\) −11.4486 + 6.60986i −0.516668 + 0.298299i −0.735570 0.677448i \(-0.763086\pi\)
0.218902 + 0.975747i \(0.429752\pi\)
\(492\) −0.213347 + 5.62575i −0.00961842 + 0.253628i
\(493\) −31.6075 18.2486i −1.42353 0.821876i
\(494\) 19.6998 + 5.34521i 0.886335 + 0.240492i
\(495\) −0.00109459 + 0.0144109i −4.91984e−5 + 0.000647723i
\(496\) −9.44476 + 5.45294i −0.424082 + 0.244844i
\(497\) 0.0837188 3.78888i 0.00375530 0.169954i
\(498\) 18.9988 + 0.720498i 0.851358 + 0.0322863i
\(499\) 3.18217 + 5.51168i 0.142454 + 0.246737i 0.928420 0.371532i \(-0.121168\pi\)
−0.785966 + 0.618269i \(0.787834\pi\)
\(500\) 0.00856547 + 0.0148358i 0.000383060 + 0.000663479i
\(501\) −21.2583 13.3725i −0.949751 0.597438i
\(502\) −8.07847 + 4.66411i −0.360560 + 0.208169i
\(503\) −17.7261 + 30.7026i −0.790370 + 1.36896i 0.135369 + 0.990795i \(0.456778\pi\)
−0.925738 + 0.378165i \(0.876555\pi\)
\(504\) −2.36279 + 24.0569i −0.105247 + 1.07158i
\(505\) 0.0174223 + 0.0301764i 0.000775283 + 0.00134283i
\(506\) −11.1069 + 6.41256i −0.493761 + 0.285073i
\(507\) 12.1092 18.9833i 0.537790 0.843079i
\(508\) −4.19018 + 7.25761i −0.185909 + 0.322004i
\(509\) 7.82495 13.5532i 0.346835 0.600736i −0.638850 0.769331i \(-0.720590\pi\)
0.985685 + 0.168595i \(0.0539231\pi\)
\(510\) −0.00783470 + 0.0124549i −0.000346926 + 0.000551512i
\(511\) −0.108700 + 4.91948i −0.00480862 + 0.217625i
\(512\) 15.3173i 0.676934i
\(513\) 27.7147 + 3.16524i 1.22363 + 0.139749i
\(514\) 9.99480 5.77050i 0.440852 0.254526i
\(515\) 0.0163062 + 0.00941436i 0.000718535 + 0.000414846i
\(516\) 3.61599 1.90877i 0.159185 0.0840288i
\(517\) 7.74949 4.47417i 0.340822 0.196774i
\(518\) 8.71853 + 5.29382i 0.383070 + 0.232597i
\(519\) 24.0433 12.6917i 1.05538 0.557105i
\(520\) −0.0149334 0.0150279i −0.000654871 0.000659016i
\(521\) 19.1120 33.1029i 0.837310 1.45026i −0.0548261 0.998496i \(-0.517460\pi\)
0.892136 0.451767i \(-0.149206\pi\)
\(522\) −15.6017 + 22.8338i −0.682867 + 0.999410i
\(523\) −26.5888 15.3510i −1.16265 0.671254i −0.210709 0.977549i \(-0.567577\pi\)
−0.951937 + 0.306295i \(0.900911\pi\)
\(524\) −2.76224 + 4.78434i −0.120669 + 0.209005i
\(525\) −20.4944 + 10.2460i −0.894447 + 0.447172i
\(526\) 6.70414 11.6119i 0.292314 0.506303i
\(527\) 31.7125i 1.38142i
\(528\) 6.20525 + 0.235324i 0.270049 + 0.0102411i
\(529\) 0.361731 + 0.626536i 0.0157274 + 0.0272407i
\(530\) 0.0145353 0.0251759i 0.000631374 0.00109357i
\(531\) 15.6488 + 1.18862i 0.679101 + 0.0515817i
\(532\) −10.7796 6.54526i −0.467353 0.283773i
\(533\) 9.36253 9.30364i 0.405536 0.402985i
\(534\) 5.25557 8.35482i 0.227431 0.361548i
\(535\) 0.0105397i 0.000455673i
\(536\) 43.4109i 1.87507i
\(537\) 5.22702 + 9.90212i 0.225563 + 0.427308i
\(538\) 24.4223i 1.05292i
\(539\) 14.7358 + 9.39917i 0.634716 + 0.404851i
\(540\) −0.00715411 0.00529674i −0.000307864 0.000227936i
\(541\) 4.56917 + 7.91403i 0.196444 + 0.340251i 0.947373 0.320132i \(-0.103727\pi\)
−0.750929 + 0.660383i \(0.770394\pi\)
\(542\) 13.8915 + 24.0607i 0.596690 + 1.03350i
\(543\) −0.759535 1.43887i −0.0325948 0.0617478i
\(544\) −16.5488 9.55448i −0.709525 0.409645i
\(545\) 0.0142210 0.000609160
\(546\) 13.0738 11.5187i 0.559508 0.492954i
\(547\) −35.4176 −1.51435 −0.757173 0.653214i \(-0.773420\pi\)
−0.757173 + 0.653214i \(0.773420\pi\)
\(548\) 4.73379 + 2.73305i 0.202217 + 0.116750i
\(549\) −18.7738 12.8275i −0.801244 0.547466i
\(550\) 6.58282 + 11.4018i 0.280692 + 0.486174i
\(551\) −23.4634 40.6398i −0.999574 1.73131i
\(552\) 0.973639 25.6739i 0.0414408 1.09275i
\(553\) −10.0099 + 16.4856i −0.425665 + 0.701038i
\(554\) 4.64484i 0.197340i
\(555\) −0.0108039 + 0.00570302i −0.000458598 + 0.000242080i
\(556\) 10.9360i 0.463788i
