Properties

Label 273.2.bf.b.152.6
Level $273$
Weight $2$
Character 273.152
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(152,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.152");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.6
Character \(\chi\) \(=\) 273.152
Dual form 273.2.bf.b.185.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.66598 + 0.961856i) q^{2} +(-0.628043 + 1.61418i) q^{3} +(0.850333 - 1.47282i) q^{4} +(-1.94643 + 3.37132i) q^{5} +(-0.506295 - 3.29327i) q^{6} +(-1.91023 - 1.83058i) q^{7} -0.575834i q^{8} +(-2.21112 - 2.02754i) q^{9} +O(q^{10})\) \(q+(-1.66598 + 0.961856i) q^{2} +(-0.628043 + 1.61418i) q^{3} +(0.850333 - 1.47282i) q^{4} +(-1.94643 + 3.37132i) q^{5} +(-0.506295 - 3.29327i) q^{6} +(-1.91023 - 1.83058i) q^{7} -0.575834i q^{8} +(-2.21112 - 2.02754i) q^{9} -7.48874i q^{10} +2.46333i q^{11} +(1.84334 + 2.29758i) q^{12} +(0.534698 + 3.56568i) q^{13} +(4.94316 + 1.21235i) q^{14} +(-4.21945 - 5.25921i) q^{15} +(2.25453 + 3.90497i) q^{16} +(3.38978 - 5.87126i) q^{17} +(5.63390 + 1.25107i) q^{18} +2.68477i q^{19} +(3.31022 + 5.73348i) q^{20} +(4.15458 - 1.93376i) q^{21} +(-2.36937 - 4.10387i) q^{22} +(-2.41571 + 1.39471i) q^{23} +(0.929497 + 0.361648i) q^{24} +(-5.07718 - 8.79393i) q^{25} +(-4.32047 - 5.42606i) q^{26} +(4.66149 - 2.29576i) q^{27} +(-4.32044 + 1.25682i) q^{28} +(0.0349680 + 0.0201888i) q^{29} +(12.0881 + 4.70325i) q^{30} +(-0.270921 + 0.156417i) q^{31} +(-6.51466 - 3.76124i) q^{32} +(-3.97625 - 1.54708i) q^{33} +13.0419i q^{34} +(9.88959 - 2.87688i) q^{35} +(-4.86639 + 1.53250i) q^{36} +(-2.03931 - 3.53219i) q^{37} +(-2.58236 - 4.47277i) q^{38} +(-6.09145 - 1.37630i) q^{39} +(1.94132 + 1.12082i) q^{40} +(1.73777 - 3.00991i) q^{41} +(-5.06147 + 7.21772i) q^{42} +(-5.35117 - 9.26849i) q^{43} +(3.62805 + 2.09465i) q^{44} +(11.1393 - 3.50793i) q^{45} +(2.68302 - 4.64712i) q^{46} +(-2.67357 + 4.63075i) q^{47} +(-7.71925 + 1.18673i) q^{48} +(0.297942 + 6.99366i) q^{49} +(16.9170 + 9.76702i) q^{50} +(7.34833 + 9.15910i) q^{51} +(5.70628 + 2.24450i) q^{52} +(-4.37708 + 2.52711i) q^{53} +(-5.55777 + 8.30838i) q^{54} +(-8.30467 - 4.79471i) q^{55} +(-1.05411 + 1.09997i) q^{56} +(-4.33368 - 1.68615i) q^{57} -0.0776748 q^{58} +(-1.73388 + 3.00317i) q^{59} +(-11.3338 + 1.74242i) q^{60} +3.79066i q^{61} +(0.300900 - 0.521175i) q^{62} +(0.512171 + 7.92071i) q^{63} +5.45294 q^{64} +(-13.0618 - 5.13772i) q^{65} +(8.11244 - 1.24717i) q^{66} -6.47323 q^{67} +(-5.76487 - 9.98505i) q^{68} +(-0.734138 - 4.77531i) q^{69} +(-13.7087 + 14.3052i) q^{70} +(-8.84935 + 5.10917i) q^{71} +(-1.16753 + 1.27324i) q^{72} +(-7.25477 + 4.18854i) q^{73} +(6.79492 + 3.92305i) q^{74} +(17.3836 - 2.67249i) q^{75} +(3.95417 + 2.28294i) q^{76} +(4.50933 - 4.70553i) q^{77} +(11.4721 - 3.56620i) q^{78} +(2.62970 - 4.55477i) q^{79} -17.5532 q^{80} +(0.778146 + 8.96630i) q^{81} +6.68593i q^{82} -3.83193 q^{83} +(0.684700 - 7.76329i) q^{84} +(13.1959 + 22.8560i) q^{85} +(17.8299 + 10.2941i) q^{86} +(-0.0545497 + 0.0437651i) q^{87} +1.41847 q^{88} +(-5.20017 - 9.00696i) q^{89} +(-15.1837 + 16.5585i) q^{90} +(5.50588 - 7.79008i) q^{91} +4.74387i q^{92} +(-0.0823336 - 0.535551i) q^{93} -10.2863i q^{94} +(-9.05119 - 5.22571i) q^{95} +(10.1628 - 8.15358i) q^{96} +(12.5989 - 7.27395i) q^{97} +(-7.22325 - 11.3647i) q^{98} +(4.99451 - 5.44674i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9} + 6 q^{12} - 12 q^{13} - 9 q^{15} - 16 q^{16} + 2 q^{18} + 10 q^{21} + 10 q^{22} - 24 q^{25} - 50 q^{28} - 16 q^{30} - 24 q^{31} - 33 q^{39} + 90 q^{40} - 48 q^{42} - 20 q^{43} - 3 q^{45} + 6 q^{48} - 10 q^{51} + 30 q^{52} - 27 q^{54} + 18 q^{55} + 4 q^{57} - 60 q^{58} + 55 q^{60} - 74 q^{63} - 84 q^{64} + 75 q^{66} - 88 q^{67} - 33 q^{69} + 20 q^{70} - 34 q^{72} + 84 q^{73} + 33 q^{75} + 18 q^{76} - 71 q^{78} + 20 q^{79} - 32 q^{81} - 6 q^{84} - 2 q^{85} + 3 q^{87} + 92 q^{88} - 76 q^{91} + 28 q^{93} + 30 q^{96} + 24 q^{97} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.66598 + 0.961856i −1.17803 + 0.680135i −0.955557 0.294805i \(-0.904745\pi\)
−0.222470 + 0.974939i \(0.571412\pi\)
\(3\) −0.628043 + 1.61418i −0.362601 + 0.931945i
\(4\) 0.850333 1.47282i 0.425166 0.736410i
\(5\) −1.94643 + 3.37132i −0.870470 + 1.50770i −0.00895828 + 0.999960i \(0.502852\pi\)
−0.861512 + 0.507738i \(0.830482\pi\)
\(6\) −0.506295 3.29327i −0.206694 1.34447i
\(7\) −1.91023 1.83058i −0.721998 0.691895i
\(8\) 0.575834i 0.203588i
\(9\) −2.21112 2.02754i −0.737042 0.675847i
\(10\) 7.48874i 2.36815i
\(11\) 2.46333i 0.742723i 0.928488 + 0.371362i \(0.121109\pi\)
−0.928488 + 0.371362i \(0.878891\pi\)
\(12\) 1.84334 + 2.29758i 0.532127 + 0.663254i
\(13\) 0.534698 + 3.56568i 0.148299 + 0.988943i
\(14\) 4.94316 + 1.21235i 1.32112 + 0.324015i
\(15\) −4.21945 5.25921i −1.08946 1.35792i
\(16\) 2.25453 + 3.90497i 0.563634 + 0.976242i
\(17\) 3.38978 5.87126i 0.822141 1.42399i −0.0819432 0.996637i \(-0.526113\pi\)
0.904085 0.427354i \(-0.140554\pi\)
\(18\) 5.63390 + 1.25107i 1.32792 + 0.294879i
\(19\) 2.68477i 0.615927i 0.951398 + 0.307964i \(0.0996476\pi\)
−0.951398 + 0.307964i \(0.900352\pi\)
\(20\) 3.31022 + 5.73348i 0.740189 + 1.28204i
\(21\) 4.15458 1.93376i 0.906605 0.421981i
\(22\) −2.36937 4.10387i −0.505152 0.874948i
\(23\) −2.41571 + 1.39471i −0.503710 + 0.290817i −0.730244 0.683186i \(-0.760594\pi\)
0.226534 + 0.974003i \(0.427260\pi\)
\(24\) 0.929497 + 0.361648i 0.189733 + 0.0738212i
\(25\) −5.07718 8.79393i −1.01544 1.75879i
\(26\) −4.32047 5.42606i −0.847314 1.06414i
\(27\) 4.66149 2.29576i 0.897104 0.441819i
\(28\) −4.32044 + 1.25682i −0.816487 + 0.237516i
\(29\) 0.0349680 + 0.0201888i 0.00649340 + 0.00374897i 0.503243 0.864145i \(-0.332140\pi\)
−0.496750 + 0.867894i \(0.665473\pi\)
\(30\) 12.0881 + 4.70325i 2.20698 + 0.858691i
\(31\) −0.270921 + 0.156417i −0.0486589 + 0.0280932i −0.524132 0.851637i \(-0.675610\pi\)
0.475473 + 0.879730i \(0.342277\pi\)
\(32\) −6.51466 3.76124i −1.15164 0.664899i
