Properties

Label 273.2.bf.b.152.18
Level $273$
Weight $2$
Character 273.152
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(152,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.152");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.18
Character \(\chi\) \(=\) 273.152
Dual form 273.2.bf.b.185.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.473030 - 0.273104i) q^{2} +(-0.966120 + 1.43757i) q^{3} +(-0.850828 + 1.47368i) q^{4} +(1.25657 - 2.17644i) q^{5} +(-0.0643970 + 0.943866i) q^{6} +(2.53535 + 0.756296i) q^{7} +2.02188i q^{8} +(-1.13323 - 2.77773i) q^{9} +O(q^{10})\) \(q+(0.473030 - 0.273104i) q^{2} +(-0.966120 + 1.43757i) q^{3} +(-0.850828 + 1.47368i) q^{4} +(1.25657 - 2.17644i) q^{5} +(-0.0643970 + 0.943866i) q^{6} +(2.53535 + 0.756296i) q^{7} +2.02188i q^{8} +(-1.13323 - 2.77773i) q^{9} -1.37270i q^{10} +6.02763i q^{11} +(-1.29652 - 2.64688i) q^{12} +(-1.89716 + 3.06607i) q^{13} +(1.40585 - 0.334664i) q^{14} +(1.91480 + 3.90911i) q^{15} +(-1.14947 - 1.99095i) q^{16} +(0.323651 - 0.560581i) q^{17} +(-1.29466 - 1.00446i) q^{18} +2.29555i q^{19} +(2.13825 + 3.70356i) q^{20} +(-3.53668 + 2.91408i) q^{21} +(1.64617 + 2.85125i) q^{22} +(0.894874 - 0.516656i) q^{23} +(-2.90659 - 1.95337i) q^{24} +(-0.657937 - 1.13958i) q^{25} +(-0.0600548 + 1.96847i) q^{26} +(5.08802 + 1.05453i) q^{27} +(-3.27169 + 3.09282i) q^{28} +(-4.46255 - 2.57646i) q^{29} +(1.97335 + 1.32619i) q^{30} +(9.25745 - 5.34479i) q^{31} +(-4.58946 - 2.64973i) q^{32} +(-8.66515 - 5.82341i) q^{33} -0.353562i q^{34} +(4.83188 - 4.56771i) q^{35} +(5.05766 + 0.693365i) q^{36} +(1.97766 + 3.42541i) q^{37} +(0.626924 + 1.08587i) q^{38} +(-2.57482 - 5.68949i) q^{39} +(4.40050 + 2.54063i) q^{40} +(4.48689 - 7.77153i) q^{41} +(-0.877112 + 2.34433i) q^{42} +(-4.09951 - 7.10056i) q^{43} +(-8.88279 - 5.12848i) q^{44} +(-7.46955 - 1.02402i) q^{45} +(0.282202 - 0.488787i) q^{46} +(2.09646 - 3.63118i) q^{47} +(3.97266 + 0.271042i) q^{48} +(5.85603 + 3.83496i) q^{49} +(-0.622448 - 0.359370i) q^{50} +(0.493189 + 1.00686i) q^{51} +(-2.90425 - 5.40450i) q^{52} +(0.0406517 - 0.0234703i) q^{53} +(2.69478 - 0.890735i) q^{54} +(13.1188 + 7.57414i) q^{55} +(-1.52914 + 5.12617i) q^{56} +(-3.30002 - 2.21778i) q^{57} -2.81456 q^{58} +(0.831148 - 1.43959i) q^{59} +(-7.38994 - 0.504192i) q^{60} -3.59276i q^{61} +(2.91937 - 5.05650i) q^{62} +(-0.772338 - 7.89959i) q^{63} +1.70329 q^{64} +(4.28922 + 7.98179i) q^{65} +(-5.68928 - 0.388162i) q^{66} +1.52251 q^{67} +(0.550743 + 0.953916i) q^{68} +(-0.121826 + 1.78560i) q^{69} +(1.03817 - 3.48027i) q^{70} +(-11.4729 + 6.62389i) q^{71} +(5.61623 - 2.29124i) q^{72} +(4.76835 - 2.75301i) q^{73} +(1.87099 + 1.08022i) q^{74} +(2.27387 + 0.155139i) q^{75} +(-3.38290 - 1.95312i) q^{76} +(-4.55868 + 15.2822i) q^{77} +(-2.77179 - 1.98811i) q^{78} +(-2.14796 + 3.72038i) q^{79} -5.77758 q^{80} +(-6.43160 + 6.29559i) q^{81} -4.90156i q^{82} -11.8816 q^{83} +(-1.28530 - 7.69132i) q^{84} +(-0.813381 - 1.40882i) q^{85} +(-3.87838 - 2.23919i) q^{86} +(8.01520 - 3.92608i) q^{87} -12.1871 q^{88} +(-0.507769 - 0.879481i) q^{89} +(-3.81299 + 1.55558i) q^{90} +(-7.12882 + 6.33877i) q^{91} +1.75834i q^{92} +(-1.26028 + 18.4720i) q^{93} -2.29021i q^{94} +(4.99614 + 2.88452i) q^{95} +(8.24314 - 4.03773i) q^{96} +(8.58147 - 4.95452i) q^{97} +(3.81742 + 0.214744i) q^{98} +(16.7432 - 6.83067i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9} + 6 q^{12} - 12 q^{13} - 9 q^{15} - 16 q^{16} + 2 q^{18} + 10 q^{21} + 10 q^{22} - 24 q^{25} - 50 q^{28} - 16 q^{30} - 24 q^{31} - 33 q^{39} + 90 q^{40} - 48 q^{42} - 20 q^{43} - 3 q^{45} + 6 q^{48} - 10 q^{51} + 30 q^{52} - 27 q^{54} + 18 q^{55} + 4 q^{57} - 60 q^{58} + 55 q^{60} - 74 q^{63} - 84 q^{64} + 75 q^{66} - 88 q^{67} - 33 q^{69} + 20 q^{70} - 34 q^{72} + 84 q^{73} + 33 q^{75} + 18 q^{76} - 71 q^{78} + 20 q^{79} - 32 q^{81} - 6 q^{84} - 2 q^{85} + 3 q^{87} + 92 q^{88} - 76 q^{91} + 28 q^{93} + 30 q^{96} + 24 q^{97} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.473030 0.273104i 0.334483 0.193114i −0.323347 0.946281i \(-0.604808\pi\)
0.657830 + 0.753167i \(0.271475\pi\)
\(3\) −0.966120 + 1.43757i −0.557789 + 0.829982i
\(4\) −0.850828 + 1.47368i −0.425414 + 0.736839i
\(5\) 1.25657 2.17644i 0.561955 0.973335i −0.435371 0.900251i \(-0.643383\pi\)
0.997326 0.0730836i \(-0.0232840\pi\)
\(6\) −0.0643970 + 0.943866i −0.0262900 + 0.385332i
\(7\) 2.53535 + 0.756296i 0.958273 + 0.285853i
\(8\) 2.02188i 0.714841i
\(9\) −1.13323 2.77773i −0.377742 0.925911i
\(10\) 1.37270i 0.434085i
\(11\) 6.02763i 1.81740i 0.417450 + 0.908700i \(0.362924\pi\)
−0.417450 + 0.908700i \(0.637076\pi\)
\(12\) −1.29652 2.64688i −0.374272 0.764087i
\(13\) −1.89716 + 3.06607i −0.526176 + 0.850376i
\(14\) 1.40585 0.334664i 0.375728 0.0894428i
\(15\) 1.91480 + 3.90911i 0.494398 + 1.00933i
\(16\) −1.14947 1.99095i −0.287369 0.497737i
\(17\) 0.323651 0.560581i 0.0784970 0.135961i −0.824105 0.566438i \(-0.808321\pi\)
0.902602 + 0.430477i \(0.141655\pi\)
\(18\) −1.29466 1.00446i −0.305154 0.236754i
\(19\) 2.29555i 0.526636i 0.964709 + 0.263318i \(0.0848168\pi\)
−0.964709 + 0.263318i \(0.915183\pi\)
\(20\) 2.13825 + 3.70356i 0.478127 + 0.828141i
\(21\) −3.53668 + 2.91408i −0.771768 + 0.635904i
\(22\) 1.64617 + 2.85125i 0.350965 + 0.607889i
\(23\) 0.894874 0.516656i 0.186594 0.107730i −0.403793 0.914850i \(-0.632308\pi\)
0.590387 + 0.807120i \(0.298975\pi\)
\(24\) −2.90659 1.95337i −0.593305 0.398731i
\(25\) −0.657937 1.13958i −0.131587 0.227916i
\(26\) −0.0600548 + 1.96847i −0.0117777 + 0.386048i
\(27\) 5.08802 + 1.05453i 0.979190 + 0.202944i
\(28\) −3.27169 + 3.09282i −0.618291 + 0.584487i
\(29\) −4.46255 2.57646i −0.828676 0.478436i 0.0247234 0.999694i \(-0.492129\pi\)
−0.853399 + 0.521258i \(0.825463\pi\)
\(30\) 1.97335 + 1.32619i 0.360283 + 0.242128i
\(31\) 9.25745 5.34479i 1.66269 0.959953i 0.691264 0.722602i \(-0.257054\pi\)
0.971424 0.237351i \(-0.0762792\pi\)
\(32\) −4.58946 2.64973i −0.811310 0.468410i