\(557\) 4.53358i 0.192094i 0.995377 + 0.0960470i \(0.0306199\pi\)
−0.995377 + 0.0960470i \(0.969380\pi\)
\(558\) 23.9604 + 1.81993i 1.01432 + 0.0770439i
\(559\) −9.25180 2.51032i −0.391310 0.106175i
\(560\) −0.00352369 0.00642705i −0.000148903 0.000271592i
\(561\) 9.61452 15.2843i 0.405925 0.645303i
\(562\) 7.00820 12.1386i 0.295623 0.512034i
\(563\) 6.06622 + 10.5070i 0.255661 + 0.442817i 0.965075 0.261975i \(-0.0843737\pi\)
−0.709414 + 0.704792i \(0.751040\pi\)
\(564\) −0.208862 + 5.50747i −0.00879466 + 0.231906i
\(565\) 0 0.000870398i 0 3.66179e-5i
\(566\) 8.63613 14.9582i 0.363004 0.628741i
\(567\) 15.2909 18.2534i 0.642159 0.766571i
\(568\) 2.18118 3.77792i 0.0915204 0.158518i
\(569\) 31.4844 + 18.1775i 1.31990 + 0.762042i 0.983712 0.179754i \(-0.0575303\pi\)
0.336184 + 0.941796i \(0.390864\pi\)
\(570\) −0.0167310 + 0.00883178i −0.000700784 + 0.000369923i
\(571\) 7.04698 12.2057i 0.294907 0.510794i −0.680056 0.733160i \(-0.738045\pi\)
0.974963 + 0.222366i \(0.0713780\pi\)
\(572\) 5.63433 + 5.66999i 0.235583 + 0.237074i
\(573\) 4.34960 + 8.23991i 0.181707 + 0.344227i
\(574\) 8.95618 4.91032i 0.373824 0.204953i
\(575\) 21.0906 12.1767i 0.879540 0.507802i
\(576\) −13.0289 + 19.0684i −0.542871 + 0.794519i
\(577\) 11.4758 + 6.62558i 0.477745 + 0.275826i 0.719476 0.694517i \(-0.244382\pi\)
−0.241731 + 0.970343i \(0.577715\pi\)
\(578\) 0.395085 0.228102i 0.0164334 0.00948780i
\(579\) −32.3849 + 17.0950i −1.34587 + 0.710445i
\(580\) 0.0149748i 0.000621793i
\(581\) 13.2395 + 24.1482i 0.549266 + 1.00183i
\(582\) −3.69581 2.32483i −0.153196 0.0963675i
\(583\) −17.8373 + 30.8951i −0.738746 + 1.27955i
\(584\) −2.83205 + 4.90525i −0.117191 + 0.202981i
\(585\) 0.00379445 + 0.0205217i 0.000156881 + 0.000848469i
\(586\) 18.1984 10.5069i 0.751771 0.434035i
\(587\) 15.6011 + 27.0220i 0.643928 + 1.11532i 0.984548 + 0.175115i \(0.0560296\pi\)
−0.340620 + 0.940201i \(0.610637\pi\)
\(588\) −9.73284 + 4.59999i −0.401376 + 0.189700i
\(589\) −20.3874 + 35.3120i −0.840047 + 1.45500i
\(590\) −0.00921795 + 0.00532198i −0.000379497 + 0.000219103i
\(591\) −23.8912 + 37.9800i −0.982753 + 1.56229i
\(592\) 2.62455 + 4.54585i 0.107868 + 0.186833i
\(593\) 5.48292 + 9.49670i 0.225157 + 0.389983i 0.956366 0.292170i \(-0.0943773\pi\)
−0.731210 + 0.682153i \(0.761044\pi\)
\(594\) −10.9963 8.14141i −0.451184 0.334046i
\(595\) −0.0213081 0.000470823i −0.000873547 1.93018e-5i
\(596\) −5.50691 + 3.17942i −0.225572 + 0.130234i
\(597\) −2.55295 + 4.05845i −0.104485 + 0.166101i
\(598\) −13.1367 + 13.0540i −0.537198 + 0.533819i
\(599\) −12.1466 7.01285i −0.496297 0.286537i 0.230886 0.972981i \(-0.425838\pi\)
−0.727183 + 0.686444i \(0.759171\pi\)
\(600\) −26.3556 0.999491i −1.07596 0.0408040i
\(601\) 3.15684 1.82260i 0.128770 0.0743455i −0.434231 0.900801i \(-0.642980\pi\)
0.563001 + 0.826456i \(0.309647\pi\)
\(602\) −6.34091 3.85015i −0.258436 0.156920i
\(603\) 24.1248 35.3079i 0.982439 1.43785i
\(604\) 14.4705 0.588798
\(605\) −0.00459731 0.00796277i −0.000186907 0.000323733i
\(606\) −32.9638 1.25010i −1.33906 0.0507817i
\(607\) 17.2352i 0.699557i −0.936833 0.349778i \(-0.886257\pi\)
0.936833 0.349778i \(-0.113743\pi\)
\(608\) −12.2848 21.2779i −0.498214 0.862933i
\(609\) −39.9858 2.40193i −1.62031 0.0973311i
\(610\) 0.0154212 0.000624386
\(611\) 9.16570 9.10805i 0.370805 0.368472i
\(612\) 4.81531 + 10.0250i 0.194647 + 0.405236i
\(613\) −30.5124 −1.23239 −0.616193 0.787596i \(-0.711326\pi\)
−0.616193 + 0.787596i \(0.711326\pi\)
\(614\) −2.60117 + 4.50536i −0.104975 + 0.181821i
\(615\) −0.000463603 0.0122248i −1.86943e−5 0.000492950i
\(616\) 9.67207 + 17.6414i 0.389699 + 0.710791i
\(617\) 5.82452 + 3.36279i 0.234486 + 0.135381i 0.612640 0.790362i \(-0.290108\pi\)