\(33\) −3.97625 1.54708i −0.692177 0.269312i
\(34\) 13.0419i 2.23667i
\(35\) 9.88959 2.87688i 1.67165 0.486282i
\(36\) −4.86639 + 1.53250i −0.811066 + 0.255417i
\(37\) −2.03931 3.53219i −0.335261 0.580689i 0.648274 0.761407i \(-0.275491\pi\)
−0.983535 + 0.180718i \(0.942158\pi\)
\(38\) −2.58236 4.47277i −0.418914 0.725580i
\(39\) −6.09145 1.37630i −0.975413 0.220385i
\(40\) 1.94132 + 1.12082i 0.306949 + 0.177217i
\(41\) 1.73777 3.00991i 0.271394 0.470068i −0.697825 0.716268i \(-0.745849\pi\)
0.969219 + 0.246200i \(0.0791820\pi\)
\(42\) −5.06147 + 7.21772i −0.781002 + 1.11372i
\(43\) −5.35117 9.26849i −0.816045 1.41343i −0.908575 0.417722i \(-0.862829\pi\)
0.0925293 0.995710i \(-0.470505\pi\)
\(44\) 3.62805 + 2.09465i 0.546948 + 0.315781i
\(45\) 11.1393 3.50793i 1.66055 0.522931i
\(46\) 2.68302 4.64712i 0.395589 0.685181i
\(47\) −2.67357 + 4.63075i −0.389980 + 0.675465i −0.992446 0.122679i \(-0.960851\pi\)
0.602466 + 0.798144i \(0.294185\pi\)
\(48\) −7.71925 + 1.18673i −1.11418 + 0.171289i
\(49\) 0.297942 + 6.99366i 0.0425631 + 0.999094i
\(50\) 16.9170 + 9.76702i 2.39242 + 1.38127i
\(51\) 7.34833 + 9.15910i 1.02897 + 1.28253i
\(52\) 5.70628 + 2.24450i 0.791318 + 0.311257i
\(53\) −4.37708 + 2.52711i −0.601238 + 0.347125i −0.769529 0.638612i \(-0.779509\pi\)
0.168290 + 0.985737i \(0.446175\pi\)
\(54\) −5.55777 + 8.30838i −0.756317 + 1.13063i
\(55\) −8.30467 4.79471i −1.11980 0.646518i
\(56\) −1.05411 + 1.09997i −0.140862 + 0.146990i
\(57\) −4.33368 1.68615i −0.574010 0.223336i
\(58\) −0.0776748 −0.0101992
\(59\) −1.73388 + 3.00317i −0.225732 + 0.390980i −0.956539 0.291605i \(-0.905811\pi\)
0.730807 + 0.682585i \(0.239144\pi\)
\(60\) −11.3338 + 1.74242i −1.46319 + 0.224945i
\(61\) 3.79066i 0.485344i 0.970108 + 0.242672i \(0.0780240\pi\)
−0.970108 + 0.242672i \(0.921976\pi\)
\(62\) 0.300900 0.521175i 0.0382144 0.0661893i
\(63\) 0.512171 + 7.92071i 0.0645275 + 0.997916i
\(64\) 5.45294 0.681617
\(65\) −13.0618 5.13772i −1.62012 0.637255i
\(66\) 8.11244 1.24717i 0.998572 0.153517i
\(67\) −6.47323 −0.790830 −0.395415 0.918502i \(-0.629399\pi\)
−0.395415 + 0.918502i \(0.629399\pi\)
\(68\) −5.76487 9.98505i −0.699094 1.21087i
\(69\) −0.734138 4.77531i −0.0883799 0.574880i
\(70\) −13.7087 + 14.3052i −1.63851 + 1.70980i
\(71\) −8.84935 + 5.10917i −1.05022 + 0.606348i −0.922712 0.385489i \(-0.874033\pi\)
−0.127512 + 0.991837i \(0.540699\pi\)
\(72\) −1.16753 + 1.27324i −0.137594 + 0.150053i
\(73\) −7.25477 + 4.18854i −0.849107 + 0.490232i −0.860349 0.509705i \(-0.829755\pi\)
0.0112427 + 0.999937i \(0.496421\pi\)
\(74\) 6.79492 + 3.92305i 0.789893 + 0.456045i
\(75\) 17.3836 2.67249i 2.00729 0.308593i
\(76\) 3.95417 + 2.28294i 0.453575 + 0.261872i
\(77\) 4.50933 4.70553i 0.513886 0.536245i
\(78\) 11.4721 3.56620i 1.29896 0.403792i
\(79\) 2.62970 4.55477i 0.295864 0.512452i −0.679321 0.733841i \(-0.737726\pi\)
0.975186 + 0.221389i \(0.0710591\pi\)
\(80\) −17.5532 −1.96250
\(81\) 0.778146 + 8.96630i 0.0864607 + 0.996255i
\(82\) 6.68593i 0.738338i
\(83\) −3.83193 −0.420609 −0.210305 0.977636i \(-0.567446\pi\)
−0.210305 + 0.977636i \(0.567446\pi\)
\(84\) 0.684700 7.76329i 0.0747069 0.847044i
\(85\) 13.1959 + 22.8560i 1.43130 + 2.47908i
\(86\) 17.8299 + 10.2941i 1.92265 + 1.11004i
\(87\) −0.0545497 + 0.0437651i −0.00584834 + 0.00469211i
\(88\) 1.41847 0.151210
\(89\) −5.20017 9.00696i −0.551217 0.954736i −0.998187 0.0601868i \(-0.980830\pi\)
0.446970 0.894549i \(-0.352503\pi\)
\(90\) −15.1837 + 16.5585i −1.60051 + 1.74542i
\(91\) 5.50588 7.79008i 0.577173 0.816622i
\(92\) 4.74387i 0.494582i
\(93\) −0.0823336 0.535551i −0.00853759 0.0555341i
\(94\) 10.2863i 1.06096i
\(95\) −9.05119 5.22571i −0.928633 0.536146i
\(96\) 10.1628 8.15358i 1.03723 0.832171i
\(97\) 12.5989 7.27395i 1.27922 0.738558i 0.302515 0.953145i \(-0.402174\pi\)
0.976705 + 0.214587i \(0.0688405\pi\)
\(98\) −7.22325 11.3647i −0.729659 1.14801i
\(99\) 4.99451 5.44674i 0.501967 0.547418i
\(100\) −17.2692 −1.72692
\(101\) 10.1050 1.00548 0.502741 0.864437i \(-0.332325\pi\)
0.502741 + 0.864437i \(0.332325\pi\)
\(102\) −21.0519 8.19087i −2.08445 0.811017i
\(103\) −9.15330 5.28466i −0.901901 0.520713i −0.0240846 0.999710i \(-0.507667\pi\)
−0.877816 + 0.478997i \(0.841000\pi\)
\(104\) 2.05324 0.307897i 0.201337 0.0301918i
\(105\) −1.56729 + 17.7703i −0.152952 + 1.73421i
\(106\) 4.86143 8.42024i 0.472184 0.817846i
\(107\) −1.77807 + 1.02657i −0.171892 + 0.0992420i −0.583478 0.812129i \(-0.698308\pi\)
0.411586 + 0.911371i \(0.364975\pi\)
\(108\) 0.582576 8.81769i 0.0560584 0.848483i
\(109\) 3.15449 + 5.46373i 0.302145 + 0.523331i 0.976622 0.214966i \(-0.0689640\pi\)
−0.674477 + 0.738296i \(0.735631\pi\)
\(110\) 18.4473 1.75888
\(111\) 6.98235 1.07344i 0.662736 0.101886i
\(112\) 2.84169 11.5865i 0.268514 1.09482i
\(113\) −2.80198 + 1.61772i −0.263588 + 0.152183i −0.625970 0.779847i \(-0.715297\pi\)
0.362382 + 0.932030i \(0.381963\pi\)
\(114\) 8.84167 1.35928i 0.828098 0.127309i
\(115\) 10.8588i 1.01259i
\(116\) 0.0594689 0.0343344i 0.00552155 0.00318787i
\(117\) 6.04729 8.96829i 0.559072 0.829119i
\(118\) 6.67098i 0.614114i
\(119\) −17.2231 + 5.01019i −1.57884 + 0.459283i
\(120\) −3.02843 + 2.42970i −0.276457 + 0.221801i
\(121\) 4.93199 0.448362
\(122\) −3.64607 6.31518i −0.330100 0.571749i
\(123\) 3.76712 + 4.69541i 0.339670 + 0.423371i
\(124\) 0.532024i 0.0477772i
\(125\) 20.0652 1.79468
\(126\) −8.47185 12.7031i −0.754732 1.13169i
\(127\) −3.42454 + 5.93148i −0.303879 + 0.526334i −0.977011 0.213188i \(-0.931615\pi\)
0.673132 + 0.739522i \(0.264949\pi\)
\(128\) 3.94481 2.27754i 0.348675 0.201308i
\(129\) 18.3217 2.81671i 1.61314 0.247998i
\(130\) 26.7025 4.00421i 2.34196 0.351193i
\(131\) −4.85787 + 8.41407i −0.424434 + 0.735141i −0.996367 0.0851592i \(-0.972860\pi\)
0.571934 + 0.820300i \(0.306193\pi\)
\(132\) −5.65970 + 4.54077i −0.492614 + 0.395223i
\(133\) 4.91468 5.12851i 0.426157 0.444699i
\(134\) 10.7843 6.22631i 0.931620 0.537871i