\(33\) −8.66515 5.82341i −1.50841 1.01373i
\(34\) 0.353562i 0.0606354i
\(35\) 4.83188 4.56771i 0.816738 0.772084i
\(36\) 5.05766 + 0.693365i 0.842944 + 0.115561i
\(37\) 1.97766 + 3.42541i 0.325126 + 0.563134i 0.981538 0.191268i \(-0.0612601\pi\)
−0.656412 + 0.754402i \(0.727927\pi\)
\(38\) 0.626924 + 1.08587i 0.101701 + 0.176151i
\(39\) −2.57482 5.68949i −0.412301 0.911048i
\(40\) 4.40050 + 2.54063i 0.695780 + 0.401709i
\(41\) 4.48689 7.77153i 0.700735 1.21371i −0.267474 0.963565i \(-0.586189\pi\)
0.968209 0.250143i \(-0.0804778\pi\)
\(42\) −0.877112 + 2.34433i −0.135341 + 0.361738i
\(43\) −4.09951 7.10056i −0.625169 1.08282i −0.988508 0.151168i \(-0.951697\pi\)
0.363339 0.931657i \(-0.381637\pi\)
\(44\) −8.88279 5.12848i −1.33913 0.773147i
\(45\) −7.46955 1.02402i −1.11350 0.152651i
\(46\) 0.282202 0.488787i 0.0416084 0.0720678i
\(47\) 2.09646 3.63118i 0.305800 0.529662i −0.671639 0.740879i \(-0.734409\pi\)
0.977439 + 0.211217i \(0.0677426\pi\)
\(48\) 3.97266 + 0.271042i 0.573404 + 0.0391216i
\(49\) 5.85603 + 3.83496i 0.836576 + 0.547851i
\(50\) −0.622448 0.359370i −0.0880274 0.0508226i
\(51\) 0.493189 + 1.00686i 0.0690603 + 0.140989i
\(52\) −2.90425 5.40450i −0.402747 0.749469i
\(53\) 0.0406517 0.0234703i 0.00558394 0.00322389i −0.497205 0.867633i \(-0.665640\pi\)
0.502789 + 0.864409i \(0.332307\pi\)
\(54\) 2.69478 0.890735i 0.366714 0.121214i
\(55\) 13.1188 + 7.57414i 1.76894 + 1.02130i
\(56\) −1.52914 + 5.12617i −0.204339 + 0.685013i
\(57\) −3.30002 2.21778i −0.437098 0.293752i
\(58\) −2.81456 −0.369570
\(59\) 0.831148 1.43959i 0.108206 0.187419i −0.806837 0.590774i \(-0.798823\pi\)
0.915044 + 0.403355i \(0.132156\pi\)
\(60\) −7.38994 0.504192i −0.954037 0.0650909i
\(61\) 3.59276i 0.460006i −0.973190 0.230003i \(-0.926126\pi\)
0.973190 0.230003i \(-0.0738736\pi\)
\(62\) 2.91937 5.05650i 0.370760 0.642176i
\(63\) −0.772338 7.89959i −0.0973054 0.995255i
\(64\) 1.70329 0.212911
\(65\) 4.28922 + 7.98179i 0.532013 + 0.990019i
\(66\) −5.68928 0.388162i −0.700302 0.0477794i
\(67\) 1.52251 0.186004 0.0930020 0.995666i \(-0.470354\pi\)
0.0930020 + 0.995666i \(0.470354\pi\)
\(68\) 0.550743 + 0.953916i 0.0667875 + 0.115679i
\(69\) −0.121826 + 1.78560i −0.0146661 + 0.214961i
\(70\) 1.03817 3.48027i 0.124085 0.415972i
\(71\) −11.4729 + 6.62389i −1.36158 + 0.786111i −0.989835 0.142222i \(-0.954575\pi\)
−0.371749 + 0.928333i \(0.621242\pi\)
\(72\) 5.61623 2.29124i 0.661879 0.270025i
\(73\) 4.76835 2.75301i 0.558093 0.322215i −0.194287 0.980945i \(-0.562239\pi\)
0.752380 + 0.658730i \(0.228906\pi\)
\(74\) 1.87099 + 1.08022i 0.217498 + 0.125572i
\(75\) 2.27387 + 0.155139i 0.262564 + 0.0179139i
\(76\) −3.38290 1.95312i −0.388046 0.224038i
\(77\) −4.55868 + 15.2822i −0.519509 + 1.74157i
\(78\) −2.77179 1.98811i −0.313844 0.225109i
\(79\) −2.14796 + 3.72038i −0.241665 + 0.418575i −0.961189 0.275892i \(-0.911027\pi\)
0.719524 + 0.694468i \(0.244360\pi\)
\(80\) −5.77758 −0.645953
\(81\) −6.43160 + 6.29559i −0.714622 + 0.699511i
\(82\) 4.90156i 0.541286i
\(83\) −11.8816 −1.30417 −0.652085 0.758146i \(-0.726106\pi\)
−0.652085 + 0.758146i \(0.726106\pi\)
\(84\) −1.28530 7.69132i −0.140238 0.839191i
\(85\) −0.813381 1.40882i −0.0882236 0.152808i
\(86\) −3.87838 2.23919i −0.418217 0.241458i
\(87\) 8.01520 3.92608i 0.859320 0.420920i
\(88\) −12.1871 −1.29915
\(89\) −0.507769 0.879481i −0.0538234 0.0932248i 0.837858 0.545888i \(-0.183807\pi\)
−0.891682 + 0.452663i \(0.850474\pi\)
\(90\) −3.81299 + 1.55558i −0.401924 + 0.163972i
\(91\) −7.12882 + 6.33877i −0.747303 + 0.664483i
\(92\) 1.75834i 0.183320i
\(93\) −1.26028 + 18.4720i −0.130685 + 1.91545i
\(94\) 2.29021i 0.236217i
\(95\) 4.99614 + 2.88452i 0.512593 + 0.295946i
\(96\) 8.24314 4.03773i 0.841312 0.412099i
\(97\) 8.58147 4.95452i 0.871317 0.503055i 0.00353111 0.999994i \(-0.498876\pi\)
0.867786 + 0.496939i \(0.165543\pi\)
\(98\) 3.81742 + 0.214744i 0.385618 + 0.0216924i
\(99\) 16.7432 6.83067i 1.68275 0.686508i
\(100\) 2.23916 0.223916
\(101\) −5.31728 −0.529089 −0.264545 0.964373i \(-0.585222\pi\)
−0.264545 + 0.964373i \(0.585222\pi\)
\(102\) 0.508271 + 0.341583i 0.0503263 + 0.0338218i
\(103\) 2.41439 + 1.39395i 0.237897 + 0.137350i 0.614210 0.789143i \(-0.289475\pi\)
−0.376313 + 0.926493i \(0.622808\pi\)
\(104\) −6.19922 3.83581i −0.607883 0.376132i
\(105\) 1.89824 + 11.3591i 0.185249 + 1.10854i
\(106\) 0.0128197 0.0222043i 0.00124515 0.00215667i
\(107\) 16.6485 9.61203i 1.60947 0.929230i 0.619986 0.784613i \(-0.287138\pi\)
0.989488 0.144617i \(-0.0461949\pi\)
\(108\) −5.88307 + 6.60088i −0.566099 + 0.635170i
\(109\) −3.02537 5.24009i −0.289778 0.501910i 0.683979 0.729502i \(-0.260248\pi\)
−0.973757 + 0.227592i \(0.926915\pi\)
\(110\) 8.27412 0.788906
\(111\) −6.83493 0.466326i −0.648743 0.0442617i
\(112\) −1.40858 5.91710i −0.133098 0.559113i
\(113\) 7.42599 4.28740i 0.698578 0.403324i −0.108239 0.994125i \(-0.534521\pi\)
0.806818 + 0.590800i \(0.201188\pi\)
\(114\) −2.16669 0.147827i −0.202929 0.0138452i
\(115\) 2.59686i 0.242158i
\(116\) 7.59374 4.38425i 0.705061 0.407067i
\(117\) 10.6666 + 1.79524i 0.986131 + 0.165970i
\(118\) 0.907960i 0.0835845i
\(119\) 1.24454 1.17649i 0.114086 0.107849i
\(120\) −7.90374 + 3.87148i −0.721510 + 0.353416i
\(121\) −25.3324 −2.30294
\(122\) −0.981198 1.69949i −0.0888335 0.153864i
\(123\) 6.83725 + 13.9585i 0.616494 + 1.25859i
\(124\) 18.1900i 1.63351i
\(125\) 9.25873 0.828126
\(126\) −2.52275 3.52582i −0.224744 0.314105i
\(127\) 1.59609 2.76452i 0.141630 0.245311i −0.786480 0.617615i \(-0.788099\pi\)
0.928111 + 0.372304i \(0.121432\pi\)
\(128\) 9.98463 5.76463i 0.882525 0.509526i
\(129\) 14.1682 + 0.966650i 1.24744 + 0.0851088i
\(130\) 4.20879 + 2.60422i 0.369135 + 0.228405i
\(131\) −1.65182 + 2.86103i −0.144320 + 0.249969i −0.929119 0.369781i \(-0.879433\pi\)
0.784799 + 0.619750i \(0.212766\pi\)
\(132\) 15.9544 7.81492i 1.38865 0.680202i
\(133\) −1.73612 + 5.82003i −0.150540 + 0.504661i
\(134\) 0.720192 0.415803i 0.0622151 0.0359199i