−0.378154 + 0.925743i \(0.623441\pi\)
\(618\) −15.7637 + 8.32118i −0.634110 + 0.334727i
\(619\) 8.43263 + 4.86858i 0.338936 + 0.195685i 0.659801 0.751440i \(-0.270640\pi\)
−0.320865 + 0.947125i \(0.603974\pi\)
\(620\) 0.0112684 0.00650580i 0.000452549 0.000261279i
\(621\) −15.0597 + 20.3406i −0.604325 + 0.816239i
\(622\) −12.2236 + 7.05729i −0.490121 + 0.282971i
\(623\) 14.2936 + 0.315831i 0.572662 + 0.0126535i
\(624\) 8.74936 1.96332i 0.350255 0.0785957i
\(625\) −12.5000 21.6506i −0.499999 0.866023i
\(626\) −29.1761 −1.16611
\(627\) 20.5318 10.8381i 0.819961 0.432832i
\(628\) 4.18009i 0.166804i
\(629\) 15.2635 0.608595
\(630\) −0.00157857 + 0.0160724i −6.28918e−5 + 0.000640338i
\(631\) −1.16211 + 2.01284i −0.0462630 + 0.0801299i −0.888230 0.459400i \(-0.848065\pi\)
0.841967 + 0.539530i \(0.181398\pi\)
\(632\) −19.2261 + 11.1002i −0.764774 + 0.441543i
\(633\) 11.4546 + 7.20547i 0.455279 + 0.286392i
\(634\) −15.6334 −0.620880
\(635\) −0.00910527 + 0.0157708i −0.000361332 + 0.000625845i
\(636\) −10.2573 19.4315i −0.406728 0.770510i
\(637\) 24.0424 + 7.67863i 0.952596 + 0.304239i
\(638\) 23.0171i 0.911256i
\(639\) −3.87355 + 1.86059i −0.153235 + 0.0736036i
\(640\) 0.00199739i 7.89536e-5i
\(641\) 9.55907 5.51893i 0.377561 0.217985i −0.299196 0.954192i \(-0.596718\pi\)
0.676756 + 0.736207i \(0.263385\pi\)
\(642\) −8.44592 5.31288i −0.333334 0.209683i
\(643\) 2.75926 + 1.59306i 0.108815 + 0.0628241i 0.553420 0.832903i \(-0.313323\pi\)
−0.444605 + 0.895727i \(0.646656\pi\)
\(644\) 10.0330 5.50067i 0.395354 0.216757i
\(645\) 0.00785754 0.00414775i 0.000309390 0.000163318i
\(646\) 23.6372 0.929995
\(647\) 39.9534 1.57073 0.785365 0.619033i \(-0.212475\pi\)
0.785365 + 0.619033i \(0.212475\pi\)
\(648\) 25.5347 9.96213i 1.00310 0.391350i
\(649\) 11.3120 6.53099i 0.444035 0.256364i
\(650\) 13.4006 + 13.4854i 0.525616 + 0.528943i
\(651\) 15.5644 + 31.1325i 0.610018 + 1.22018i
\(652\) 1.86738 + 3.23440i 0.0731323 + 0.126669i
\(653\) −13.7639 7.94656i −0.538621 0.310973i 0.205899 0.978573i \(-0.433988\pi\)
−0.744520 + 0.667600i \(0.767322\pi\)
\(654\) −7.16852 + 11.3958i −0.280311 + 0.445613i
\(655\) −0.00600235 + 0.0103964i −0.000234531 + 0.000406220i
\(656\) 5.25633 0.205225
\(657\) 5.02942 2.41578i 0.196216 0.0942487i
\(658\) 8.76789 4.80709i 0.341808 0.187400i
\(659\) −43.5079 25.1193i −1.69483 0.978510i −0.950514 0.310681i \(-0.899443\pi\)
−0.744315 0.667829i \(-0.767224\pi\)
\(660\) −0.00740337 0.000280760i −0.000288176 1.09286e-5i
\(661\) 50.3595i 1.95876i 0.202032 + 0.979379i \(0.435246\pi\)
−0.202032 + 0.979379i \(0.564754\pi\)
\(662\) −5.30506 3.06288i −0.206187 0.119042i
\(663\) 7.77669 24.8876i 0.302022 0.966556i
\(664\) 31.7000i 1.23020i
\(665\) −0.0234240 0.0142229i −0.000908343 0.000551539i
\(666\) 0.875949 11.5323i 0.0339423 0.446869i
\(667\) 42.5763 1.64856
\(668\) 6.43717 11.1495i 0.249062 0.431387i
\(669\) 6.90952 10.9841i 0.267137 0.424670i
\(670\) 0.0290027i 0.00112047i
\(671\) −18.9244 −0.730570
\(672\) −20.9355 1.25759i −0.807604 0.0485124i
\(673\) 18.1511 + 31.4387i 0.699674 + 1.21187i 0.968579 + 0.248704i \(0.0800048\pi\)
−0.268905 + 0.963167i \(0.586662\pi\)
\(674\) 8.72657 + 5.03829i 0.336135 + 0.194068i
\(675\) 20.8806 + 15.4596i 0.803696 + 0.595039i
\(676\) 9.95958 + 5.83427i 0.383061 + 0.224395i
\(677\) 18.7369 + 32.4533i 0.720119 + 1.24728i 0.960952 + 0.276716i \(0.0892460\pi\)
−0.240833 + 0.970567i \(0.577421\pi\)
\(678\) −0.697485 0.438750i −0.0267867 0.0168501i
\(679\) 0.139710 6.32287i 0.00536157 0.242650i
\(680\) −0.0212465 0.0122667i −0.000814765 0.000470405i
\(681\) −12.5225 7.87724i −0.479864 0.301857i
\(682\) 17.3202 9.99980i 0.663223 0.382912i