\(135\) −1.33353 + 20.1839i −0.114772 + 1.73715i
\(136\) −3.38087 1.95195i −0.289907 0.167378i
\(137\) −0.445016 0.256930i −0.0380202 0.0219510i 0.480869 0.876792i \(-0.340321\pi\)
−0.518890 + 0.854841i \(0.673654\pi\)
\(138\) 5.81622 + 7.24945i 0.495110 + 0.617114i
\(139\) −12.1505 + 7.01510i −1.03059 + 0.595013i −0.917154 0.398532i \(-0.869520\pi\)
−0.113438 + 0.993545i \(0.536186\pi\)
\(140\) 4.17231 17.0119i 0.352625 1.43777i
\(141\) −5.79574 7.22392i −0.488089 0.608364i
\(142\) 9.82858 17.0236i 0.824796 1.42859i
\(143\) −8.78347 + 1.31714i −0.734511 + 0.110145i
\(144\) 2.93243 13.2055i 0.244369 1.10046i
\(145\) −0.136126 + 0.0785921i −0.0113046 + 0.00652672i
\(146\) 8.05755 13.9561i 0.666847 1.15501i
\(147\) −11.4761 3.91138i −0.946534 0.322606i
\(148\) −6.93637 −0.570166
\(149\) 6.98525i 0.572254i 0.958192 + 0.286127i \(0.0923679\pi\)
−0.958192 + 0.286127i \(0.907632\pi\)
\(150\) −26.3903 + 21.1729i −2.15476 + 1.72876i
\(151\) 0.186508 + 0.323041i 0.0151778 + 0.0262887i 0.873515 0.486798i \(-0.161835\pi\)
−0.858337 + 0.513087i \(0.828502\pi\)
\(152\) 1.54598 0.125395
\(153\) −19.3995 + 6.10918i −1.56835 + 0.493898i
\(154\) −2.98643 + 12.1767i −0.240654 + 0.981223i
\(155\) 1.21782i 0.0978173i
\(156\) −7.20681 + 7.80129i −0.577006 + 0.624603i
\(157\) 5.94795 3.43405i 0.474698 0.274067i −0.243506 0.969899i \(-0.578298\pi\)
0.718204 + 0.695832i \(0.244964\pi\)
\(158\) 10.1176i 0.804910i
\(159\) −1.33020 8.65251i −0.105492 0.686188i
\(160\) 25.3606 14.6420i 2.00493 1.15755i
\(161\) 7.16768 + 1.75794i 0.564892 + 0.138545i
\(162\) −9.92066 14.1892i −0.779441 1.11481i
\(163\) −21.1757 −1.65861 −0.829305 0.558796i \(-0.811263\pi\)
−0.829305 + 0.558796i \(0.811263\pi\)
\(164\) −2.95536 5.11884i −0.230775 0.399714i
\(165\) 12.9552 10.3939i 1.00856 0.809166i
\(166\) 6.38394 3.68577i 0.495490 0.286071i
\(167\) −0.573247 + 0.992894i −0.0443592 + 0.0768324i −0.887353 0.461092i \(-0.847458\pi\)
0.842993 + 0.537924i \(0.180791\pi\)
\(168\) −1.11352 2.39235i −0.0859103 0.184574i
\(169\) −12.4282 + 3.81313i −0.956015 + 0.293318i
\(170\) −43.9684 25.3851i −3.37222 1.94695i
\(171\) 5.44348 5.93635i 0.416273 0.453964i
\(172\) −18.2011 −1.38782
\(173\) 2.55747 0.194441 0.0972204 0.995263i \(-0.469005\pi\)
0.0972204 + 0.995263i \(0.469005\pi\)
\(174\) 0.0487831 0.125381i 0.00369824 0.00950509i
\(175\) −6.39944 + 26.0926i −0.483752 + 1.97241i
\(176\) −9.61924 + 5.55367i −0.725077 + 0.418624i
\(177\) −3.75870 4.68491i −0.282521 0.352140i
\(178\) 17.3268 + 10.0036i 1.29870 + 0.749803i
\(179\) 0.519997i 0.0388664i 0.999811 + 0.0194332i \(0.00618617\pi\)
−0.999811 + 0.0194332i \(0.993814\pi\)
\(180\) 4.30555 19.3891i 0.320917 1.44517i
\(181\) 18.3607i 1.36474i 0.731008 + 0.682369i \(0.239050\pi\)
−0.731008 + 0.682369i \(0.760950\pi\)
\(182\) −1.67977 + 18.2740i −0.124513 + 1.35456i
\(183\) −6.11879 2.38070i −0.452314 0.175986i
\(184\) 0.803121 + 1.39105i 0.0592069 + 0.102549i
\(185\) 15.8775 1.16734
\(186\) 0.652289 + 0.813026i 0.0478282 + 0.0596140i
\(187\) 14.4629 + 8.35015i 1.05763 + 0.610623i
\(188\) 4.54684 + 7.87536i 0.331613 + 0.574370i
\(189\) −13.1071 4.14781i −0.953400 0.301709i
\(190\) 20.1055 1.45861
\(191\) 14.6955i 1.06333i −0.846955 0.531664i \(-0.821567\pi\)
0.846955 0.531664i \(-0.178433\pi\)
\(192\) −3.42468 + 8.80200i −0.247155 + 0.635230i
\(193\) 19.1377 1.37756 0.688780 0.724970i \(-0.258146\pi\)
0.688780 + 0.724970i \(0.258146\pi\)
\(194\) −13.9930 + 24.2366i −1.00464 + 1.74008i
\(195\) 16.4965 17.8573i 1.18134 1.27879i
\(196\) 10.5537 + 5.50812i 0.753839 + 0.393437i
\(197\) −2.26372 1.30696i −0.161283 0.0931168i 0.417186 0.908821i \(-0.363016\pi\)
−0.578469 + 0.815704i \(0.696350\pi\)
\(198\) −3.08180 + 13.8782i −0.219014 + 0.986279i
\(199\) 15.0830 + 8.70819i 1.06921 + 0.617307i 0.927965 0.372668i \(-0.121557\pi\)
0.141243 + 0.989975i \(0.454890\pi\)
\(200\) −5.06384 + 2.92361i −0.358068 + 0.206731i
\(201\) 4.06546 10.4489i 0.286756 0.737010i
\(202\) −16.8347 + 9.71953i −1.18449 + 0.683864i
\(203\) −0.0298397 0.102577i −0.00209433 0.00719950i
\(204\) 19.7382 3.03448i 1.38195 0.212456i
\(205\) 6.76489 + 11.7171i 0.472481 + 0.818360i
\(206\) 20.3323 1.41662
\(207\) 8.16926 + 1.81407i 0.567803 + 0.126087i
\(208\) −12.7184 + 10.1269i −0.881861 + 0.702177i
\(209\) −6.61347 −0.457464
\(210\) −14.4814 31.1126i −0.999313 2.14697i
\(211\) 8.15117 14.1182i 0.561150 0.971940i −0.436247 0.899827i \(-0.643693\pi\)
0.997396 0.0721128i \(-0.0229742\pi\)
\(212\) 8.59553i 0.590343i
\(213\) −2.68934 17.4932i −0.184270 1.19861i
\(214\) 1.97482 3.42049i 0.134996 0.233820i
\(215\) 41.6627 2.84137
\(216\) −1.32198 2.68424i −0.0899491 0.182640i
\(217\) 0.803855 + 0.197153i 0.0545692 + 0.0133836i
\(218\) −10.5106 6.06832i −0.711871 0.410999i
\(219\) −2.20474 14.3411i −0.148982 0.969079i
\(220\) −14.1235 + 8.15419i −0.952204 + 0.549755i
\(221\) 22.7476 + 8.94751i 1.53017 + 0.601875i
\(222\) −10.6000 + 8.50435i −0.711424 + 0.570775i
\(223\) 8.83787 + 5.10254i 0.591827 + 0.341692i 0.765820 0.643055i \(-0.222333\pi\)
−0.173992 + 0.984747i \(0.555667\pi\)
\(224\) 5.55922 + 19.1104i 0.371441 + 1.27687i
\(225\) −6.60379 + 29.7387i −0.440252 + 1.98258i
\(226\) 3.11203 5.39019i 0.207009 0.358550i
\(227\) −11.1522 + 19.3162i −0.740197 + 1.28206i 0.212209 + 0.977224i \(0.431934\pi\)
−0.952405 + 0.304834i \(0.901399\pi\)
\(228\) −6.16846 + 4.94895i −0.408516 + 0.327752i
\(229\) −17.9637 10.3713i −1.18707 0.685357i −0.229433 0.973324i \(-0.573687\pi\)
−0.957640 + 0.287967i \(0.907021\pi\)
\(230\) 10.4446 + 18.0906i 0.688697 + 1.19286i
\(231\) 4.76350 + 10.2341i 0.313415 + 0.673356i
\(232\) 0.0116254 0.0201358i 0.000763245 0.00132198i
\(233\) −3.63812 2.10047i −0.238341 0.137606i 0.376073 0.926590i \(-0.377274\pi\)
−0.614414 + 0.788984i \(0.710608\pi\)
\(234\) −1.44848 + 20.7576i −0.0946898 + 1.35697i
\(235\) −10.4078 18.0269i −0.678931 1.17594i
\(236\) 2.94876 + 5.10739i 0.191948 + 0.332463i
\(237\) 5.70064 + 7.10538i 0.370296 + 0.461544i