\(135\) 8.68858 9.74870i 0.747794 0.839035i
\(136\) 1.13342 + 0.654383i 0.0971903 + 0.0561129i
\(137\) −7.14564 4.12554i −0.610493 0.352468i 0.162665 0.986681i \(-0.447991\pi\)
−0.773158 + 0.634213i \(0.781324\pi\)
\(138\) 0.430027 + 0.877912i 0.0366063 + 0.0747329i
\(139\) 7.50372 4.33228i 0.636457 0.367459i −0.146791 0.989168i \(-0.546895\pi\)
0.783249 + 0.621709i \(0.213561\pi\)
\(140\) 2.62023 + 11.0070i 0.221450 + 0.930260i
\(141\) 3.19465 + 6.52197i 0.269038 + 0.549249i
\(142\) −3.61802 + 6.26660i −0.303618 + 0.525881i
\(143\) −18.4812 11.4354i −1.54547 0.956273i
\(144\) −4.22771 + 5.44912i −0.352309 + 0.454094i
\(145\) −11.2150 + 6.47500i −0.931357 + 0.537719i
\(146\) 1.50371 2.60451i 0.124448 0.215551i
\(147\) −11.1707 + 4.71344i −0.921340 + 0.388758i
\(148\) −6.73060 −0.553252
\(149\) 13.8118i 1.13151i 0.824574 + 0.565753i \(0.191415\pi\)
−0.824574 + 0.565753i \(0.808585\pi\)
\(150\) 1.11798 0.547619i 0.0912827 0.0447129i
\(151\) −3.90858 6.76986i −0.318076 0.550924i 0.662011 0.749494i \(-0.269703\pi\)
−0.980087 + 0.198571i \(0.936370\pi\)
\(152\) −4.64132 −0.376461
\(153\) −1.92391 0.263753i −0.155539 0.0213232i
\(154\) 2.01723 + 8.47393i 0.162553 + 0.682848i
\(155\) 26.8644i 2.15780i
\(156\) 10.5752 + 1.04632i 0.846694 + 0.0837730i
\(157\) −7.63926 + 4.41053i −0.609679 + 0.351999i −0.772840 0.634601i \(-0.781164\pi\)
0.163161 + 0.986600i \(0.447831\pi\)
\(158\) 2.34647i 0.186675i
\(159\) −0.00553421 + 0.0811148i −0.000438891 + 0.00643282i
\(160\) −11.5340 + 6.65914i −0.911840 + 0.526451i
\(161\) 2.65957 0.633115i 0.209603 0.0498964i
\(162\) −1.32299 + 4.73450i −0.103944 + 0.371978i
\(163\) 12.5765 0.985066 0.492533 0.870294i \(-0.336071\pi\)
0.492533 + 0.870294i \(0.336071\pi\)
\(164\) 7.63515 + 13.2245i 0.596205 + 1.03266i
\(165\) −23.5627 + 11.5417i −1.83435 + 0.898519i
\(166\) −5.62034 + 3.24490i −0.436223 + 0.251853i
\(167\) −6.71323 + 11.6277i −0.519486 + 0.899775i 0.480258 + 0.877127i \(0.340543\pi\)
−0.999743 + 0.0226481i \(0.992790\pi\)
\(168\) −5.89191 7.15074i −0.454570 0.551691i
\(169\) −5.80160 11.6336i −0.446277 0.894895i
\(170\) −0.769508 0.444276i −0.0590186 0.0340744i
\(171\) 6.37643 2.60138i 0.487618 0.198932i
\(172\) 13.9519 1.06382
\(173\) −8.44726 −0.642233 −0.321116 0.947040i \(-0.604058\pi\)
−0.321116 + 0.947040i \(0.604058\pi\)
\(174\) 2.71921 4.04614i 0.206142 0.306737i
\(175\) −0.806242 3.38683i −0.0609462 0.256020i
\(176\) 12.0007 6.92861i 0.904587 0.522263i
\(177\) 1.26653 + 2.58565i 0.0951980 + 0.194350i
\(178\) −0.480380 0.277347i −0.0360060 0.0207881i
\(179\) 12.9185i 0.965577i 0.875737 + 0.482788i \(0.160376\pi\)
−0.875737 + 0.482788i \(0.839624\pi\)
\(180\) 7.86438 10.1365i 0.586176 0.755527i
\(181\) 1.36110i 0.101170i −0.998720 0.0505848i \(-0.983891\pi\)
0.998720 0.0505848i \(-0.0161085\pi\)
\(182\) −1.64100 + 4.94534i −0.121639 + 0.366573i
\(183\) 5.16485 + 3.47104i 0.381797 + 0.256587i
\(184\) 1.04461 + 1.80932i 0.0770099 + 0.133385i
\(185\) 9.94028 0.730824
\(186\) 4.44862 + 9.08199i 0.326188 + 0.665924i
\(187\) 3.37897 + 1.95085i 0.247095 + 0.142660i
\(188\) 3.56746 + 6.17902i 0.260184 + 0.450651i
\(189\) 12.1024 + 6.52166i 0.880320 + 0.474381i
\(190\) 3.15110 0.228605
\(191\) 10.3102i 0.746020i 0.927827 + 0.373010i \(0.121674\pi\)
−0.927827 + 0.373010i \(0.878326\pi\)
\(192\) −1.64558 + 2.44860i −0.118760 + 0.176713i
\(193\) 3.23962 0.233193 0.116597 0.993179i \(-0.462802\pi\)
0.116597 + 0.993179i \(0.462802\pi\)
\(194\) 2.70620 4.68727i 0.194294 0.336527i
\(195\) −15.6183 1.54529i −1.11845 0.110661i
\(196\) −10.6340 + 5.36702i −0.759569 + 0.383358i
\(197\) 11.8813 + 6.85965i 0.846505 + 0.488730i 0.859470 0.511186i \(-0.170794\pi\)
−0.0129653 + 0.999916i \(0.504127\pi\)
\(198\) 6.05453 7.80374i 0.430277 0.554587i
\(199\) 2.88404 + 1.66510i 0.204444 + 0.118036i 0.598727 0.800953i \(-0.295674\pi\)
−0.394283 + 0.918989i \(0.629007\pi\)
\(200\) 2.30409 1.33027i 0.162924 0.0940640i
\(201\) −1.47092 + 2.18871i −0.103751 + 0.154380i
\(202\) −2.51524 + 1.45217i −0.176971 + 0.102174i
\(203\) −9.36559 9.90724i −0.657335 0.695352i
\(204\) −1.90341 0.129863i −0.133265 0.00909226i
\(205\) −11.2762 19.5309i −0.787563 1.36410i
\(206\) 1.52277 0.106096
\(207\) −2.44923 1.90023i −0.170233 0.132075i
\(208\) 8.28512 + 0.252766i 0.574470 + 0.0175262i
\(209\) −13.8367 −0.957107
\(210\) 4.00015 + 4.85480i 0.276037 + 0.335013i
\(211\) −4.67281 + 8.09355i −0.321690 + 0.557183i −0.980837 0.194831i \(-0.937584\pi\)
0.659147 + 0.752014i \(0.270917\pi\)
\(212\) 0.0798766i 0.00548595i
\(213\) 1.56189 22.8926i 0.107019 1.56858i
\(214\) 5.25017 9.09356i 0.358894 0.621623i
\(215\) −20.6053 −1.40527
\(216\) −2.13213 + 10.2873i −0.145073 + 0.699965i
\(217\) 27.5132 6.54956i 1.86772 0.444613i
\(218\) −2.86218 1.65248i −0.193851 0.111920i
\(219\) −0.649150 + 9.51457i −0.0438655 + 0.642935i
\(220\) −22.3237 + 12.8886i −1.50506 + 0.868949i
\(221\) 1.10476 + 2.05585i 0.0743145 + 0.138291i
\(222\) −3.36049 + 1.64606i −0.225541 + 0.110476i
\(223\) 4.72711 + 2.72920i 0.316550 + 0.182760i 0.649854 0.760059i \(-0.274830\pi\)
−0.333304 + 0.942820i \(0.608163\pi\)
\(224\) −9.63193 10.1890i −0.643560 0.680780i
\(225\) −2.41986 + 3.11897i −0.161324 + 0.207931i
\(226\) 2.34181 4.05614i 0.155775 0.269810i
\(227\) 11.3923 19.7320i 0.756132 1.30966i −0.188677 0.982039i \(-0.560420\pi\)
0.944809 0.327620i \(-0.106247\pi\)
\(228\) 6.07604 2.97622i 0.402396 0.197105i
\(229\) −15.1066 8.72181i −0.998273 0.576353i −0.0905364 0.995893i \(-0.528858\pi\)
−0.907737 + 0.419540i \(0.862191\pi\)
\(230\) −0.709212 1.22839i −0.0467641 0.0809977i
\(231\) −17.5650 21.3178i −1.15569 1.40261i
\(232\) 5.20928 9.02273i 0.342006 0.592371i
\(233\) −1.62211 0.936526i −0.106268 0.0613538i 0.445924 0.895071i \(-0.352875\pi\)
−0.552192 + 0.833717i \(0.686208\pi\)
\(234\) 5.53593 2.06390i 0.361895 0.134921i
\(235\) −5.26870 9.12566i −0.343692 0.595292i
\(236\) 1.41433 + 2.44969i 0.0920650 + 0.159461i
\(237\) −3.27312 6.68218i −0.212612 0.434054i