\(683\) −32.7411 + 18.9031i −1.25281 + 0.723307i −0.971666 0.236359i \(-0.924046\pi\)
−0.281140 + 0.959667i \(0.590712\pi\)
\(684\) −1.08302 + 14.2585i −0.0414103 + 0.545189i
\(685\) 0.0102865 + 0.00593893i 0.000393028 + 0.000226915i
\(686\) 16.2303 + 10.8642i 0.619676 + 0.414796i
\(687\) −9.49960 + 15.1016i −0.362432 + 0.576162i
\(688\) −1.90881 3.30615i −0.0727726 0.126046i
\(689\) −13.4899 + 49.7172i −0.513925 + 1.89407i
\(690\) 0.000650486 0.0171527i 2.47636e−5 0.000652991i
\(691\) 11.2268 + 6.48179i 0.427087 + 0.246579i 0.698105 0.715995i \(-0.254027\pi\)
−0.271018 + 0.962574i \(0.587360\pi\)
\(692\) 6.96851 + 12.0698i 0.264903 + 0.458825i
\(693\) 1.93718 19.7235i 0.0735874 0.749235i
\(694\) −30.7066 −1.16561
\(695\) 0.0237639i 0.000901415i
\(696\) −39.0299 24.5516i −1.47942 0.930627i
\(697\) 7.64226 13.2368i 0.289471 0.501379i
\(698\) −33.0689 −1.25168
\(699\) −1.16821 + 1.85712i −0.0441858 + 0.0702425i
\(700\) −5.64672 10.2993i −0.213426 0.389279i
\(701\) 34.9085i 1.31848i 0.751934 + 0.659238i \(0.229121\pi\)
−0.751934 + 0.659238i \(0.770879\pi\)
\(702\) −18.3576 7.30396i −0.692863 0.275670i
\(703\) 16.9960 + 9.81262i 0.641014 + 0.370090i
\(704\) 19.2215i 0.724438i
\(705\) −0.000453857 0.0119677i −1.70932e−5 0.000450731i
\(706\) 1.45710 + 0.841257i 0.0548387 + 0.0316611i
\(707\) −22.9711 41.8981i −0.863915 1.57574i
\(708\) −0.304877 + 8.03931i −0.0114580 + 0.302136i
\(709\) 36.5640 1.37319 0.686595 0.727040i \(-0.259105\pi\)
0.686595 + 0.727040i \(0.259105\pi\)
\(710\) 0.00145724 0.00252402i 5.46893e−5 9.47247e-5i
\(711\) 21.8061 + 1.65630i 0.817794 + 0.0621162i
\(712\) 14.2523 + 8.22855i 0.534126 + 0.308378i
\(713\) −18.4973 32.0382i −0.692729 1.19984i
\(714\) 11.1183 16.8377i 0.416092 0.630136i
\(715\) 0.0122434 + 0.0123209i 0.000457877 + 0.000460776i
\(716\) −4.97089 + 2.86994i −0.185771 + 0.107255i
\(717\) −15.2331 28.8578i −0.568892 1.07771i
\(718\) −13.6052 −0.507743
\(719\) 39.6806 1.47984 0.739919 0.672696i \(-0.234864\pi\)
0.739919 + 0.672696i \(0.234864\pi\)
\(720\) −0.00468869 + 0.00686214i −0.000174737 + 0.000255737i
\(721\) −22.0698 13.4006i −0.821921 0.499064i
\(722\) 8.96785 + 5.17759i 0.333749 + 0.192690i
\(723\) 1.12821 1.79352i 0.0419584 0.0667017i
\(724\) 0.722316 0.417030i 0.0268447 0.0154988i
\(725\) 43.7067i 1.62323i
\(726\) 8.69830 + 0.329868i 0.322824 + 0.0122426i
\(727\) 15.6289i 0.579644i 0.957081 + 0.289822i \(0.0935961\pi\)
−0.957081 + 0.289822i \(0.906404\pi\)
\(728\) 20.0177 + 21.0549i 0.741905 + 0.780345i
\(729\) −26.3047 6.08783i −0.974249 0.225475i
\(730\) −0.00189208 + 0.00327718i −7.00291e−5 + 0.000121294i
\(731\) −11.1010 −0.410585
\(732\) 6.20629 9.86618i 0.229391 0.364665i
\(733\) −25.0179 + 14.4441i −0.924055 + 0.533504i −0.884927 0.465730i \(-0.845792\pi\)
−0.0391289 + 0.999234i \(0.512458\pi\)
\(734\) 6.90732 11.9638i 0.254954 0.441593i
\(735\) −0.0211495 + 0.00999578i −0.000780110 + 0.000368700i
\(736\) 22.2918 0.821686
\(737\) 35.5913i 1.31102i
\(738\) −9.56250 6.53376i −0.352000 0.240511i
\(739\) 15.1318 0.556634 0.278317 0.960489i \(-0.410223\pi\)
0.278317 + 0.960489i \(0.410223\pi\)
\(740\) −0.00313130 0.00542356i −0.000115109 0.000199374i
\(741\) 24.6592 22.7130i 0.905878 0.834383i
\(742\) −20.6899 + 34.0746i −0.759549 + 1.25092i
\(743\) −30.5018 + 17.6102i −1.11900 + 0.646056i −0.941146 0.338001i \(-0.890249\pi\)
−0.177856 + 0.984057i \(0.556916\pi\)
\(744\) −1.51830 + 40.0361i −0.0556636 + 1.46779i
\(745\) −0.0119665 + 0.00690888i −0.000438420 + 0.000253122i
\(746\) −5.60517 3.23614i −0.205220 0.118484i
\(747\) 17.6167 25.7829i 0.644561 0.943348i
\(748\) 8.01626 + 4.62819i 0.293103 + 0.169223i
\(749\) 0.319275 14.4495i 0.0116660 0.527973i