\(238\) 23.8743 24.9130i 1.54754 1.61487i
\(239\) 13.3139i 0.861205i 0.902542 + 0.430602i \(0.141699\pi\)
−0.902542 + 0.430602i \(0.858301\pi\)
\(240\) 11.0241 28.3339i 0.711605 1.82895i
\(241\) 5.50225 + 3.17672i 0.354431 + 0.204631i 0.666635 0.745384i \(-0.267734\pi\)
−0.312204 + 0.950015i \(0.601067\pi\)
\(242\) −8.21660 + 4.74386i −0.528183 + 0.304947i
\(243\) −14.9619 4.37515i −0.959805 0.280666i
\(244\) 5.58296 + 3.22332i 0.357412 + 0.206352i
\(245\) −24.1577 12.6082i −1.54338 0.805509i
\(246\) −10.7923 4.19905i −0.688090 0.267722i
\(247\) −9.57302 + 1.43554i −0.609117 + 0.0913412i
\(248\) 0.0900700 + 0.156006i 0.00571945 + 0.00990638i
\(249\) 2.40662 6.18541i 0.152513 0.391985i
\(250\) −33.4282 + 19.2998i −2.11419 + 1.22063i
\(251\) −11.6916 20.2504i −0.737967 1.27820i −0.953409 0.301680i \(-0.902453\pi\)
0.215442 0.976517i \(-0.430881\pi\)
\(252\) 12.1013 + 5.98090i 0.762310 + 0.376762i
\(253\) −3.43563 5.95069i −0.215996 0.374117i
\(254\) 13.1757i 0.826715i
\(255\) −45.1812 + 6.94598i −2.82936 + 0.434974i
\(256\) −9.83426 + 17.0334i −0.614642 + 1.06459i
\(257\) 15.0163 + 26.0090i 0.936692 + 1.62240i 0.771588 + 0.636122i \(0.219463\pi\)
0.165104 + 0.986276i \(0.447204\pi\)
\(258\) −27.8144 + 22.3155i −1.73165 + 1.38930i
\(259\) −2.57042 + 10.4804i −0.159718 + 0.651222i
\(260\) −18.6738 + 14.8689i −1.15810 + 0.922130i
\(261\) −0.0363850 0.115539i −0.00225218 0.00715169i
\(262\) 18.6903i 1.15469i
\(263\) 11.0296i 0.680112i −0.940405 0.340056i \(-0.889554\pi\)
0.940405 0.340056i \(-0.110446\pi\)
\(264\) −0.890861 + 2.28966i −0.0548287 + 0.140919i
\(265\) 19.6754i 1.20865i
\(266\) −3.25489 + 13.2712i −0.199570 + 0.813711i
\(267\) 17.8047 2.73723i 1.08963 0.167516i
\(268\) −5.50439 + 9.53389i −0.336234 + 0.582375i
\(269\) −8.02694 + 13.9031i −0.489411 + 0.847685i −0.999926 0.0121841i \(-0.996122\pi\)
0.510515 + 0.859869i \(0.329455\pi\)
\(270\) −17.1923 34.9087i −1.04629 2.12447i
\(271\) −4.09030 + 2.36153i −0.248468 + 0.143453i −0.619062 0.785342i \(-0.712487\pi\)
0.370595 + 0.928795i \(0.379154\pi\)
\(272\) 30.5695 1.85355
\(273\) 9.11662 + 13.7800i 0.551763 + 0.834001i
\(274\) 0.988518 0.0597185
\(275\) 21.6624 12.5068i 1.30629 0.754187i
\(276\) −7.65743 2.97935i −0.460923 0.179336i
\(277\) −13.6186 + 23.5881i −0.818262 + 1.41727i 0.0887005 + 0.996058i \(0.471729\pi\)
−0.906962 + 0.421212i \(0.861605\pi\)
\(278\) 13.4950 23.3741i 0.809378 1.40188i
\(279\) 0.916182 + 0.203448i 0.0548504 + 0.0121801i
\(280\) −1.65661 5.69476i −0.0990012 0.340327i
\(281\) 20.8431i 1.24340i −0.783257 0.621698i \(-0.786443\pi\)
0.783257 0.621698i \(-0.213557\pi\)
\(282\) 16.6040 + 6.46026i 0.988752 + 0.384703i
\(283\) 26.5828i 1.58018i 0.612988 + 0.790092i \(0.289967\pi\)
−0.612988 + 0.790092i \(0.710033\pi\)
\(284\) 17.3780i 1.03119i
\(285\) 14.1197 11.3282i 0.836381 0.671027i
\(286\) 13.3662 10.6428i 0.790361 0.629320i
\(287\) −8.82941 + 2.56848i −0.521184 + 0.151612i
\(288\) 6.77865 + 21.5253i 0.399436 + 1.26839i
\(289\) −14.4812 25.0821i −0.851833 1.47542i
\(290\) 0.151189 0.261866i 0.00887810 0.0153773i
\(291\) 3.82882 + 24.9051i 0.224449 + 1.45996i
\(292\) 14.2466i 0.833720i
\(293\) −6.73449 11.6645i −0.393433 0.681447i 0.599466 0.800400i \(-0.295379\pi\)
−0.992900 + 0.118953i \(0.962046\pi\)
\(294\) 22.8812 4.52206i 1.33446 0.263732i
\(295\) −6.74977 11.6909i −0.392987 0.680673i
\(296\) −2.03396 + 1.17431i −0.118221 + 0.0682551i
\(297\) 5.65522 + 11.4828i 0.328149 + 0.666300i
\(298\) −6.71880 11.6373i −0.389210 0.674131i
\(299\) −6.26477 7.86790i −0.362301 0.455012i
\(300\) 10.8458 27.8754i 0.626181 1.60939i
\(301\) −6.74479 + 27.5007i −0.388763 + 1.58511i
\(302\) −0.621438 0.358787i −0.0357597 0.0206459i
\(303\) −6.34636 + 16.3112i −0.364589 + 0.937054i
\(304\) −10.4839 + 6.05290i −0.601294 + 0.347157i
\(305\) −12.7795 7.37826i −0.731753 0.422478i
\(306\) 26.4430 28.8373i 1.51165 1.64852i
\(307\) 6.38950i 0.364668i −0.983237 0.182334i \(-0.941635\pi\)
0.983237 0.182334i \(-0.0583652\pi\)
\(308\) −3.09596 10.6427i −0.176409 0.606424i
\(309\) 14.2790 11.4560i 0.812305 0.651711i
\(310\) 1.17136 + 2.02886i 0.0665289 + 0.115231i
\(311\) −1.05495 1.82722i −0.0598207 0.103612i 0.834564 0.550911i \(-0.185720\pi\)
−0.894385 + 0.447298i \(0.852386\pi\)
\(312\) −0.792523 + 3.50767i −0.0448678 + 0.198582i
\(313\) 9.75726 + 5.63336i 0.551513 + 0.318416i 0.749732 0.661742i \(-0.230182\pi\)
−0.198219 + 0.980158i \(0.563516\pi\)
\(314\) −6.60612 + 11.4421i −0.372805 + 0.645717i
\(315\) −27.7001 13.6904i −1.56073 0.771368i
\(316\) −4.47224 7.74614i −0.251583 0.435754i
\(317\) 6.32048 + 3.64913i 0.354993 + 0.204955i 0.666882 0.745163i \(-0.267628\pi\)
−0.311889 + 0.950119i \(0.600962\pi\)
\(318\) 10.5386 + 13.1355i 0.590973 + 0.736600i
\(319\) −0.0497317 + 0.0861379i −0.00278444 + 0.00482280i
\(320\) −10.6138 + 18.3836i −0.593327 + 1.02767i
\(321\) −0.540358 3.51484i −0.0301598 0.196179i
\(322\) −13.6321 + 3.96558i −0.759688 + 0.220993i
\(323\) 15.7630 + 9.10075i 0.877075 + 0.506379i
\(324\) 13.8674 + 6.47827i 0.770412 + 0.359904i
\(325\) 28.6416 22.8057i 1.58875 1.26503i
\(326\) 35.2784 20.3680i 1.95389 1.12808i
\(327\) −10.8006 + 1.66044i −0.597273 + 0.0918225i
\(328\) −1.73321 1.00067i −0.0957003 0.0552526i
\(329\) 13.5841 3.95161i 0.748916 0.217860i
\(330\) −11.5857 + 29.7771i −0.637770 + 1.63918i
\(331\) −5.60638 −0.308155 −0.154077 0.988059i \(-0.549240\pi\)
−0.154077 + 0.988059i \(0.549240\pi\)
\(332\) −3.25842 + 5.64375i −0.178829 + 0.309741i
\(333\) −2.65249 + 11.9449i −0.145356 + 0.654577i
\(334\) 2.20553i 0.120681i
\(335\) 12.5997 21.8233i 0.688394 1.19233i
\(336\) 16.9179 + 11.8638i 0.922948 + 0.647223i
\(337\) −10.8569 −0.591412 −0.295706 0.955279i \(-0.595555\pi\)
−0.295706 + 0.955279i \(0.595555\pi\)
\(338\) 17.0375 18.3067i 0.926717 0.995755i
\(339\) −0.851526 5.53888i −0.0462486 0.300831i
\(340\) 44.8837 2.43416
\(341\) −0.385306 0.667370i −0.0208655 0.0361401i
\(342\) −3.35882 + 15.1257i −0.181624 + 0.817904i