\(238\) 0.267398 0.896405i 0.0173328 0.0581053i
\(239\) 23.7791i 1.53814i 0.639164 + 0.769071i \(0.279281\pi\)
−0.639164 + 0.769071i \(0.720719\pi\)
\(240\) 5.58183 8.30568i 0.360306 0.536130i
\(241\) −18.0905 10.4446i −1.16531 0.672795i −0.212743 0.977108i \(-0.568240\pi\)
−0.952572 + 0.304314i \(0.901573\pi\)
\(242\) −11.9830 + 6.91837i −0.770295 + 0.444730i
\(243\) −2.83667 15.3282i −0.181973 0.983304i
\(244\) 5.29457 + 3.05682i 0.338950 + 0.195693i
\(245\) 15.7051 7.92643i 1.00336 0.506401i
\(246\) 7.04634 + 4.73549i 0.449258 + 0.301924i
\(247\) −7.03833 4.35502i −0.447838 0.277103i
\(248\) 10.8065 + 18.7174i 0.686214 + 1.18856i
\(249\) 11.4790 17.0806i 0.727453 1.08244i
\(250\) 4.37966 2.52860i 0.276994 0.159922i
\(251\) 10.1622 + 17.6015i 0.641433 + 1.11100i 0.985113 + 0.171908i \(0.0549932\pi\)
−0.343680 + 0.939087i \(0.611673\pi\)
\(252\) 12.2986 + 5.58302i 0.774737 + 0.351697i
\(253\) 3.11421 + 5.39397i 0.195789 + 0.339116i
\(254\) 1.74360i 0.109403i
\(255\) 2.81110 + 0.191793i 0.176038 + 0.0120105i
\(256\) 1.44540 2.50350i 0.0903374 0.156469i
\(257\) −11.9462 20.6914i −0.745183 1.29069i −0.950109 0.311917i \(-0.899029\pi\)
0.204926 0.978777i \(-0.434304\pi\)
\(258\) 6.96597 3.41213i 0.433683 0.212430i
\(259\) 2.42345 + 10.1803i 0.150586 + 0.632575i
\(260\) −15.4120 0.470195i −0.955810 0.0291603i
\(261\) −2.09963 + 15.3155i −0.129964 + 0.948005i
\(262\) 1.80447i 0.111481i
\(263\) 1.61574i 0.0996308i −0.998758 0.0498154i \(-0.984137\pi\)
0.998758 0.0498154i \(-0.0158633\pi\)
\(264\) 11.7742 17.5199i 0.724653 1.07827i
\(265\) 0.117968i 0.00724672i
\(266\) 0.768239 + 3.22719i 0.0471038 + 0.197872i
\(267\) 1.75488 + 0.119730i 0.107397 + 0.00732736i
\(268\) −1.29539 + 2.24369i −0.0791287 + 0.137055i
\(269\) −8.22623 + 14.2482i −0.501562 + 0.868731i 0.498436 + 0.866926i \(0.333908\pi\)
−0.999998 + 0.00180469i \(0.999426\pi\)
\(270\) 1.44755 6.98432i 0.0880951 0.425052i
\(271\) −0.531956 + 0.307125i −0.0323140 + 0.0186565i −0.516070 0.856546i \(-0.672606\pi\)
0.483756 + 0.875203i \(0.339272\pi\)
\(272\) −1.48812 −0.0902302
\(273\) −2.22514 16.3722i −0.134672 0.990890i
\(274\) −4.50681 −0.272266
\(275\) 6.86897 3.96580i 0.414214 0.239147i
\(276\) −2.52774 1.69877i −0.152152 0.102254i
\(277\) 4.83367 8.37217i 0.290427 0.503035i −0.683484 0.729966i \(-0.739536\pi\)
0.973911 + 0.226931i \(0.0728692\pi\)
\(278\) 2.36633 4.09860i 0.141923 0.245817i
\(279\) −25.3372 19.6579i −1.51690 1.17689i
\(280\) 9.23535 + 9.76947i 0.551918 + 0.583837i
\(281\) 4.25154i 0.253625i 0.991927 + 0.126813i \(0.0404747\pi\)
−0.991927 + 0.126813i \(0.959525\pi\)
\(282\) 3.29234 + 2.21262i 0.196056 + 0.131759i
\(283\) 13.4666i 0.800506i −0.916405 0.400253i \(-0.868922\pi\)
0.916405 0.400253i \(-0.131078\pi\)
\(284\) 22.5432i 1.33769i
\(285\) −8.97357 + 4.39551i −0.531549 + 0.260368i
\(286\) −11.8652 0.361988i −0.701603 0.0214048i
\(287\) 17.2534 16.3101i 1.01844 0.962757i
\(288\) −2.15934 + 15.7510i −0.127240 + 0.928139i
\(289\) 8.29050 + 14.3596i 0.487676 + 0.844680i
\(290\) −3.53670 + 6.12574i −0.207682 + 0.359716i
\(291\) −1.16826 + 17.1231i −0.0684845 + 1.00378i
\(292\) 9.36934i 0.548299i
\(293\) 6.93842 + 12.0177i 0.405347 + 0.702081i 0.994362 0.106041i \(-0.0338174\pi\)
−0.589015 + 0.808122i \(0.700484\pi\)
\(294\) −3.99680 + 5.28035i −0.233098 + 0.307956i
\(295\) −2.08879 3.61789i −0.121614 0.210642i
\(296\) −6.92575 + 3.99859i −0.402551 + 0.232413i
\(297\) −6.35632 + 30.6687i −0.368831 + 1.77958i
\(298\) 3.77206 + 6.53340i 0.218510 + 0.378470i
\(299\) −0.113611 + 3.72392i −0.00657030 + 0.215360i
\(300\) −2.16330 + 3.21896i −0.124898 + 0.185847i
\(301\) −5.02358 21.1029i −0.289554 1.21635i
\(302\) −3.69776 2.13490i −0.212782 0.122850i
\(303\) 5.13713 7.64397i 0.295120 0.439135i
\(304\) 4.57032 2.63868i 0.262126 0.151338i
\(305\) −7.81944 4.51456i −0.447740 0.258503i
\(306\) −0.982101 + 0.400666i −0.0561430 + 0.0229045i
\(307\) 19.0928i 1.08969i −0.838538 0.544843i \(-0.816589\pi\)
0.838538 0.544843i \(-0.183411\pi\)
\(308\) −18.6424 19.7205i −1.06225 1.12368i
\(309\) −4.33649 + 2.12414i −0.246694 + 0.120838i
\(310\) −7.33679 12.7077i −0.416702 0.721748i
\(311\) −1.31104 2.27079i −0.0743423 0.128765i 0.826458 0.562999i \(-0.190352\pi\)
−0.900800 + 0.434234i \(0.857019\pi\)
\(312\) 11.5034 5.20597i 0.651254 0.294730i
\(313\) 3.15245 + 1.82007i 0.178187 + 0.102876i 0.586441 0.809992i \(-0.300529\pi\)
−0.408253 + 0.912869i \(0.633862\pi\)
\(314\) −2.40907 + 4.17263i −0.135952 + 0.235475i
\(315\) −18.1635 8.24544i −1.02340 0.464578i
\(316\) −3.65509 6.33081i −0.205615 0.356136i
\(317\) −14.6674 8.46825i −0.823805 0.475624i 0.0279217 0.999610i \(-0.491111\pi\)
−0.851727 + 0.523986i \(0.824444\pi\)
\(318\) 0.0195349 + 0.0398812i 0.00109546 + 0.00223642i
\(319\) 15.5299 26.8986i 0.869510 1.50603i
\(320\) 2.14030 3.70711i 0.119647 0.207234i
\(321\) −2.26648 + 33.2198i −0.126503 + 1.85415i
\(322\) 1.08515 1.02582i 0.0604730 0.0571668i
\(323\) 1.28684 + 0.742958i 0.0716018 + 0.0413393i
\(324\) −3.80549 14.8346i −0.211416 0.824143i
\(325\) 4.74224 + 0.144678i 0.263052 + 0.00802531i
\(326\) 5.94905 3.43469i 0.329488 0.190230i
\(327\) 10.4559 + 0.713372i 0.578211 + 0.0394496i
\(328\) 15.7131 + 9.07194i 0.867608 + 0.500914i
\(329\) 8.06152 7.62077i 0.444446 0.420147i
\(330\) −7.99379 + 11.8946i −0.440044 + 0.654778i
\(331\) −10.4278 −0.573166 −0.286583 0.958055i \(-0.592519\pi\)
−0.286583 + 0.958055i \(0.592519\pi\)
\(332\) 10.1092 17.5096i 0.554813 0.960964i
\(333\) 7.27374 9.37518i 0.398599 0.513757i
\(334\) 7.33365i 0.401279i
\(335\) 1.91314 3.31365i 0.104526 0.181044i
\(336\) 9.86711 + 3.69169i 0.538295 + 0.201398i
\(337\) 18.5940 1.01288 0.506440 0.862275i \(-0.330961\pi\)
0.506440 + 0.862275i \(0.330961\pi\)
\(338\) −5.92153 3.91862i −0.322089 0.213145i
\(339\) −1.01095 + 14.8175i −0.0549075 + 0.804778i
\(340\) 2.76819 0.150126
\(341\) 32.2165 + 55.8005i 1.74462 + 3.02177i
\(342\) 2.30580 2.97196i 0.124683 0.160705i