\(750\) −0.0352162 0.00133551i −0.00128591 4.87661e-5i
\(751\) −0.826755 + 1.43198i −0.0301687 + 0.0522538i −0.880716 0.473646i \(-0.842938\pi\)
0.850547 + 0.525899i \(0.176271\pi\)
\(752\) 5.14582 0.187649
\(753\) −0.580604 + 15.3100i −0.0211584 + 0.557926i
\(754\) 8.50107 + 32.1316i 0.309591 + 1.17016i
\(755\) 0.0314445 0.00114438
\(756\) 9.64749 + 7.47830i 0.350876 + 0.271983i
\(757\) −7.44232 12.8905i −0.270496 0.468513i 0.698493 0.715617i \(-0.253854\pi\)
−0.968989 + 0.247104i \(0.920521\pi\)
\(758\) 13.6061i 0.494194i
\(759\) −0.798257 + 21.0493i −0.0289749 + 0.764040i
\(760\) −0.0157720 0.0273180i −0.000572112 0.000990926i
\(761\) −8.40012 −0.304504 −0.152252 0.988342i \(-0.548653\pi\)
−0.152252 + 0.988342i \(0.548653\pi\)
\(762\) −8.04799 15.2462i −0.291548 0.552311i
\(763\) −19.4963 0.430789i −0.705813 0.0155956i
\(764\) −4.13646 + 2.38818i −0.149652 + 0.0864015i
\(765\) 0.0104637 + 0.0217843i 0.000378315 + 0.000787614i
\(766\) −8.43849 4.87196i −0.304895 0.176031i
\(767\) 13.3793 13.2951i 0.483097 0.480058i
\(768\) −24.1732 15.2061i −0.872277 0.548703i
\(769\) 40.4429 23.3497i 1.45841 0.842013i 0.459476 0.888190i \(-0.348037\pi\)
0.998933 + 0.0461769i \(0.0147038\pi\)
\(770\) 0.00646188 + 0.0117862i 0.000232870 + 0.000424744i
\(771\) 0.718332 18.9417i 0.0258701 0.682168i
\(772\) −9.38617 16.2573i −0.337816 0.585114i
\(773\) −17.3505 30.0520i −0.624055 1.08089i −0.988723 0.149757i \(-0.952151\pi\)
0.364668 0.931138i \(-0.381182\pi\)
\(774\) −0.637070 + 8.38737i −0.0228990 + 0.301478i
\(775\) −32.8889 + 18.9884i −1.18140 + 0.682084i
\(776\) 3.63995 6.30458i 0.130667 0.226321i
\(777\) 14.9843 7.49129i 0.537560 0.268749i
\(778\) −6.93262 12.0076i −0.248546 0.430495i
\(779\) 17.0194 9.82614i 0.609783 0.352058i
\(780\) −0.0104387 + 0.00234240i −0.000373765 + 8.38714e-5i
\(781\) −1.78829 + 3.09740i −0.0639899 + 0.110834i
\(782\) −10.7229 + 18.5727i −0.383451 + 0.664157i
\(783\) 18.1005 + 41.6590i 0.646860 + 1.48877i
\(784\) 4.63612 + 8.91791i 0.165576 + 0.318497i
\(785\) 0.00908333i 0.000324198i
\(786\) −5.30537 10.0505i −0.189236 0.358491i
\(787\) 19.9645 11.5265i 0.711657 0.410875i −0.100017 0.994986i \(-0.531890\pi\)
0.811674 + 0.584111i \(0.198557\pi\)
\(788\) −19.9197 11.5006i −0.709609 0.409693i
\(789\) −10.2804 19.4754i −0.365993 0.693341i
\(790\) −0.0128449 + 0.00741602i −0.000457002 + 0.000263850i
\(791\) 0.0263665 1.19327i 0.000937484 0.0424279i
\(792\) 12.8698 18.8357i 0.457310 0.669296i
\(793\) −26.4182 + 6.98949i −0.938140 + 0.248204i
\(794\) −9.78631 + 16.9504i −0.347303 + 0.601547i
\(795\) −0.0222891 0.0422247i −0.000790514 0.00149756i
\(796\) −2.12856 1.22893i −0.0754449 0.0435581i
\(797\) 18.0616 31.2836i 0.639774 1.10812i −0.345708 0.938342i \(-0.612361\pi\)
0.985482 0.169779i \(-0.0543054\pi\)
\(798\) 23.2049 11.6011i 0.821446 0.410675i
\(799\) 7.48159 12.9585i 0.264680 0.458439i
\(800\) 22.8837i 0.809059i
\(801\) −7.01910 14.6131i −0.248008 0.516327i
\(802\) 6.51361 + 11.2819i 0.230003 + 0.398378i
\(803\) 2.32191 4.02166i 0.0819384 0.141921i
\(804\) 18.5554 + 11.6722i 0.654398 + 0.411647i
\(805\) 0.0218016 0.0119530i 0.000768406 0.000421286i
\(806\) 20.4854 20.3566i 0.721568 0.717029i
\(807\) −33.9530 21.3580i −1.19520 0.751837i
\(808\) 55.0009i 1.93492i
\(809\) 29.7538i 1.04609i −0.852306 0.523044i \(-0.824796\pi\)
0.852306 0.523044i \(-0.175204\pi\)
\(810\) 0.0170597 0.00665567i 0.000599416 0.000233857i
\(811\) 17.0021i 0.597025i −0.954406 0.298512i \(-0.903510\pi\)
0.954406 0.298512i \(-0.0964904\pi\)
\(812\) 0.453623 20.5297i 0.0159190 0.720451i
\(813\) 45.5988 + 1.72926i 1.59922 + 0.0606477i
\(814\) −4.81299 8.33634i −0.168695 0.292189i
\(815\) 0.00405782 + 0.00702835i 0.000142139 + 0.000246192i