\(343\) 12.2333 13.9049i 0.660537 0.750793i
\(344\) −5.33711 + 3.08138i −0.287758 + 0.166137i
\(345\) 17.5280 + 6.81980i 0.943677 + 0.367166i
\(346\) −4.26070 + 2.45992i −0.229057 + 0.132246i
\(347\) 6.27015 + 3.62007i 0.336599 + 0.194336i 0.658767 0.752347i \(-0.271078\pi\)
−0.322168 + 0.946683i \(0.604412\pi\)
\(348\) 0.0180727 + 0.117557i 0.000968799 + 0.00630170i
\(349\) 0.167850 + 0.0969083i 0.00898481 + 0.00518738i 0.504486 0.863420i \(-0.331682\pi\)
−0.495501 + 0.868607i \(0.665015\pi\)
\(350\) −14.4360 49.6251i −0.771634 2.65258i
\(351\) 10.6784 + 15.3939i 0.569973 + 0.821663i
\(352\) 9.26519 16.0478i 0.493836 0.855349i
\(353\) 23.4110 1.24604 0.623020 0.782206i \(-0.285906\pi\)
0.623020 + 0.782206i \(0.285906\pi\)
\(354\) 10.7681 + 4.18966i 0.572320 + 0.222678i
\(355\) 39.7786i 2.11123i
\(356\) −17.6875 −0.937435
\(357\) 2.72950 30.9477i 0.144460 1.63792i
\(358\) −0.500162 0.866306i −0.0264344 0.0457857i
\(359\) 16.1261 + 9.31040i 0.851102 + 0.491384i 0.861022 0.508567i \(-0.169825\pi\)
−0.00992062 + 0.999951i \(0.503158\pi\)
\(360\) −2.01999 6.41438i −0.106463 0.338067i
\(361\) 11.7920 0.620633
\(362\) −17.6603 30.5886i −0.928205 1.60770i
\(363\) −3.09750 + 7.96109i −0.162576 + 0.417849i
\(364\) −6.79155 14.7333i −0.355974 0.772236i
\(365\) 32.6108i 1.70693i
\(366\) 12.4837 1.91919i 0.652533 0.100318i
\(367\) 11.4695i 0.598705i 0.954143 + 0.299352i \(0.0967706\pi\)
−0.954143 + 0.299352i \(0.903229\pi\)
\(368\) −10.8926 6.28884i −0.567815 0.327828i
\(369\) −9.94513 + 3.13188i −0.517723 + 0.163039i
\(370\) −26.4517 + 15.2719i −1.37516 + 0.793947i
\(371\) 12.9873 + 3.18525i 0.674267 + 0.165370i
\(372\) −0.858781 0.334134i −0.0445257 0.0173240i
\(373\) −2.55282 −0.132180 −0.0660901 0.997814i \(-0.521052\pi\)
−0.0660901 + 0.997814i \(0.521052\pi\)
\(374\) −32.1266 −1.66122
\(375\) −12.6018 + 32.3887i −0.650753 + 1.67255i
\(376\) 2.66655 + 1.53953i 0.137517 + 0.0793953i
\(377\) −0.0532895 + 0.135480i −0.00274455 + 0.00697756i
\(378\) 25.8258 5.69694i 1.32833 0.293019i
\(379\) 1.47736 2.55887i 0.0758871 0.131440i −0.825585 0.564278i \(-0.809154\pi\)
0.901472 + 0.432838i \(0.142488\pi\)
\(380\) −15.3930 + 8.88718i −0.789646 + 0.455903i
\(381\) −7.42369 9.25304i −0.380327 0.474047i
\(382\) 14.1349 + 24.4824i 0.723206 + 1.25263i
\(383\) −0.659535 −0.0337007 −0.0168503 0.999858i \(-0.505364\pi\)
−0.0168503 + 0.999858i \(0.505364\pi\)
\(384\) 1.19884 + 7.79801i 0.0611779 + 0.397941i
\(385\) 7.08672 + 24.3614i 0.361173 + 1.24157i
\(386\) −31.8831 + 18.4077i −1.62280 + 0.936927i
\(387\) −6.96016 + 31.3435i −0.353805 + 1.59328i
\(388\) 24.7411i 1.25604i
\(389\) −32.6087 + 18.8266i −1.65333 + 0.954548i −0.677635 + 0.735398i \(0.736995\pi\)
−0.975691 + 0.219150i \(0.929672\pi\)
\(390\) −10.3068 + 45.6173i −0.521904 + 2.30992i
\(391\) 18.9110i 0.956371i
\(392\) 4.02719 0.171565i 0.203404 0.00866534i
\(393\) −10.5308 13.1258i −0.531211 0.662111i
\(394\) 5.02841 0.253328
\(395\) 10.2370 + 17.7311i 0.515082 + 0.892147i
\(396\) −3.77506 11.9876i −0.189704 0.602397i
\(397\) 25.3135i 1.27045i −0.772328 0.635224i \(-0.780908\pi\)
0.772328 0.635224i \(-0.219092\pi\)
\(398\) −33.5041 −1.67941
\(399\) 5.19169 + 11.1541i 0.259910 + 0.558403i
\(400\) 22.8933 39.6524i 1.14467 1.98262i
\(401\) −1.23354 + 0.712187i −0.0616002 + 0.0355649i −0.530484 0.847695i \(-0.677990\pi\)
0.468884 + 0.883260i \(0.344656\pi\)
\(402\) 3.27736 + 21.3181i 0.163460 + 1.06325i
\(403\) −0.702593 0.882385i −0.0349987 0.0439547i
\(404\) 8.59259 14.8828i 0.427497 0.740447i
\(405\) −31.7428 14.8289i −1.57731 0.736854i
\(406\) 0.148377 + 0.142190i 0.00736381 + 0.00705678i
\(407\) 8.70097 5.02351i 0.431291 0.249006i
\(408\) 5.27412 4.23142i 0.261108 0.209486i
\(409\) −16.7498 9.67049i −0.828223 0.478175i 0.0250208 0.999687i \(-0.492035\pi\)
−0.853244 + 0.521512i \(0.825368\pi\)
\(410\) −22.5404 13.0137i −1.11319 0.642701i
\(411\) 0.694219 0.556970i 0.0342433 0.0274733i
\(412\) −15.5667 + 8.98743i −0.766916 + 0.442779i
\(413\) 8.80967 2.56273i 0.433495 0.126104i
\(414\) −15.3547 + 4.83544i −0.754644 + 0.237649i
\(415\) 7.45859 12.9187i 0.366128 0.634152i
\(416\) 9.92801 25.2403i 0.486761 1.23751i
\(417\) −3.69256 24.0188i −0.180826 1.17621i
\(418\) 11.0179 6.36121i 0.538905 0.311137i
\(419\) −14.6459 + 25.3674i −0.715498 + 1.23928i 0.247269 + 0.968947i \(0.420467\pi\)
−0.962767 + 0.270332i \(0.912867\pi\)
\(420\) 24.8398 + 17.4190i 1.21206 + 0.849962i
\(421\) 8.70488 0.424250 0.212125 0.977243i \(-0.431962\pi\)
0.212125 + 0.977243i \(0.431962\pi\)
\(422\) 31.3610i 1.52663i
\(423\) 15.3006 4.81841i 0.743943 0.234279i
\(424\) 1.45519 + 2.52047i 0.0706705 + 0.122405i
\(425\) −68.8420 −3.33933
\(426\) 21.3063 + 26.5566i 1.03229 + 1.28667i
\(427\) 6.93912 7.24103i 0.335807 0.350418i
\(428\) 3.49169i 0.168777i
\(429\) 3.39030 15.0053i 0.163685 0.724462i
\(430\) −69.4093 + 40.0735i −3.34721 + 1.93252i
\(431\) 18.2748i 0.880267i −0.897932 0.440134i \(-0.854931\pi\)
0.897932 0.440134i \(-0.145069\pi\)
\(432\) 19.4744 + 13.0271i 0.936961 + 0.626766i
\(433\) −23.8339 + 13.7605i −1.14538 + 0.661288i −0.947758 0.318989i \(-0.896657\pi\)
−0.197626 + 0.980277i \(0.563323\pi\)
\(434\) −1.52884 + 0.444740i −0.0733867 + 0.0213482i
\(435\) −0.0413688 0.269090i −0.00198348 0.0129019i
\(436\) 10.7295 0.513848
\(437\) −3.74447 6.48561i −0.179122 0.310249i
\(438\) 17.4671 + 21.7713i 0.834609 + 1.04027i
\(439\) −18.4630 + 10.6596i −0.881193 + 0.508757i −0.871051 0.491192i \(-0.836561\pi\)
−0.0101412 + 0.999949i \(0.503228\pi\)
\(440\) −2.76095 + 4.78211i −0.131623 + 0.227978i
\(441\) 13.5211 16.0679i 0.643864 0.765140i
\(442\) −46.5033 + 6.97348i −2.21194 + 0.331695i
\(443\) 0.566745 + 0.327210i 0.0269269 + 0.0155462i 0.513403 0.858148i \(-0.328385\pi\)
−0.486476 + 0.873694i \(0.661718\pi\)
\(444\) 4.35634 11.1965i 0.206743 0.531364i
\(445\) 40.4871 1.91927
\(446\) −19.6316 −0.929585
\(447\) −11.2754 4.38703i −0.533309 0.207500i