\(343\) 11.9467 + 14.1519i 0.645064 + 0.764129i
\(344\) 14.3564 8.28870i 0.774048 0.446897i
\(345\) 3.73317 + 2.50887i 0.200987 + 0.135073i
\(346\) −3.99581 + 2.30698i −0.214816 + 0.124024i
\(347\) 6.55263 + 3.78316i 0.351763 + 0.203091i 0.665462 0.746432i \(-0.268235\pi\)
−0.313698 + 0.949523i \(0.601568\pi\)
\(348\) −1.03379 + 15.1522i −0.0554170 + 0.812246i
\(349\) −23.2338 13.4141i −1.24368 0.718038i −0.273837 0.961776i \(-0.588293\pi\)
−0.969841 + 0.243738i \(0.921626\pi\)
\(350\) −1.30633 1.38189i −0.0698265 0.0738649i
\(351\) −12.8860 + 13.5996i −0.687806 + 0.725895i
\(352\) 15.9716 27.6636i 0.851288 1.47447i
\(353\) −12.8501 −0.683940 −0.341970 0.939711i \(-0.611094\pi\)
−0.341970 + 0.939711i \(0.611094\pi\)
\(354\) 1.30526 + 0.877198i 0.0693737 + 0.0466226i
\(355\) 33.2935i 1.76704i
\(356\) 1.72810 0.0915889
\(357\) 0.488924 + 2.92574i 0.0258766 + 0.154847i
\(358\) 3.52811 + 6.11086i 0.186466 + 0.322969i
\(359\) −14.4330 8.33290i −0.761745 0.439794i 0.0681770 0.997673i \(-0.478282\pi\)
−0.829922 + 0.557880i \(0.811615\pi\)
\(360\) 2.07043 15.1025i 0.109121 0.795972i
\(361\) 13.7304 0.722655
\(362\) −0.371722 0.643841i −0.0195373 0.0338395i
\(363\) 24.4741 36.4171i 1.28456 1.91140i
\(364\) −3.27590 15.8988i −0.171704 0.833323i
\(365\) 13.8374i 0.724282i
\(366\) 3.39109 + 0.231363i 0.177255 + 0.0120936i
\(367\) 27.1720i 1.41837i 0.705023 + 0.709184i \(0.250937\pi\)
−0.705023 + 0.709184i \(0.749063\pi\)
\(368\) −2.05727 1.18776i −0.107243 0.0619165i
\(369\) −26.6719 3.65650i −1.38848 0.190350i
\(370\) 4.70205 2.71473i 0.244448 0.141132i
\(371\) 0.120817 0.0287607i 0.00627250 0.00149318i
\(372\) −26.1494 17.5737i −1.35579 0.911155i
\(373\) −17.0879 −0.884780 −0.442390 0.896823i \(-0.645869\pi\)
−0.442390 + 0.896823i \(0.645869\pi\)
\(374\) 2.13114 0.110199
\(375\) −8.94504 + 13.3101i −0.461920 + 0.687330i
\(376\) 7.34179 + 4.23879i 0.378624 + 0.218599i
\(377\) 16.3658 8.79458i 0.842880 0.452944i
\(378\) 7.50589 0.220273i 0.386061 0.0113296i
\(379\) −11.4321 + 19.8010i −0.587229 + 1.01711i 0.407365 + 0.913266i \(0.366448\pi\)
−0.994594 + 0.103845i \(0.966886\pi\)
\(380\) −8.50171 + 4.90846i −0.436128 + 0.251799i
\(381\) 2.43217 + 4.96535i 0.124604 + 0.254383i
\(382\) 2.81576 + 4.87703i 0.144067 + 0.249531i
\(383\) −8.52108 −0.435407 −0.217703 0.976015i \(-0.569857\pi\)
−0.217703 + 0.976015i \(0.569857\pi\)
\(384\) −1.35928 + 19.9230i −0.0693655 + 1.01669i
\(385\) 27.5325 + 29.1248i 1.40319 + 1.48434i
\(386\) 1.53244 0.884754i 0.0779991 0.0450328i
\(387\) −15.0778 + 19.4339i −0.766447 + 0.987879i
\(388\) 16.8618i 0.856027i
\(389\) −11.0480 + 6.37855i −0.560155 + 0.323406i −0.753208 0.657783i \(-0.771494\pi\)
0.193053 + 0.981188i \(0.438161\pi\)
\(390\) −7.80995 + 3.53445i −0.395472 + 0.178974i
\(391\) 0.668865i 0.0338260i
\(392\) −7.75380 + 11.8402i −0.391626 + 0.598019i
\(393\) −2.51708 5.13870i −0.126970 0.259213i
\(394\) 7.49359 0.377522
\(395\) 5.39813 + 9.34983i 0.271609 + 0.470441i
\(396\) −4.17935 + 30.4857i −0.210020 + 1.53197i
\(397\) 3.89299i 0.195384i −0.995217 0.0976918i \(-0.968854\pi\)
0.995217 0.0976918i \(-0.0311459\pi\)
\(398\) 1.81898 0.0911773
\(399\) −6.68942 8.11864i −0.334890 0.406440i
\(400\) −1.51256 + 2.61983i −0.0756281 + 0.130992i
\(401\) −19.1034 + 11.0293i −0.953977 + 0.550779i −0.894314 0.447440i \(-0.852336\pi\)
−0.0596628 + 0.998219i \(0.519003\pi\)
\(402\) −0.0980450 + 1.43704i −0.00489004 + 0.0716732i
\(403\) −1.17530 + 38.5239i −0.0585461 + 1.91901i
\(404\) 4.52409 7.83596i 0.225082 0.389854i
\(405\) 5.62025 + 21.9089i 0.279272 + 1.08866i
\(406\) −7.13591 2.12864i −0.354150 0.105643i
\(407\) −20.6471 + 11.9206i −1.02344 + 0.590883i
\(408\) −2.03575 + 0.997167i −0.100784 + 0.0493671i
\(409\) 7.43125 + 4.29044i 0.367452 + 0.212148i 0.672345 0.740238i \(-0.265287\pi\)
−0.304893 + 0.952387i \(0.598621\pi\)
\(410\) −10.6680 6.15915i −0.526853 0.304179i
\(411\) 12.8343 6.28661i 0.633069 0.310096i
\(412\) −4.10846 + 2.37202i −0.202409 + 0.116861i
\(413\) 3.19601 3.02128i 0.157265 0.148667i
\(414\) −1.67752 0.229974i −0.0824456 0.0113026i
\(415\) −14.9300 + 25.8595i −0.732886 + 1.26940i
\(416\) 16.8312 9.04468i 0.825217 0.443452i
\(417\) −1.02154 + 14.9726i −0.0500248 + 0.733213i
\(418\) −6.54520 + 3.77887i −0.320136 + 0.184831i
\(419\) 12.5477 21.7332i 0.612994 1.06174i −0.377739 0.925912i \(-0.623298\pi\)
0.990733 0.135825i \(-0.0433684\pi\)
\(420\) −18.3548 6.86729i −0.895622 0.335089i
\(421\) −11.9143 −0.580668 −0.290334 0.956925i \(-0.593766\pi\)
−0.290334 + 0.956925i \(0.593766\pi\)
\(422\) 5.10466i 0.248491i
\(423\) −12.4622 1.70847i −0.605933 0.0830685i
\(424\) 0.0474539 + 0.0821926i 0.00230457 + 0.00399163i
\(425\) −0.851768 −0.0413168
\(426\) −5.51324 11.2555i −0.267117 0.545328i
\(427\) 2.71719 9.10892i 0.131494 0.440812i
\(428\) 32.7127i 1.58123i
\(429\) 34.2942 15.5201i 1.65574 0.749316i
\(430\) −9.74692 + 5.62739i −0.470038 + 0.271377i
\(431\) 28.8820i 1.39119i −0.718432 0.695597i \(-0.755140\pi\)
0.718432 0.695597i \(-0.244860\pi\)
\(432\) −3.74904 11.3421i −0.180376 0.545699i
\(433\) −6.48299 + 3.74296i −0.311553 + 0.179875i −0.647621 0.761963i \(-0.724236\pi\)
0.336068 + 0.941838i \(0.390903\pi\)
\(434\) 11.2258 10.6121i 0.538858 0.509397i
\(435\) 1.52678 22.3780i 0.0732036 1.07294i
\(436\) 10.2963 0.493102
\(437\) 1.18601 + 2.05423i 0.0567345 + 0.0982671i
\(438\) 2.29140 + 4.67797i 0.109487 + 0.223522i
\(439\) −8.85143 + 5.11037i −0.422456 + 0.243905i −0.696127 0.717918i \(-0.745095\pi\)
0.273672 + 0.961823i \(0.411762\pi\)
\(440\) −15.3140 + 26.5246i −0.730065 + 1.26451i
\(441\) 4.01628 20.6124i 0.191251 0.981541i
\(442\) 1.08405 + 0.670762i 0.0515629 + 0.0319049i
\(443\) 26.2992 + 15.1839i 1.24951 + 0.721407i 0.971012 0.239029i \(-0.0768291\pi\)
0.278501 + 0.960436i \(0.410162\pi\)
\(444\) 6.50257 9.67572i 0.308598 0.459190i
\(445\) −2.55219 −0.120985
\(446\) 2.98142 0.141174
\(447\) −19.8555 13.3439i −0.939131 0.631143i
\(448\) 4.31844 + 1.28819i 0.204027 + 0.0608613i