\(816\) 9.18287 4.84735i 0.321465 0.169691i
\(817\) −12.3610 7.13662i −0.432456 0.249679i
\(818\) −6.08732 −0.212838
\(819\) −4.58036 28.2493i −0.160051 0.987109i
\(820\) −0.00627123 −0.000219001
\(821\) 25.3845 + 14.6558i 0.885926 + 0.511490i 0.872608 0.488422i \(-0.162427\pi\)
0.0133184 + 0.999911i \(0.495760\pi\)
\(822\) −9.94434 + 5.24931i −0.346849 + 0.183091i
\(823\) 1.08892 + 1.88607i 0.0379575 + 0.0657443i 0.884380 0.466768i \(-0.154582\pi\)
−0.846423 + 0.532512i \(0.821248\pi\)
\(824\) −14.8602 25.7386i −0.517679 0.896647i
\(825\) 21.6081 + 0.819452i 0.752299 + 0.0285297i
\(826\) 12.7986 7.01695i 0.445319 0.244151i
\(827\) 15.2048i 0.528724i 0.964424 + 0.264362i \(0.0851613\pi\)
−0.964424 + 0.264362i \(0.914839\pi\)
\(828\) −10.7122 7.31930i −0.372273 0.254363i
\(829\) 3.97612i 0.138097i −0.997613 0.0690483i \(-0.978004\pi\)
0.997613 0.0690483i \(-0.0219962\pi\)
\(830\) 0.0211787i 0.000735123i
\(831\) −6.45746 4.06205i −0.224007 0.140911i
\(832\) 7.09921 + 26.8329i 0.246121 + 0.930265i
\(833\) 29.1981 + 1.29095i 1.01166 + 0.0447288i
\(834\) 19.0430 + 11.9789i 0.659404 + 0.414796i
\(835\) 0.0139880 0.0242279i 0.000484074 0.000838440i
\(836\) 5.95076 + 10.3070i 0.205811 + 0.356476i
\(837\) 23.4842 31.7193i 0.811733 1.09638i
\(838\) 37.1564i 1.28355i
\(839\) −17.0612 + 29.5509i −0.589019 + 1.02021i 0.405342 + 0.914165i \(0.367152\pi\)
−0.994361 + 0.106046i \(0.966181\pi\)
\(840\) −0.0268784 0.00161457i −0.000927391 5.57080e-5i
\(841\) 23.7056 41.0593i 0.817434 1.41584i
\(842\) −24.6860 14.2525i −0.850736 0.491172i
\(843\) −10.7467 20.3586i −0.370136 0.701188i
\(844\) −3.46853 + 6.00767i −0.119392 + 0.206793i
\(845\) 0.0216422 + 0.0126779i 0.000744514 + 0.000436132i
\(846\) −9.36146 6.39640i −0.321854 0.219913i
\(847\) 6.06147 + 11.0558i 0.208275 + 0.379883i
\(848\) −17.7665 + 10.2575i −0.610105 + 0.352244i
\(849\) −13.2430 25.0877i −0.454500 0.861009i
\(850\) 19.0658 + 11.0076i 0.653951 + 0.377559i
\(851\) −15.4203 + 8.90290i −0.528600 + 0.305187i
\(852\) −1.02835 1.94811i −0.0352306 0.0667412i
\(853\) 56.0005i 1.91742i 0.284387 + 0.958710i \(0.408210\pi\)
−0.284387 + 0.958710i \(0.591790\pi\)
\(854\) −21.1417 0.467146i −0.723454 0.0159854i
\(855\) −0.00235340 + 0.0309838i −8.04847e−5 + 0.00105962i
\(856\) 8.31828 14.4077i 0.284313 0.492445i
\(857\) 7.20743 12.4836i 0.246201 0.426433i −0.716268 0.697826i \(-0.754151\pi\)
0.962469 + 0.271393i \(0.0874843\pi\)
\(858\) −16.0449 + 3.60041i −0.547764 + 0.122916i
\(859\) 2.32454 1.34207i 0.0793121 0.0457909i −0.459819 0.888012i \(-0.652086\pi\)
0.539132 + 0.842222i \(0.318753\pi\)
\(860\) 0.00227736 + 0.00394451i 7.76574e−5 + 0.000134507i
\(861\) 1.00590 16.7455i 0.0342808 0.570685i
\(862\) 16.5183 28.6105i 0.562615 0.974479i
\(863\) 25.8619 14.9314i 0.880349 0.508270i 0.00957560 0.999954i \(-0.496952\pi\)
0.870773 + 0.491684i \(0.163619\pi\)
\(864\) 9.47695 + 21.8115i 0.322412 + 0.742043i
\(865\) 0.0151426 + 0.0262277i 0.000514863 + 0.000891769i
\(866\) 2.08172 + 3.60565i 0.0707398 + 0.122525i
\(867\) 0.0283949 0.748746i 0.000964343 0.0254288i
\(868\) −15.6455 + 8.57779i −0.531042 + 0.291149i
\(869\) 15.7629 9.10072i 0.534720 0.308721i
\(870\) −0.0260758 0.0164029i −0.000884051 0.000556109i
\(871\) −13.1452 49.6850i −0.445407 1.68351i
\(872\) −19.4399 11.2236i −0.658318 0.380080i
\(873\) −6.46418 + 3.10494i −0.218779 + 0.105086i
\(874\) −23.8800 + 13.7872i −0.807755 + 0.466357i
\(875\) −0.0245407 0.0447610i −0.000829626 0.00151320i
\(876\) 1.33521 + 2.52943i 0.0451125 + 0.0854614i
\(877\) −11.5406 −0.389700 −0.194850 0.980833i \(-0.562422\pi\)
−0.194850 + 0.980833i \(0.562422\pi\)
\(878\) −16.2754 28.1899i −0.549270 0.951363i