\(448\) −10.4164 9.98205i −0.492127 0.471607i
\(449\) 3.39963 1.96278i 0.160438 0.0926292i −0.417631 0.908617i \(-0.637140\pi\)
0.578070 + 0.815987i \(0.303806\pi\)
\(450\) −17.6025 55.8960i −0.829790 2.63496i
\(451\) 7.41440 + 4.28071i 0.349131 + 0.201571i
\(452\) 5.50241i 0.258811i
\(453\) −0.638580 + 0.0981728i −0.0300031 + 0.00461256i
\(454\) 42.9072i 2.01373i
\(455\) 15.5460 + 33.7249i 0.728808 + 1.58105i
\(456\) −0.970941 + 2.49548i −0.0454685 + 0.116862i
\(457\) −11.2993 19.5710i −0.528561 0.915495i −0.999445 0.0332998i \(-0.989398\pi\)
0.470884 0.882195i \(-0.343935\pi\)
\(458\) 39.9029 1.86454
\(459\) 2.32239 35.1509i 0.108400 1.64071i
\(460\) −15.9931 9.23360i −0.745681 0.430519i
\(461\) −7.66032 13.2681i −0.356777 0.617955i 0.630644 0.776073i \(-0.282791\pi\)
−0.987420 + 0.158117i \(0.949458\pi\)
\(462\) −17.7797 12.4681i −0.827185 0.580068i
\(463\) −24.3265 −1.13055 −0.565273 0.824904i \(-0.691229\pi\)
−0.565273 + 0.824904i \(0.691229\pi\)
\(464\) 0.182065i 0.00845217i
\(465\) 1.96577 + 0.764840i 0.0911603 + 0.0354686i
\(466\) 8.08139 0.374363
\(467\) 11.3722 19.6972i 0.526242 0.911478i −0.473291 0.880906i \(-0.656934\pi\)
0.999533 0.0305714i \(-0.00973268\pi\)
\(468\) −8.06647 16.5326i −0.372873 0.764219i
\(469\) 12.3653 + 11.8498i 0.570978 + 0.547171i
\(470\) 34.6785 + 20.0216i 1.59960 + 0.923530i
\(471\) 1.80759 + 11.7578i 0.0832895 + 0.541769i
\(472\) 1.72933 + 0.998429i 0.0795989 + 0.0459564i
\(473\) 22.8314 13.1817i 1.04979 0.606096i
\(474\) −16.3315 6.35426i −0.750131 0.291861i
\(475\) 23.6096 13.6310i 1.08328 0.625435i
\(476\) −7.26623 + 29.6268i −0.333047 + 1.35794i
\(477\) 14.8021 + 3.28696i 0.677741 + 0.150500i
\(478\) −12.8061 22.1807i −0.585735 1.01452i
\(479\) −3.16019 −0.144393 −0.0721963 0.997390i \(-0.523001\pi\)
−0.0721963 + 0.997390i \(0.523001\pi\)
\(480\) 7.70715 + 50.1323i 0.351782 + 2.28822i
\(481\) 11.5043 9.16020i 0.524549 0.417669i
\(482\) −12.2222 −0.556706
\(483\) −7.33923 + 10.4658i −0.333946 + 0.476212i
\(484\) 4.19383 7.26392i 0.190629 0.330178i
\(485\) 56.6329i 2.57157i
\(486\) 29.1345 7.10225i 1.32157 0.322164i
\(487\) −8.99812 + 15.5852i −0.407744 + 0.706233i −0.994637 0.103432i \(-0.967018\pi\)
0.586893 + 0.809665i \(0.300351\pi\)
\(488\) 2.18279 0.0988103
\(489\) 13.2993 34.1813i 0.601413 1.54573i
\(490\) 52.3737 2.23121i 2.36600 0.100796i
\(491\) −13.0532 7.53626i −0.589082 0.340107i 0.175652 0.984452i \(-0.443796\pi\)
−0.764734 + 0.644346i \(0.777130\pi\)
\(492\) 10.1188 1.55563i 0.456191 0.0701330i
\(493\) 0.237067 0.136871i 0.0106770 0.00616436i
\(494\) 14.5677 11.5995i 0.655432 0.521884i
\(495\) 8.64120 + 27.4398i 0.388393 + 1.23333i
\(496\) −1.22160 0.705293i −0.0548516 0.0316686i
\(497\) 26.2570 + 6.43977i 1.17779 + 0.288863i
\(498\) 1.94009 + 12.6196i 0.0869375 + 0.565498i
\(499\) −4.60936 + 7.98365i −0.206343 + 0.357397i −0.950560 0.310541i \(-0.899490\pi\)
0.744217 + 0.667938i \(0.232823\pi\)
\(500\) 17.0621 29.5524i 0.763039 1.32162i
\(501\) −1.24268 1.54890i −0.0555189 0.0691998i
\(502\) 38.9560 + 22.4913i 1.73869 + 1.00383i
\(503\) 15.5587 + 26.9484i 0.693727 + 1.20157i 0.970608 + 0.240667i \(0.0773661\pi\)
−0.276880 + 0.960904i \(0.589301\pi\)
\(504\) 4.56102 0.294926i 0.203164 0.0131370i
\(505\) −19.6686 + 34.0671i −0.875243 + 1.51596i
\(506\) 11.4474 + 6.60917i 0.508900 + 0.293813i
\(507\) 1.65038 22.4561i 0.0732959 0.997310i
\(508\) 5.82400 + 10.0875i 0.258398 + 0.447559i
\(509\) −5.21084 9.02543i −0.230966 0.400045i 0.727126 0.686504i \(-0.240855\pi\)
−0.958093 + 0.286458i \(0.907522\pi\)
\(510\) 68.5901 55.0297i 3.03722 2.43676i
\(511\) 21.5257 + 5.27938i 0.952242 + 0.233546i
\(512\) 28.7264i 1.26954i
\(513\) 6.16358 + 12.5150i 0.272129 + 0.552551i
\(514\) −50.0339 28.8871i −2.20690 1.27415i
\(515\) 35.6325 20.5724i 1.57016 0.906530i
\(516\) 11.4311 29.3797i 0.503224 1.29337i
\(517\) −11.4071 6.58589i −0.501683 0.289647i
\(518\) −5.79838 19.9326i −0.254766 0.875787i
\(519\) −1.60620 + 4.12821i −0.0705044 + 0.181208i
\(520\) −2.95847 + 7.52143i −0.129738 + 0.329836i
\(521\) −15.2064 26.3382i −0.666204 1.15390i −0.978957 0.204065i \(-0.934585\pi\)
0.312753 0.949834i \(-0.398749\pi\)
\(522\) 0.171749 + 0.157489i 0.00751724 + 0.00689311i
\(523\) −35.8102 + 20.6750i −1.56587 + 0.904056i −0.569229 + 0.822179i \(0.692758\pi\)
−0.996642 + 0.0818769i \(0.973909\pi\)
\(524\) 8.26160 + 14.3095i 0.360910 + 0.625114i
\(525\) −38.0989 26.7171i −1.66277 1.16603i
\(526\) 10.6089 + 18.3751i 0.462568 + 0.801191i
\(527\) 2.12087i 0.0923865i
\(528\) −2.92331 19.0151i −0.127221 0.827525i
\(529\) −7.60957 + 13.1802i −0.330851 + 0.573051i
\(530\) 18.9249 + 32.7788i 0.822043 + 1.42382i
\(531\) 9.92290 3.12487i 0.430617 0.135608i
\(532\) −3.37426 11.5994i −0.146293 0.502897i
\(533\) 11.6616 + 4.58695i 0.505118 + 0.198683i
\(534\) −27.0296 + 21.6858i −1.16968 + 0.938435i
\(535\) 7.99256i 0.345549i
\(536\) 3.72750i 0.161004i
\(537\) −0.839367 0.326580i −0.0362213 0.0140930i
\(538\) 30.8830i 1.33146i
\(539\) −17.2277 + 0.733930i −0.742050 + 0.0316126i
\(540\) 28.5933 + 19.1271i 1.23046 + 0.823098i
\(541\) 1.93305 3.34815i 0.0831084 0.143948i −0.821475 0.570244i \(-0.806849\pi\)
0.904584 + 0.426296i \(0.140182\pi\)
\(542\) 4.54291 7.86855i 0.195135 0.337983i
\(543\) −29.6373 11.5313i −1.27186 0.494855i
\(544\) −44.1665 + 25.4995i −1.89362 + 1.09328i
\(545\) −24.5599 −1.05203
\(546\) −28.4425 14.1883i −1.21723 0.607203i
\(547\) 13.6568 0.583921 0.291961 0.956430i \(-0.405692\pi\)
0.291961 + 0.956430i \(0.405692\pi\)
\(548\) −0.756822 + 0.436952i −0.0323298 + 0.0186656i
\(549\) 7.68573 8.38163i 0.328019 0.357719i
\(550\) −24.0594 + 41.6722i −1.02590 + 1.77691i
\(551\) −0.0542022 + 0.0938809i −0.00230909 + 0.00399946i
\(552\) −2.74979 + 0.422742i −0.117039 + 0.0179931i
\(553\) −13.3612 + 3.88677i −0.568176 + 0.165282i
\(554\) 52.3965i 2.22611i
\(555\) −9.97175 + 25.6291i −0.423277 + 1.08789i
\(556\) 23.8607i 1.01192i
\(557\) 3.34961i 0.141928i −0.997479 0.0709638i \(-0.977393\pi\)