\(449\) 19.0172 10.9796i 0.897478 0.518159i 0.0210967 0.999777i \(-0.493284\pi\)
0.876381 + 0.481618i \(0.159951\pi\)
\(450\) −0.292861 + 2.13624i −0.0138056 + 0.100703i
\(451\) 46.8439 + 27.0453i 2.20579 + 1.27352i
\(452\) 14.5914i 0.686320i
\(453\) 13.5083 + 0.921631i 0.634676 + 0.0433020i
\(454\) 12.4451i 0.584078i
\(455\) 4.83810 + 23.4806i 0.226814 + 1.10079i
\(456\) 4.48407 6.67223i 0.209986 0.312456i
\(457\) −18.0285 31.2263i −0.843338 1.46070i −0.887057 0.461661i \(-0.847254\pi\)
0.0437182 0.999044i \(-0.486080\pi\)
\(458\) −9.52785 −0.445207
\(459\) 2.23789 2.51095i 0.104456 0.117201i
\(460\) 3.82693 + 2.20948i 0.178431 + 0.103017i
\(461\) −4.57076 7.91680i −0.212882 0.368722i 0.739734 0.672900i \(-0.234952\pi\)
−0.952615 + 0.304178i \(0.901618\pi\)
\(462\) −14.1308 5.28691i −0.657423 0.245969i
\(463\) 22.1372 1.02880 0.514401 0.857550i \(-0.328014\pi\)
0.514401 + 0.857550i \(0.328014\pi\)
\(464\) 11.8463i 0.549950i
\(465\) 38.6195 + 25.9543i 1.79094 + 1.20360i
\(466\) −1.02308 −0.0473931
\(467\) 0.315959 0.547257i 0.0146208 0.0253240i −0.858622 0.512609i \(-0.828679\pi\)
0.873243 + 0.487285i \(0.162013\pi\)
\(468\) −11.7211 + 14.1917i −0.541807 + 0.656014i
\(469\) 3.86009 + 1.15147i 0.178243 + 0.0531698i
\(470\) −4.98451 2.87781i −0.229918 0.132743i
\(471\) 1.03999 15.2431i 0.0479201 0.702364i
\(472\) 2.91067 + 1.68048i 0.133975 + 0.0773503i
\(473\) 42.7996 24.7103i 1.96793 1.13618i
\(474\) −3.37322 2.26697i −0.154937 0.104125i
\(475\) 2.61596 1.51033i 0.120029 0.0692986i
\(476\) 0.674886 + 2.83504i 0.0309334 + 0.129944i
\(477\) −0.111262 0.0863224i −0.00509432 0.00395243i
\(478\) 6.49417 + 11.2482i 0.297036 + 0.514482i
\(479\) 22.3302 1.02029 0.510146 0.860088i \(-0.329591\pi\)
0.510146 + 0.860088i \(0.329591\pi\)
\(480\) 1.57020 23.0144i 0.0716696 1.05046i
\(481\) −14.2545 0.434882i −0.649949 0.0198289i
\(482\) −11.4098 −0.519704
\(483\) −1.65931 + 4.43498i −0.0755013 + 0.201799i
\(484\) 21.5535 37.3317i 0.979704 1.69690i
\(485\) 24.9028i 1.13078i
\(486\) −5.52802 6.47599i −0.250756 0.293757i
\(487\) 20.1441 34.8907i 0.912817 1.58105i 0.102752 0.994707i \(-0.467235\pi\)
0.810066 0.586339i \(-0.199431\pi\)
\(488\) 7.26412 0.328831
\(489\) −12.1504 + 18.0796i −0.549459 + 0.817587i
\(490\) 5.26424 8.03856i 0.237814 0.363145i
\(491\) −6.70526 3.87128i −0.302604 0.174709i 0.341008 0.940060i \(-0.389232\pi\)
−0.643612 + 0.765352i \(0.722565\pi\)
\(492\) −26.3876 1.80034i −1.18964 0.0811657i
\(493\) −2.88862 + 1.66775i −0.130097 + 0.0751116i
\(494\) −4.51871 0.137859i −0.203307 0.00620256i
\(495\) 6.17239 45.0237i 0.277428 2.02367i
\(496\) −21.2824 12.2874i −0.955608 0.551721i
\(497\) −34.0975 + 8.11698i −1.52948 + 0.364096i
\(498\) 0.765137 11.2146i 0.0342866 0.502538i
\(499\) −7.94320 + 13.7580i −0.355587 + 0.615894i −0.987218 0.159375i \(-0.949052\pi\)
0.631632 + 0.775269i \(0.282386\pi\)
\(500\) −7.87759 + 13.6444i −0.352296 + 0.610195i
\(501\) −10.2298 20.8845i −0.457034 0.933049i
\(502\) 9.61407 + 5.55069i 0.429097 + 0.247739i
\(503\) −14.9743 25.9362i −0.667671 1.15644i −0.978554 0.205992i \(-0.933958\pi\)
0.310883 0.950448i \(-0.399375\pi\)
\(504\) 15.9720 1.56157i 0.711449 0.0695579i
\(505\) −6.68154 + 11.5728i −0.297325 + 0.514981i
\(506\) 2.94623 + 1.70101i 0.130976 + 0.0756190i
\(507\) 22.3292 + 2.89926i 0.991676 + 0.128761i
\(508\) 2.71600 + 4.70426i 0.120503 + 0.208718i
\(509\) 3.30037 + 5.71641i 0.146286 + 0.253376i 0.929852 0.367933i \(-0.119935\pi\)
−0.783566 + 0.621309i \(0.786601\pi\)
\(510\) 1.38211 0.676999i 0.0612011 0.0299780i
\(511\) 14.1715 3.37356i 0.626912 0.149238i
\(512\) 21.4795i 0.949271i
\(513\) −2.42073 + 11.6798i −0.106878 + 0.515676i
\(514\) −11.3018 6.52511i −0.498502 0.287810i
\(515\) 6.06769 3.50318i 0.267375 0.154369i
\(516\) −13.4792 + 20.0569i −0.593389 + 0.882955i
\(517\) 21.8874 + 12.6367i 0.962607 + 0.555762i
\(518\) 3.92665 + 4.15375i 0.172527 + 0.182505i
\(519\) 8.16106 12.1435i 0.358231 0.533042i
\(520\) −16.1382 + 8.67228i −0.707706 + 0.380304i
\(521\) −11.1062 19.2365i −0.486570 0.842764i 0.513311 0.858203i \(-0.328419\pi\)
−0.999881 + 0.0154387i \(0.995086\pi\)
\(522\) 3.18954 + 7.81811i 0.139602 + 0.342189i
\(523\) −22.8268 + 13.1791i −0.998147 + 0.576280i −0.907699 0.419621i \(-0.862163\pi\)
−0.0904472 + 0.995901i \(0.528830\pi\)
\(524\) −2.81082 4.86849i −0.122791 0.212681i
\(525\) 5.64774 + 2.11305i 0.246488 + 0.0922212i
\(526\) −0.441265 0.764294i −0.0192401 0.0333248i
\(527\) 6.91940i 0.301414i
\(528\) −1.63374 + 23.9457i −0.0710995 + 1.04210i
\(529\) −10.9661 + 18.9939i −0.476788 + 0.825822i
\(530\) −0.0322176 0.0558025i −0.00139944 0.00242390i
\(531\) −4.94068 0.677327i −0.214407 0.0293935i
\(532\) −7.09972 7.51033i −0.307812 0.325614i
\(533\) 15.3157 + 28.5009i 0.663398 + 1.23451i
\(534\) 0.862811 0.422630i 0.0373375 0.0182890i
\(535\) 48.3127i 2.08874i
\(536\) 3.07832i 0.132963i
\(537\) −18.5713 12.4809i −0.801412 0.538588i
\(538\) 8.98647i 0.387434i
\(539\) −23.1157 + 35.2980i −0.995664 + 1.52039i
\(540\) 6.97395 + 21.0986i 0.300111 + 0.907941i
\(541\) 7.27566 12.6018i 0.312805 0.541794i −0.666164 0.745806i \(-0.732065\pi\)
0.978968 + 0.204012i \(0.0653981\pi\)
\(542\) −0.167754 + 0.290559i −0.00720566 + 0.0124806i
\(543\) 1.95668 + 1.31498i 0.0839691 + 0.0564314i
\(544\) −2.97077 + 1.71518i −0.127371 + 0.0735376i
\(545\) −15.2064 −0.651369
\(546\) −5.52387 7.13685i −0.236400 0.305429i
\(547\) 13.3560 0.571060 0.285530 0.958370i \(-0.407830\pi\)
0.285530 + 0.958370i \(0.407830\pi\)
\(548\) 12.1594 7.02025i 0.519425 0.299890i
\(549\) −9.97973 + 4.07141i −0.425925 + 0.173764i
\(550\) 2.16615 3.75189i 0.0923651 0.159981i
\(551\) 5.91439 10.2440i 0.251961 0.436410i
\(552\) −3.61025 0.246316i −0.153663 0.0104839i
\(553\) −8.25955 + 7.80798i −0.351232 + 0.332029i
\(554\) 5.28038i 0.224342i
\(555\) −9.60350 + 14.2899i −0.407646 + 0.606571i
\(556\) 14.7441i 0.625289i
\(557\) 21.4071i 0.907046i −0.891245 0.453523i \(-0.850167\pi\)