\(879\) 1.30793 34.4889i 0.0441154 1.16328i
\(880\) 0.00691722i 0.000233180i
\(881\) 3.76362 + 6.51878i 0.126800 + 0.219623i 0.922435 0.386153i \(-0.126196\pi\)
−0.795635 + 0.605776i \(0.792863\pi\)
\(882\) 2.65102 21.9866i 0.0892644 0.740328i
\(883\) −38.2310 −1.28658 −0.643289 0.765624i \(-0.722430\pi\)
−0.643289 + 0.765624i \(0.722430\pi\)
\(884\) 12.8999 + 3.50019i 0.433872 + 0.117724i
\(885\) −0.000662499 0.0174694i −2.22696e−5 0.000587229i
\(886\) 19.8205 0.665883
\(887\) −14.3116 + 24.7885i −0.480537 + 0.832315i −0.999751 0.0223297i \(-0.992892\pi\)
0.519213 + 0.854645i \(0.326225\pi\)
\(888\) 19.2697 + 0.730771i 0.646649 + 0.0245231i
\(889\) 12.9606 21.3452i 0.434686 0.715894i
\(890\) 0.00952190 + 0.00549747i 0.000319175 + 0.000184276i
\(891\) −20.9351 + 8.16765i −0.701354 + 0.273627i
\(892\) 5.76092 + 3.32607i 0.192890 + 0.111365i
\(893\) 16.6616 9.61957i 0.557558 0.321906i
\(894\) 0.495729 13.0719i 0.0165797 0.437190i
\(895\) −0.0108017 + 0.00623639i −0.000361063 + 0.000208460i
\(896\) 0.0605058 2.73832i 0.00202136 0.0914809i
\(897\) 6.65991 + 29.6793i 0.222368 + 0.990963i
\(898\) 3.01891 + 5.22890i 0.100742 + 0.174491i
\(899\) −66.3938 −2.21436
\(900\) −7.51363 + 10.9966i −0.250454 + 0.366553i
\(901\) 59.6543i 1.98737i
\(902\) −9.63925 −0.320952
\(903\) −10.8980 + 5.44835i −0.362661 + 0.181310i
\(904\) 0.686944 1.18982i 0.0228474 0.0395729i
\(905\) 0.00156959 0.000906206i 5.21751e−5 3.01233e-5i
\(906\) −15.8506 + 25.1977i −0.526599 + 0.837139i
\(907\) −29.7990 −0.989460 −0.494730 0.869047i \(-0.664733\pi\)
−0.494730 + 0.869047i \(0.664733\pi\)
\(908\) 3.79191 6.56777i 0.125839 0.217959i
\(909\) −30.5657 + 44.7345i −1.01380 + 1.48375i
\(910\) 0.0133738 + 0.0140667i 0.000443336 + 0.000466306i
\(911\) 28.3029i 0.937717i 0.883273 + 0.468859i \(0.155335\pi\)
−0.883273 + 0.468859i \(0.844665\pi\)
\(912\) 13.3414 + 0.505951i 0.441779 + 0.0167537i
\(913\) 25.9899i 0.860139i
\(914\) 30.9589 17.8741i 1.02403 0.591223i
\(915\) 0.0134863 0.0214392i 0.000445842 0.000708759i
\(916\) −7.92044 4.57287i −0.261699 0.151092i
\(917\) 8.54386 14.0711i 0.282143 0.464669i
\(918\) −22.7312 2.59609i −0.750241 0.0856836i
\(919\) −49.0844 −1.61915 −0.809573 0.587020i \(-0.800301\pi\)
−0.809573 + 0.587020i \(0.800301\pi\)
\(920\) 0.0286196 0.000943562
\(921\) 3.98876 + 7.55633i 0.131434 + 0.248990i
\(922\) −17.1318 + 9.89103i −0.564205 + 0.325744i
\(923\) −1.35244 + 4.98441i −0.0445160 + 0.164064i
\(924\) 10.1412 + 0.609175i 0.333620 + 0.0200404i
\(925\) 9.13928 + 15.8297i 0.300498 + 0.520477i
\(926\) 18.4393 + 10.6459i 0.605952 + 0.349847i
\(927\) −2.21735 + 29.1926i −0.0728272 + 0.958809i
\(928\) 20.0034 34.6469i 0.656644 1.13734i
\(929\) −20.7889 −0.682061 −0.341031 0.940052i \(-0.610776\pi\)
−0.341031 + 0.940052i \(0.610776\pi\)
\(930\) −0.00101437 + 0.0267480i −3.32626e−5 + 0.000877102i
\(931\) 31.6823 + 20.2084i 1.03835 + 0.662305i
\(932\) −0.974015 0.562348i −0.0319049 0.0184203i
\(933\) −0.878515 + 23.1656i −0.0287613 + 0.758407i
\(934\) 7.53505i 0.246554i
\(935\) 0.0174193 + 0.0100571i 0.000569673 + 0.000328901i
\(936\) 11.0094 31.0476i 0.359854 1.01482i
\(937\) 10.5891i 0.345930i 0.984928 + 0.172965i \(0.0553347\pi\)
−0.984928 + 0.172965i \(0.944665\pi\)
\(938\) 0.878564 39.7613i 0.0286861 1.29825i
\(939\) −25.5153 + 40.5619i −0.832662 + 1.32369i
\(940\) −0.00613938 −0.000200245
\(941\) −21.4748 + 37.1955i −0.700059 + 1.21254i 0.268386 + 0.963311i \(0.413510\pi\)
−0.968445 + 0.249227i \(0.919824\pi\)
\(942\) 7.27884 + 4.57873i 0.237157 + 0.149183i
\(943\) 17.8303i 0.580636i
\(944\) 7.51141 0.244475
\(945\) 0.0209640 + 0.0162503i 0.000681959 + 0.000528624i
\(946\) 3.50044 + 6.06294i 0.113809 + 0.197123i