0.997479 0.0709638i \(-0.0226075\pi\)
\(558\) −1.72203 + 0.542294i −0.0728994 + 0.0229571i
\(559\) 30.1873 24.0364i 1.27678 1.01663i
\(560\) 33.5306 + 32.1325i 1.41692 + 1.35785i
\(561\) −22.5619 + 18.1014i −0.952565 + 0.764241i
\(562\) 20.0481 + 34.7243i 0.845676 + 1.46475i
\(563\) −15.8780 + 27.5015i −0.669177 + 1.15905i 0.308957 + 0.951076i \(0.400020\pi\)
−0.978135 + 0.207973i \(0.933313\pi\)
\(564\) −15.5678 + 2.39334i −0.655524 + 0.100778i
\(565\) 12.5951i 0.529881i
\(566\) −25.5688 44.2865i −1.07474 1.86150i
\(567\) 14.9271 18.5521i 0.626879 0.779116i
\(568\) 2.94204 + 5.09576i 0.123445 + 0.213813i
\(569\) −28.3423 + 16.3635i −1.18817 + 0.685992i −0.957891 0.287132i \(-0.907298\pi\)
−0.230282 + 0.973124i \(0.573965\pi\)
\(570\) −12.6271 + 32.4538i −0.528892 + 1.35934i
\(571\) −14.5026 25.1193i −0.606916 1.05121i −0.991746 0.128222i \(-0.959073\pi\)
0.384829 0.922988i \(-0.374260\pi\)
\(572\) −5.52896 + 14.0565i −0.231177 + 0.587730i
\(573\) 23.7211 + 9.22939i 0.990963 + 0.385563i
\(574\) 12.2391 12.7717i 0.510852 0.533079i
\(575\) 24.5299 + 14.1624i 1.02297 + 0.590612i
\(576\) −12.0571 11.0561i −0.502380 0.460669i
\(577\) −30.6663 + 17.7052i −1.27665 + 0.737077i −0.976232 0.216730i \(-0.930461\pi\)
−0.300422 + 0.953806i \(0.597128\pi\)
\(578\) 48.2507 + 27.8576i 2.00697 + 1.15872i
\(579\) −12.0193 + 30.8916i −0.499504 + 1.28381i
\(580\) 0.267318i 0.0110998i
\(581\) 7.31987 + 7.01467i 0.303679 + 0.291017i
\(582\) −30.3339 37.8087i −1.25738 1.56722i
\(583\) −6.22511 10.7822i −0.257818 0.446554i
\(584\) 2.41191 + 4.17754i 0.0998054 + 0.172868i
\(585\) 18.4643 + 37.8435i 0.763406 + 1.56463i
\(586\) 22.4391 + 12.9552i 0.926951 + 0.535175i
\(587\) −5.28149 + 9.14781i −0.217991 + 0.377571i −0.954194 0.299190i \(-0.903284\pi\)
0.736203 + 0.676761i \(0.236617\pi\)
\(588\) −15.5193 + 13.5763i −0.640004 + 0.559875i
\(589\) −0.419942 0.727361i −0.0173034 0.0299704i
\(590\) 22.4900 + 12.9846i 0.925898 + 0.534567i
\(591\) 3.53137 2.83321i 0.145261 0.116543i
\(592\) 9.19540 15.9269i 0.377929 0.654591i
\(593\) −15.7312 + 27.2473i −0.646004 + 1.11891i 0.338065 + 0.941123i \(0.390228\pi\)
−0.984069 + 0.177788i \(0.943106\pi\)
\(594\) −20.4663 13.6906i −0.839743 0.561734i
\(595\) 16.6326 67.8164i 0.681869 2.78020i
\(596\) 10.2880 + 5.93978i 0.421413 + 0.243303i
\(597\) −23.5293 + 18.8775i −0.962992 + 0.772606i
\(598\) 18.0048 + 7.08198i 0.736270 + 0.289604i
\(599\) −18.4692 + 10.6632i −0.754630 + 0.435686i −0.827364 0.561666i \(-0.810161\pi\)
0.0727345 + 0.997351i \(0.476827\pi\)
\(600\) −1.53891 10.0101i −0.0628258 0.408660i
\(601\) 6.36357 + 3.67401i 0.259575 + 0.149866i 0.624141 0.781312i \(-0.285449\pi\)
−0.364565 + 0.931178i \(0.618782\pi\)
\(602\) −15.2150 52.3032i −0.620117 2.13172i
\(603\) 14.3131 + 13.1247i 0.582875 + 0.534481i
\(604\) 0.634375 0.0258123
\(605\) −9.59976 + 16.6273i −0.390286 + 0.675995i
\(606\) −5.11611 33.2785i −0.207828 1.35185i
\(607\) 0.295868i 0.0120089i −0.999982 0.00600445i \(-0.998089\pi\)
0.999982 0.00600445i \(-0.00191129\pi\)
\(608\) 10.0980 17.4903i 0.409530 0.709326i
\(609\) 0.184318 + 0.0162563i 0.00746894 + 0.000658739i
\(610\) 28.3873 1.14937
\(611\) −17.9414 7.05704i −0.725830 0.285497i
\(612\) −7.49826 + 33.7667i −0.303099 + 1.36494i
\(613\) 42.2379 1.70597 0.852987 0.521932i \(-0.174788\pi\)
0.852987 + 0.521932i \(0.174788\pi\)
\(614\) 6.14577 + 10.6448i 0.248023 + 0.429589i
\(615\) −23.1622 + 3.56086i −0.933988 + 0.143588i
\(616\) −2.70960 2.59663i −0.109173 0.104621i
\(617\) 38.0080 21.9440i 1.53015 0.883430i 0.530792 0.847502i \(-0.321895\pi\)
0.999354 0.0359283i \(-0.0114388\pi\)
\(618\) −12.7696 + 32.8199i −0.513667 + 1.32021i
\(619\) 31.5917 18.2395i 1.26978 0.733106i 0.294831 0.955549i \(-0.404737\pi\)
0.974946 + 0.222444i \(0.0714033\pi\)
\(620\) −1.79362 1.03555i −0.0720336 0.0415886i
\(621\) −8.05888 + 12.0473i −0.323392 + 0.483442i
\(622\) 3.51505 + 2.02942i 0.140941 + 0.0813722i
\(623\) −6.55446 + 26.7247i −0.262599 + 1.07070i
\(624\) −8.35896 26.8898i −0.334626 1.07646i
\(625\) −13.6696 + 23.6764i −0.546782 + 0.947055i
\(626\) −21.6739 −0.866263
\(627\) 4.15354 10.6753i 0.165877 0.426331i
\(628\) 11.6803i 0.466096i
\(629\) −27.6512 −1.10253
\(630\) 59.3161 3.83552i 2.36321 0.152811i
\(631\) 7.77964 + 13.4747i 0.309703 + 0.536421i 0.978297 0.207206i \(-0.0664371\pi\)
−0.668595 + 0.743627i \(0.733104\pi\)
\(632\) −2.62279 1.51427i −0.104329 0.0602344i
\(633\) 17.6700 + 22.0243i 0.702321 + 0.875387i
\(634\) −14.0397 −0.557589
\(635\) −13.3313 23.0904i −0.529035 0.916315i
\(636\) −13.8747 5.39836i −0.550167 0.214059i
\(637\) −24.7779 + 4.80186i −0.981734 + 0.190257i
\(638\) 0.191339i 0.00757519i
\(639\) 29.9261 + 6.64541i 1.18386 + 0.262888i
\(640\) 17.7323i 0.700930i
\(641\) −11.8530 6.84334i −0.468166 0.270296i 0.247306 0.968937i \(-0.420455\pi\)
−0.715472 + 0.698642i \(0.753788\pi\)
\(642\) 4.28099 + 5.33591i 0.168957 + 0.210592i
\(643\) 22.7642 13.1429i 0.897731 0.518305i 0.0212680 0.999774i \(-0.493230\pi\)
0.876463 + 0.481468i \(0.159896\pi\)
\(644\) 8.68403 9.06187i 0.342199 0.357088i
\(645\) −26.1659 + 67.2509i −1.03028 + 2.64800i
\(646\) −35.0144 −1.37762
\(647\) 28.0752 1.10375 0.551875 0.833927i \(-0.313913\pi\)
0.551875 + 0.833927i \(0.313913\pi\)
\(648\) 5.16310 0.448083i 0.202826 0.0176024i
\(649\) −7.39782 4.27113i −0.290390 0.167657i
\(650\) −25.7806 + 65.5430i −1.01120 + 2.57081i
\(651\) −0.823094 + 1.17374i −0.0322596 + 0.0460026i
\(652\) −18.0064 + 31.1880i −0.705185 + 1.22142i
\(653\) 29.6881 17.1405i 1.16179 0.670758i 0.210055 0.977690i \(-0.432636\pi\)
0.951731 + 0.306932i \(0.0993024\pi\)
\(654\) 16.3965 13.1549i 0.641153 0.514396i
\(655\) −18.9110 32.7548i −0.738913 1.27984i
\(656\) 15.6714 0.611867
\(657\) 24.5337 + 5.44796i 0.957149 + 0.212545i
\(658\) −18.8300 + 19.6493i −0.734070 + 0.766008i
\(659\) 26.0683 15.0505i 1.01548 0.586285i 0.102686 0.994714i \(-0.467256\pi\)
0.912790 + 0.408428i \(0.133923\pi\)