0.891245 0.453523i \(-0.149833\pi\)
\(558\) −17.3539 2.37908i −0.734649 0.100714i
\(559\) 29.5482 + 0.901470i 1.24976 + 0.0381281i
\(560\) −14.6482 4.36956i −0.619000 0.184648i
\(561\) −6.06898 + 2.97276i −0.256233 + 0.125510i
\(562\) 1.16111 + 2.01111i 0.0489786 + 0.0848334i
\(563\) 14.7814 25.6022i 0.622963 1.07900i −0.365969 0.930627i \(-0.619262\pi\)
0.988931 0.148376i \(-0.0474045\pi\)
\(564\) −12.3294 0.841195i −0.519160 0.0354207i
\(565\) 21.5497i 0.906601i
\(566\) −3.67778 6.37011i −0.154589 0.267756i
\(567\) −21.0677 + 11.0974i −0.884761 + 0.466045i
\(568\) −13.3927 23.1968i −0.561944 0.973316i
\(569\) 23.8838 13.7893i 1.00126 0.578078i 0.0926389 0.995700i \(-0.470470\pi\)
0.908621 + 0.417622i \(0.137136\pi\)
\(570\) −3.04434 + 4.52993i −0.127513 + 0.189738i
\(571\) 17.4312 + 30.1918i 0.729475 + 1.26349i 0.957105 + 0.289740i \(0.0935689\pi\)
−0.227630 + 0.973748i \(0.573098\pi\)
\(572\) 32.5763 17.5057i 1.36208 0.731952i
\(573\) −14.8216 9.96088i −0.619183 0.416122i
\(574\) 3.70703 12.4272i 0.154728 0.518700i
\(575\) −1.17754 0.679853i −0.0491068 0.0283518i
\(576\) −1.93021 4.73128i −0.0804255 0.197137i
\(577\) −9.56438 + 5.52200i −0.398170 + 0.229884i −0.685694 0.727890i \(-0.740501\pi\)
0.287524 + 0.957773i \(0.407168\pi\)
\(578\) 7.84331 + 4.52834i 0.326239 + 0.188354i
\(579\) −3.12986 + 4.65719i −0.130073 + 0.193546i
\(580\) 22.0364i 0.915014i
\(581\) −30.1240 8.98598i −1.24975 0.372801i
\(582\) 4.12378 + 8.41882i 0.170936 + 0.348971i
\(583\) 0.141470 + 0.245033i 0.00585909 + 0.0101482i
\(584\) 5.56624 + 9.64100i 0.230332 + 0.398948i
\(585\) 17.3106 20.9595i 0.715706 0.866568i
\(586\) 6.56417 + 3.78982i 0.271163 + 0.156556i
\(587\) −12.6832 + 21.9680i −0.523493 + 0.906717i 0.476133 + 0.879373i \(0.342038\pi\)
−0.999626 + 0.0273434i \(0.991295\pi\)
\(588\) 2.55822 20.4723i 0.105499 0.844262i
\(589\) 12.2692 + 21.2510i 0.505546 + 0.875631i
\(590\) −1.97612 1.14092i −0.0813557 0.0469707i
\(591\) −21.3400 + 10.4529i −0.877808 + 0.429976i
\(592\) 4.54654 7.87484i 0.186862 0.323654i
\(593\) −5.88143 + 10.1869i −0.241521 + 0.418327i −0.961148 0.276034i \(-0.910980\pi\)
0.719627 + 0.694361i \(0.244313\pi\)
\(594\) 5.36903 + 16.2432i 0.220294 + 0.666465i
\(595\) −0.996725 4.18701i −0.0408618 0.171651i
\(596\) −20.3541 11.7515i −0.833738 0.481359i
\(597\) −5.18002 + 2.53732i −0.212004 + 0.103846i
\(598\) 0.963278 + 1.79256i 0.0393913 + 0.0733031i
\(599\) −39.8531 + 23.0092i −1.62835 + 0.940131i −0.643770 + 0.765219i \(0.722631\pi\)
−0.984584 + 0.174911i \(0.944036\pi\)
\(600\) −0.313672 + 4.59749i −0.0128056 + 0.187692i
\(601\) −26.1034 15.0708i −1.06478 0.614751i −0.138030 0.990428i \(-0.544077\pi\)
−0.926751 + 0.375677i \(0.877410\pi\)
\(602\) −8.13958 8.61033i −0.331745 0.350931i
\(603\) −1.72534 4.22912i −0.0702614 0.172223i
\(604\) 13.3021 0.541256
\(605\) −31.8319 + 55.1344i −1.29415 + 2.24153i
\(606\) 0.342417 5.01880i 0.0139097 0.203875i
\(607\) 36.2573i 1.47164i −0.677179 0.735818i \(-0.736798\pi\)
0.677179 0.735818i \(-0.263202\pi\)
\(608\) 6.08259 10.5353i 0.246681 0.427265i
\(609\) 23.2907 3.89212i 0.943785 0.157717i
\(610\) −4.93178 −0.199682
\(611\) 7.15614 + 13.3168i 0.289507 + 0.538741i
\(612\) 2.02561 2.61082i 0.0818803 0.105536i
\(613\) 33.6982 1.36106 0.680530 0.732721i \(-0.261750\pi\)
0.680530 + 0.732721i \(0.261750\pi\)
\(614\) −5.21433 9.03149i −0.210433 0.364481i
\(615\) 38.9713 + 2.65889i 1.57147 + 0.107217i
\(616\) −30.8987 9.21707i −1.24494 0.371367i
\(617\) 6.51889 3.76368i 0.262441 0.151520i −0.363007 0.931786i \(-0.618250\pi\)
0.625447 + 0.780266i \(0.284916\pi\)
\(618\) −1.47118 + 2.18909i −0.0591795 + 0.0880582i
\(619\) −39.6473 + 22.8904i −1.59356 + 0.920043i −0.600871 + 0.799346i \(0.705179\pi\)
−0.992689 + 0.120697i \(0.961487\pi\)
\(620\) 39.5895 + 22.8570i 1.58995 + 0.917960i
\(621\) 5.09797 1.68508i 0.204574 0.0676201i
\(622\) −1.24032 0.716101i −0.0497325 0.0287130i
\(623\) −0.622225 2.61382i −0.0249289 0.104720i
\(624\) −8.36779 + 11.6663i −0.334980 + 0.467024i
\(625\) 14.9239 25.8490i 0.596957 1.03396i
\(626\) 1.98828 0.0794675
\(627\) 13.3679 19.8913i 0.533864 0.794382i
\(628\) 15.0104i 0.598981i
\(629\) 2.56029 0.102086
\(630\) −10.8437 + 1.06019i −0.432025 + 0.0422388i
\(631\) −14.0226 24.2878i −0.558230 0.966882i −0.997644 0.0685980i \(-0.978147\pi\)
0.439415 0.898284i \(-0.355186\pi\)
\(632\) −7.52214 4.34291i −0.299215 0.172752i
\(633\) −7.12056 14.5368i −0.283017 0.577788i
\(634\) −9.25085 −0.367398
\(635\) −4.01121 6.94761i −0.159180 0.275708i
\(636\) −0.114828 0.0771704i −0.00455324 0.00306001i
\(637\) −22.8681 + 10.6795i −0.906065 + 0.423138i
\(638\) 16.9652i 0.671657i
\(639\) 31.4008 + 24.3623i 1.24220 + 0.963759i
\(640\) 28.9746i 1.14532i
\(641\) −0.799986 0.461872i −0.0315975 0.0182428i 0.484118 0.875003i \(-0.339141\pi\)
−0.515716 + 0.856760i \(0.672474\pi\)
\(642\) 8.00035 + 16.3330i 0.315749 + 0.644611i
\(643\) 6.72532 3.88286i 0.265221 0.153125i −0.361493 0.932375i \(-0.617733\pi\)
0.626714 + 0.779250i \(0.284400\pi\)
\(644\) −1.32983 + 4.45802i −0.0524025 + 0.175670i
\(645\) 19.9072 29.6216i 0.783844 1.16635i
\(646\) 0.811620 0.0319328
\(647\) 24.2168 0.952061 0.476030 0.879429i \(-0.342075\pi\)
0.476030 + 0.879429i \(0.342075\pi\)
\(648\) −12.7289 13.0039i −0.500039 0.510841i
\(649\) 8.67733 + 5.00986i 0.340615 + 0.196654i
\(650\) 2.28274 1.22669i 0.0895363 0.0481147i
\(651\) −17.1655 + 45.8798i −0.672771 + 1.79817i
\(652\) −10.7004 + 18.5337i −0.419061 + 0.725835i
\(653\) −31.2511 + 18.0428i −1.22295 + 0.706070i −0.965546 0.260234i \(-0.916200\pi\)
−0.257404 + 0.966304i \(0.582867\pi\)
\(654\) 5.14077 2.51810i 0.201020 0.0984654i
\(655\) 4.15124 + 7.19017i 0.162203 + 0.280943i
\(656\) −20.6303 −0.805477
\(657\) −13.0507 10.1254i −0.509157 0.395030i
\(658\) 1.73208 5.80649i 0.0675234 0.226361i
\(659\) 10.7491 6.20598i 0.418724 0.241751i −0.275807 0.961213i \(-0.588945\pi\)
0.694531 + 0.719462i \(0.255612\pi\)
\(660\) 3.03909 44.5438i 0.118296 1.73387i