\(947\) −42.4865 24.5296i −1.38063 0.797104i −0.388392 0.921494i \(-0.626969\pi\)
−0.992233 + 0.124390i \(0.960303\pi\)
\(948\) −0.424837 + 11.2025i −0.0137981 + 0.363841i
\(949\) 1.75600 6.47175i 0.0570023 0.210082i
\(950\) 14.1532 + 24.5141i 0.459191 + 0.795342i
\(951\) −13.6718 + 21.7342i −0.443339 + 0.704780i
\(952\) 28.7563 + 17.4606i 0.931997 + 0.565902i
\(953\) 28.5078 + 16.4590i 0.923458 + 0.533159i 0.884737 0.466091i \(-0.154338\pi\)
0.0387215 + 0.999250i \(0.487671\pi\)
\(954\) 45.0719 + 3.42347i 1.45926 + 0.110839i
\(955\) −0.00898853 + 0.00518953i −0.000290862 + 0.000167929i
\(956\) 14.4867 8.36390i 0.468533 0.270508i
\(957\) 31.9994 + 20.1291i 1.03439 + 0.650683i
\(958\) −8.43802 4.87169i −0.272620 0.157397i
\(959\) −13.9224 8.45359i −0.449579 0.272981i
\(960\) −0.0217758 0.0136980i −0.000702810 0.000442100i
\(961\) 13.3448 + 23.1139i 0.430478 + 0.745609i
\(962\) −9.79778 9.85980i −0.315893 0.317893i
\(963\) −14.7724 + 7.09564i −0.476034 + 0.228654i
\(964\) 0.940660 + 0.543090i 0.0302966 + 0.0174918i
\(965\) −0.0203962 0.0353272i −0.000656576 0.00113722i
\(966\) −1.41138 + 23.4958i −0.0454104 + 0.755964i
\(967\) 27.5780 0.886848 0.443424 0.896312i \(-0.353764\pi\)
0.443424 + 0.896312i \(0.353764\pi\)
\(968\) 14.5133i 0.466476i
\(969\) 20.6714 32.8616i 0.664063 1.05567i
\(970\) 0.00243184 0.00421207i 7.80818e−5 0.000135242i
\(971\) 34.5747 1.10956 0.554778 0.831998i \(-0.312803\pi\)
0.554778 + 0.831998i \(0.312803\pi\)
\(972\) 2.60753 13.5930i 0.0836365 0.435997i
\(973\) −0.719866 + 32.5791i −0.0230779 + 1.04444i
\(974\) 1.37257i 0.0439798i
\(975\) 30.4673 6.83674i 0.975735 0.218951i
\(976\) −9.42467 5.44133i −0.301676 0.174173i
\(977\) 57.8801i 1.85175i 0.377833 + 0.925874i \(0.376669\pi\)
−0.377833 + 0.925874i \(0.623331\pi\)
\(978\) −7.67757 0.291159i −0.245502 0.00931024i
\(979\) −11.6850 6.74634i −0.373454 0.215614i
\(980\) −0.00553127 0.0106398i −0.000176690 0.000339876i
\(981\) 9.57395 + 19.9320i 0.305673 + 0.636380i
\(982\) 13.9410 0.444876
\(983\) 1.73371 3.00288i 0.0552969 0.0957770i −0.837052 0.547123i \(-0.815723\pi\)
0.892349 + 0.451347i \(0.149056\pi\)
\(984\) 10.2819 16.3452i 0.327774 0.521065i
\(985\) −0.0432855 0.0249909i −0.00137919 0.000796276i
\(986\) 19.2443 + 33.3322i 0.612864 + 1.06151i
\(987\) 0.984748 16.3935i 0.0313449 0.521810i
\(988\) 12.1139 + 12.1906i 0.385396 + 0.387835i
\(989\) 11.2150 6.47499i 0.356617 0.205893i
\(990\) 0.00859830 0.0125841i 0.000273272 0.000399947i
\(991\) 8.95038 0.284318 0.142159 0.989844i \(-0.454596\pi\)
0.142159 + 0.989844i \(0.454596\pi\)
\(992\) −34.7620 −1.10369
\(993\) −8.89757 + 4.69676i −0.282356 + 0.149047i
\(994\) −2.07427 + 3.41616i −0.0657918 + 0.108354i
\(995\) −0.00462537 0.00267046i −0.000146634 8.46592e-5i
\(996\) 13.5497 + 8.52341i 0.429339 + 0.270075i
\(997\) 2.82101 1.62871i 0.0893424 0.0515818i −0.454663 0.890663i \(-0.650240\pi\)
0.544006 + 0.839082i \(0.316907\pi\)
\(998\) 6.71161i 0.212452i
\(999\) −15.2667 11.3032i −0.483019 0.357616i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 273.2.bf.b.185.11 yes 64
3.2 odd 2 inner 273.2.bf.b.185.22 yes 64
7.5 odd 6 273.2.r.b.68.22 yes 64
13.9 even 3 273.2.r.b.269.22 yes 64
21.5 even 6 273.2.r.b.68.11 64
39.35 odd 6 273.2.r.b.269.11 yes 64
91.61 odd 6 inner 273.2.bf.b.152.22 yes 64
273.152 even 6 inner 273.2.bf.b.152.11 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
273.2.r.b.68.11 64 21.5 even 6
273.2.r.b.68.22 yes 64 7.5 odd 6
273.2.r.b.269.11 yes 64 39.35 odd 6
273.2.r.b.269.22 yes 64 13.9 even 3
273.2.bf.b.152.11 yes 64 273.152 even 6 inner
273.2.bf.b.152.22 yes 64 91.61 odd 6 inner
273.2.bf.b.185.11 yes 64 1.1 even 1 trivial
273.2.bf.b.185.22 yes 64 3.2 odd 2 inner