\(660\) −4.29215 27.9189i −0.167072 1.08674i
\(661\) 1.58385i 0.0616045i 0.999525 + 0.0308022i \(0.00980621\pi\)
−0.999525 + 0.0308022i \(0.990194\pi\)
\(662\) 9.34014 5.39253i 0.363015 0.209587i
\(663\) −28.7293 + 31.0992i −1.11575 + 1.20779i
\(664\) 2.20656i 0.0856311i
\(665\) 7.72375 + 26.5512i 0.299514 + 1.02961i
\(666\) −7.07027 22.4513i −0.273967 0.869971i
\(667\) −0.112630 −0.00436105
\(668\) 0.974902 + 1.68858i 0.0377201 + 0.0653331i
\(669\) −13.7870 + 11.0613i −0.533035 + 0.427653i
\(670\) 48.4763i 1.87280i
\(671\) −9.33766 −0.360477
\(672\) −34.3390 3.02860i −1.32466 0.116831i
\(673\) −2.48654 + 4.30681i −0.0958490 + 0.166015i −0.909963 0.414690i \(-0.863890\pi\)
0.814114 + 0.580706i \(0.197223\pi\)
\(674\) 18.0874 10.4427i 0.696699 0.402240i
\(675\) −43.8560 29.3368i −1.68802 1.12917i
\(676\) −4.95205 + 21.5469i −0.190464 + 0.828727i
\(677\) −12.4232 + 21.5177i −0.477463 + 0.826991i −0.999666 0.0258306i \(-0.991777\pi\)
0.522203 + 0.852821i \(0.325110\pi\)
\(678\) 6.74623 + 8.40864i 0.259087 + 0.322932i
\(679\) −37.3822 9.16832i −1.43460 0.351848i
\(680\) 13.1613 7.59866i 0.504711 0.291395i
\(681\) −24.1756 30.1330i −0.926412 1.15470i
\(682\) 1.28383 + 0.741218i 0.0491603 + 0.0283827i
\(683\) −30.9712 17.8812i −1.18508 0.684205i −0.227894 0.973686i \(-0.573184\pi\)
−0.957184 + 0.289481i \(0.906517\pi\)
\(684\) −4.11441 13.0651i −0.157318 0.499558i
\(685\) 1.73238 1.00019i 0.0661909 0.0382154i
\(686\) −7.00601 + 34.9320i −0.267491 + 1.33371i
\(687\) 28.0231 22.4829i 1.06915 0.857776i
\(688\) 24.1288 41.7923i 0.919901 1.59332i
\(689\) −11.3513 14.2560i −0.432450 0.543112i
\(690\) −35.7611 + 5.49777i −1.36140 + 0.209296i
\(691\) 12.0254 6.94290i 0.457470 0.264120i −0.253510 0.967333i \(-0.581585\pi\)
0.710980 + 0.703213i \(0.248252\pi\)
\(692\) 2.17470 3.76669i 0.0826697 0.143188i
\(693\) −19.5114 + 1.26165i −0.741175 + 0.0479261i
\(694\) −13.9279 −0.528698
\(695\) 54.6176i 2.07176i
\(696\) 0.0252014 + 0.0314116i 0.000955258 + 0.00119065i
\(697\) −11.7813 20.4058i −0.446248 0.772925i
\(698\) −0.372847 −0.0141125
\(699\) 5.67542 4.55338i 0.214664 0.172225i
\(700\) 32.9880 + 31.6126i 1.24683 + 1.19484i
\(701\) 39.0103i 1.47340i 0.676219 + 0.736700i \(0.263617\pi\)
−0.676219 + 0.736700i \(0.736383\pi\)
\(702\) −32.5968 15.3748i −1.23029 0.580284i
\(703\) 9.48311 5.47508i 0.357662 0.206496i
\(704\) 13.4324i 0.506253i
\(705\) 35.6351 5.47840i 1.34210 0.206329i
\(706\) −39.0023 + 22.5180i −1.46787 + 0.847475i
\(707\) −19.3028 18.4980i −0.725957 0.695688i
\(708\) −10.0962 + 1.55215i −0.379437 + 0.0583333i
\(709\) 50.8698 1.91045 0.955227 0.295873i \(-0.0956104\pi\)
0.955227 + 0.295873i \(0.0956104\pi\)
\(710\) 38.2613 + 66.2705i 1.43592 + 2.48709i
\(711\) −15.0496 + 4.73934i −0.564403 + 0.177739i
\(712\) −5.18651 + 2.99443i −0.194373 + 0.112221i
\(713\) 0.436311 0.755713i 0.0163400 0.0283017i
\(714\) 25.2199 + 54.1837i 0.943831 + 2.02777i
\(715\) 12.6559 32.1756i 0.473304 1.20330i
\(716\) 0.765862 + 0.442170i 0.0286216 + 0.0165247i
\(717\) −21.4910 8.36170i −0.802595 0.312273i
\(718\) −35.8210 −1.33683
\(719\) 43.5354 1.62360 0.811799 0.583937i \(-0.198489\pi\)
0.811799 + 0.583937i \(0.198489\pi\)
\(720\) 38.8122 + 35.5898i 1.44645 + 1.32635i
\(721\) 7.81088 + 26.8508i 0.290893 + 0.999974i
\(722\) −19.6453 + 11.3422i −0.731123 + 0.422114i
\(723\) −8.58344 + 6.88648i −0.319221 + 0.256111i
\(724\) 27.0419 + 15.6127i 1.00501 + 0.580240i
\(725\) 0.410008i 0.0152273i
\(726\) −2.49704 16.2424i −0.0926739 0.602811i
\(727\) 36.0897i 1.33849i 0.743041 + 0.669246i \(0.233383\pi\)
−0.743041 + 0.669246i \(0.766617\pi\)
\(728\) −4.48579 3.17047i −0.166254 0.117506i
\(729\) 16.4590 21.4033i 0.609591 0.792716i
\(730\) 31.3669 + 54.3291i 1.16094 + 2.01081i
\(731\) −72.5570 −2.68362
\(732\) −8.70934 + 6.98749i −0.321907 + 0.258265i
\(733\) −2.29297 1.32385i −0.0846927 0.0488974i 0.457056 0.889438i \(-0.348904\pi\)
−0.541748 + 0.840541i \(0.682237\pi\)
\(734\) −11.0320 19.1080i −0.407200 0.705291i
\(735\) 35.5239 31.0763i 1.31032 1.14627i
\(736\) 20.9833 0.773456
\(737\) 15.9457i 0.587368i
\(738\) 13.5560 14.7834i 0.499004 0.544186i
\(739\) 16.8113 0.618414 0.309207 0.950995i \(-0.399936\pi\)
0.309207 + 0.950995i \(0.399936\pi\)
\(740\) 13.5012 23.3847i 0.496313 0.859639i
\(741\) 3.69506 16.3541i 0.135741 0.600784i
\(742\) −24.7004 + 7.18534i −0.906779 + 0.263782i
\(743\) −45.4471 26.2389i −1.66729 0.962612i −0.969089 0.246712i \(-0.920650\pi\)
−0.698203 0.715899i \(-0.746017\pi\)
\(744\) −0.308389 + 0.0474105i −0.0113061 + 0.00173815i
\(745\) −23.5495 13.5963i −0.862786 0.498130i
\(746\) 4.25296 2.45545i 0.155712 0.0899003i
\(747\) 8.47288 + 7.76941i 0.310007 + 0.284268i
\(748\) 24.5965 14.2008i 0.899338 0.519233i
\(749\) 5.27573 + 1.29392i 0.192771 + 0.0472787i
\(750\) −10.1589 66.0801i −0.370951 2.41291i
\(751\) 11.6475 + 20.1740i 0.425022 + 0.736160i 0.996422 0.0845116i \(-0.0269330\pi\)
−0.571400 + 0.820671i \(0.693600\pi\)
\(752\) −24.1106 −0.879223
\(753\) 40.0306 6.15415i 1.45880 0.224270i
\(754\) −0.0415326 0.276964i −0.00151253 0.0100864i
\(755\) −1.45210 −0.0528472
\(756\) −17.2544 + 15.7773i −0.627535 + 0.573817i
\(757\) 1.91330 3.31394i 0.0695402 0.120447i −0.829159 0.559013i \(-0.811180\pi\)
0.898699 + 0.438566i \(0.144513\pi\)
\(758\) 5.68404i 0.206454i
\(759\) 11.7632 1.80843i 0.426977 0.0656418i
\(760\) −3.00914 + 5.21198i −0.109153 + 0.189059i
\(761\) 20.8003 0.754010 0.377005 0.926211i \(-0.376954\pi\)
0.377005 + 0.926211i \(0.376954\pi\)
\(762\) 21.2678 + 8.27488i 0.770452 + 0.299767i
\(763\) 3.97602 16.2115i 0.143942 0.586896i
\(764\) −21.6438 12.4961i −0.783045 0.452091i
\(765\) 17.1637 77.2928i 0.620554 2.79453i
\(766\) 1.09877 0.634378i 0.0397003 0.0229210i
\(767\) −11.6355 4.57669i −0.420133 0.165255i
\(768\) −21.3186 26.5720i −0.769270 0.958833i
\(769\) 33.4209 + 19.2956i 1.20519 + 0.695817i 0.961705 0.274088i \(-0.0883759\pi\)
0.243485 + 0.969905i \(0.421709\pi\)
\(770\) −35.2385