\(661\) 28.4702i 1.10736i −0.832728 0.553682i \(-0.813222\pi\)
0.832728 0.553682i \(-0.186778\pi\)
\(662\) −4.93268 + 2.84789i −0.191714 + 0.110686i
\(663\) −4.02276 0.398017i −0.156231 0.0154577i
\(664\) 24.0230i 0.932275i
\(665\) 10.4854 + 11.0918i 0.406607 + 0.430123i
\(666\) 0.880299 6.42123i 0.0341109 0.248818i
\(667\) −5.32456 −0.206168
\(668\) −11.4236 19.7863i −0.441993 0.765554i
\(669\) −8.49036 + 4.15882i −0.328256 + 0.160789i
\(670\) 2.08994i 0.0807415i
\(671\) 21.6559 0.836015
\(672\) 23.9530 4.00281i 0.924007 0.154412i
\(673\) 5.65042 9.78682i 0.217808 0.377254i −0.736330 0.676623i \(-0.763443\pi\)
0.954137 + 0.299369i \(0.0967761\pi\)
\(674\) 8.79553 5.07810i 0.338791 0.195601i
\(675\) −2.14588 6.49202i −0.0825948 0.249878i
\(676\) 22.0804 + 1.34853i 0.849246 + 0.0518666i
\(677\) 6.45592 11.1820i 0.248121 0.429758i −0.714883 0.699244i \(-0.753520\pi\)
0.963004 + 0.269485i \(0.0868536\pi\)
\(678\) 3.56852 + 7.28524i 0.137048 + 0.279788i
\(679\) 25.5041 6.07131i 0.978759 0.232996i
\(680\) 2.84845 1.64456i 0.109233 0.0630658i
\(681\) 17.3599 + 35.4407i 0.665232 + 1.35809i
\(682\) 30.4787 + 17.5969i 1.16709 + 0.673820i
\(683\) 7.62396 + 4.40170i 0.291723 + 0.168426i 0.638719 0.769440i \(-0.279465\pi\)
−0.346996 + 0.937867i \(0.612798\pi\)
\(684\) −1.59165 + 11.6101i −0.0608584 + 0.443924i
\(685\) −17.9580 + 10.3681i −0.686140 + 0.396143i
\(686\) 9.51610 + 3.43155i 0.363327 + 0.131017i
\(687\) 27.1330 13.2905i 1.03519 0.507066i
\(688\) −9.42456 + 16.3238i −0.359308 + 0.622340i
\(689\) −0.00516104 + 0.169168i −0.000196620 + 0.00644478i
\(690\) 2.45108 + 0.167230i 0.0933112 + 0.00636633i
\(691\) −18.3482 + 10.5934i −0.698000 + 0.402990i −0.806602 0.591095i \(-0.798696\pi\)
0.108602 + 0.994085i \(0.465363\pi\)
\(692\) 7.18716 12.4485i 0.273215 0.473222i
\(693\) 47.6158 4.65537i 1.80878 0.176843i
\(694\) 4.13279 0.156878
\(695\) 21.7752i 0.825982i
\(696\) 7.93804 + 16.2057i 0.300891 + 0.614277i
\(697\) −2.90438 5.03053i −0.110011 0.190545i
\(698\) −14.6537 −0.554652
\(699\) 2.91348 1.42710i 0.110198 0.0539780i
\(700\) 5.67707 + 1.69347i 0.214573 + 0.0640072i
\(701\) 39.6954i 1.49927i −0.661849 0.749637i \(-0.730228\pi\)
0.661849 0.749637i \(-0.269772\pi\)
\(702\) −2.38137 + 9.95227i −0.0898789 + 0.375624i
\(703\) −7.86321 + 4.53982i −0.296566 + 0.171223i
\(704\) 10.2668i 0.386945i
\(705\) 18.2090 + 1.24234i 0.685790 + 0.0467893i
\(706\) −6.07847 + 3.50941i −0.228766 + 0.132078i
\(707\) −13.4812 4.02144i −0.507012 0.151242i
\(708\) −4.88802 0.333494i −0.183703 0.0125335i
\(709\) −9.11397 −0.342282 −0.171141 0.985247i \(-0.554745\pi\)
−0.171141 + 0.985247i \(0.554745\pi\)
\(710\) 9.09260 + 15.7488i 0.341239 + 0.591043i
\(711\) 12.7683 + 1.75044i 0.478850 + 0.0656465i
\(712\) 1.77820 1.02664i 0.0666409 0.0384751i
\(713\) 5.52284 9.56583i 0.206832 0.358243i
\(714\) 1.03031 + 1.25044i 0.0385583 + 0.0467965i
\(715\) −48.1113 + 25.8539i −1.79926 + 0.966880i
\(716\) −19.0378 10.9915i −0.711474 0.410770i
\(717\) −34.1841 22.9734i −1.27663 0.857959i
\(718\) −9.10300 −0.339721
\(719\) 10.9246 0.407418 0.203709 0.979032i \(-0.434700\pi\)
0.203709 + 0.979032i \(0.434700\pi\)
\(720\) 6.54730 + 16.0486i 0.244003 + 0.598095i
\(721\) 5.06709 + 5.36014i 0.188708 + 0.199622i
\(722\) 6.49492 3.74984i 0.241716 0.139555i
\(723\) 32.4925 15.9157i 1.20841 0.591913i
\(724\) 2.00582 + 1.15806i 0.0745458 + 0.0430390i
\(725\) 6.78058i 0.251824i
\(726\) 1.63133 23.9104i 0.0605443 0.887397i
\(727\) 45.7930i 1.69837i 0.528098 + 0.849183i \(0.322905\pi\)
−0.528098 + 0.849183i \(0.677095\pi\)
\(728\) −12.8162 14.4136i −0.475000 0.534203i
\(729\) 24.7759 + 10.7309i 0.917627 + 0.397442i
\(730\) −3.77905 6.54550i −0.139869 0.242260i
\(731\) −5.30725 −0.196296
\(732\) −9.50960 + 4.65807i −0.351485 + 0.172167i
\(733\) 17.4750 + 10.0892i 0.645455 + 0.372654i 0.786713 0.617319i \(-0.211781\pi\)
−0.141258 + 0.989973i \(0.545115\pi\)
\(734\) 7.42079 + 12.8532i 0.273906 + 0.474420i
\(735\) −3.77817 + 30.2351i −0.139360 + 1.11524i
\(736\) −5.47599 −0.201848
\(737\) 9.17712i 0.338043i
\(738\) −13.6152 + 5.55457i −0.501183 + 0.204466i
\(739\) −48.5659 −1.78652 −0.893262 0.449536i \(-0.851589\pi\)
−0.893262 + 0.449536i \(0.851589\pi\)
\(740\) −8.45747 + 14.6488i −0.310903 + 0.538500i
\(741\) 13.0605 5.91063i 0.479790 0.217132i
\(742\) 0.0492954 0.0466003i 0.00180969 0.00171075i
\(743\) −6.39543 3.69241i −0.234626 0.135461i 0.378078 0.925774i \(-0.376585\pi\)
−0.612704 + 0.790312i \(0.709918\pi\)
\(744\) −37.3480 2.54814i −1.36924 0.0934193i
\(745\) 30.0606 + 17.3555i 1.10134 + 0.635856i
\(746\) −8.08311 + 4.66678i −0.295944 + 0.170863i
\(747\) 13.4645 + 33.0038i 0.492640 + 1.20755i
\(748\) −5.74985 + 3.31968i −0.210235 + 0.121380i
\(749\) 49.4794 11.7787i 1.80794 0.430383i
\(750\) −0.596235 + 8.73900i −0.0217714 + 0.319103i
\(751\) 11.5832 + 20.0627i 0.422676 + 0.732097i 0.996200 0.0870918i \(-0.0277573\pi\)
−0.573524 + 0.819189i \(0.694424\pi\)
\(752\) −9.63931 −0.351510
\(753\) −35.1213 2.39622i −1.27989 0.0873230i
\(754\) 5.33967 8.62966i 0.194459 0.314274i
\(755\) −19.6456 −0.714978
\(756\) −19.9079 + 12.2862i −0.724043 + 0.446846i
\(757\) −19.9604 + 34.5725i −0.725475 + 1.25656i 0.233304 + 0.972404i \(0.425046\pi\)
−0.958778 + 0.284155i \(0.908287\pi\)
\(758\) 12.4886i 0.453608i
\(759\) −10.7629 0.734320i −0.390669 0.0266541i
\(760\) −5.83214 + 10.1016i −0.211554 + 0.366422i
\(761\) −7.97685 −0.289161 −0.144580 0.989493i \(-0.546183\pi\)
−0.144580 + 0.989493i \(0.546183\pi\)
\(762\) 2.50655 + 1.68453i 0.0908027 + 0.0610239i
\(763\) −3.70732 15.5736i −0.134214 0.563801i
\(764\) −15.1939 8.77221i −0.549696 0.317367i
\(765\) −2.99157 + 3.85586i −0.108161 + 0.139409i
\(766\) −4.03073 + 2.32714i −0.145636 + 0.0840830i
\(767\) 2.83707 + 5.27949i 0.102441 + 0.190631i
\(768\) 2.20254 + 4.49655i 0.0794773 + 0.162255i
\(769\) −8.79268 5.07646i −0.317072 0.183062i 0.333015 0.942922i \(-0.391934\pi\)
−0.650087 + 0.759860i \(0.725267\pi\)