Properties

Label 273.2.bf.b.152.16
Level $273$
Weight $2$
Character 273.152
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(152,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.152");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.16
Character \(\chi\) \(=\) 273.152
Dual form 273.2.bf.b.185.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0436821 + 0.0252199i) q^{2} +(1.71783 + 0.221508i) q^{3} +(-0.998728 + 1.72985i) q^{4} +(-1.19579 + 2.07117i) q^{5} +(-0.0806247 + 0.0336474i) q^{6} +(-2.29456 - 1.31719i) q^{7} -0.201631i q^{8} +(2.90187 + 0.761026i) q^{9} +O(q^{10})\) \(q+(-0.0436821 + 0.0252199i) q^{2} +(1.71783 + 0.221508i) q^{3} +(-0.998728 + 1.72985i) q^{4} +(-1.19579 + 2.07117i) q^{5} +(-0.0806247 + 0.0336474i) q^{6} +(-2.29456 - 1.31719i) q^{7} -0.201631i q^{8} +(2.90187 + 0.761026i) q^{9} -0.120631i q^{10} +3.29840i q^{11} +(-2.09882 + 2.75035i) q^{12} +(3.26013 + 1.53997i) q^{13} +(0.133451 - 0.000331113i) q^{14} +(-2.51294 + 3.29304i) q^{15} +(-1.99237 - 3.45089i) q^{16} +(-3.17498 + 5.49923i) q^{17} +(-0.145953 + 0.0399415i) q^{18} -4.97674i q^{19} +(-2.38854 - 4.13707i) q^{20} +(-3.64990 - 2.77097i) q^{21} +(-0.0831852 - 0.144081i) q^{22} +(3.28198 - 1.89485i) q^{23} +(0.0446628 - 0.346367i) q^{24} +(-0.359831 - 0.623246i) q^{25} +(-0.181247 + 0.0149508i) q^{26} +(4.81634 + 1.95010i) q^{27} +(4.57018 - 2.65373i) q^{28} +(2.15531 + 1.24437i) q^{29} +(0.0267207 - 0.207223i) q^{30} +(4.40944 - 2.54579i) q^{31} +(0.523296 + 0.302125i) q^{32} +(-0.730623 + 5.66609i) q^{33} -0.320291i q^{34} +(5.47194 - 3.17735i) q^{35} +(-4.21464 + 4.25973i) q^{36} +(-2.62306 - 4.54327i) q^{37} +(0.125513 + 0.217394i) q^{38} +(5.25923 + 3.36756i) q^{39} +(0.417611 + 0.241108i) q^{40} +(0.726691 - 1.25866i) q^{41} +(0.229318 + 0.0289916i) q^{42} +(-0.219074 - 0.379447i) q^{43} +(-5.70573 - 3.29420i) q^{44} +(-5.04624 + 5.10024i) q^{45} +(-0.0955758 + 0.165542i) q^{46} +(2.16184 - 3.74442i) q^{47} +(-2.65815 - 6.36936i) q^{48} +(3.53004 + 6.04474i) q^{49} +(0.0314364 + 0.0181498i) q^{50} +(-6.67220 + 8.74345i) q^{51} +(-5.91991 + 4.10152i) q^{52} +(11.7501 - 6.78394i) q^{53} +(-0.259569 + 0.0362829i) q^{54} +(-6.83155 - 3.94420i) q^{55} +(-0.265585 + 0.462654i) q^{56} +(1.10239 - 8.54919i) q^{57} -0.125531 q^{58} +(-1.41773 + 2.45559i) q^{59} +(-3.18670 - 7.63586i) q^{60} +2.84886i q^{61} +(-0.128409 + 0.222411i) q^{62} +(-5.65611 - 5.56852i) q^{63} +7.93900 q^{64} +(-7.08799 + 4.91081i) q^{65} +(-0.110983 - 0.265933i) q^{66} +1.43904 q^{67} +(-6.34189 - 10.9845i) q^{68} +(6.05761 - 2.52805i) q^{69} +(-0.158893 + 0.276795i) q^{70} +(-5.14430 + 2.97006i) q^{71} +(0.153446 - 0.585105i) q^{72} +(4.79664 - 2.76934i) q^{73} +(0.229161 + 0.132306i) q^{74} +(-0.480074 - 1.15034i) q^{75} +(8.60901 + 4.97041i) q^{76} +(4.34461 - 7.56839i) q^{77} +(-0.314664 - 0.0144648i) q^{78} +(2.32507 - 4.02714i) q^{79} +9.52983 q^{80} +(7.84168 + 4.41680i) q^{81} +0.0733081i q^{82} -16.2715 q^{83} +(8.43860 - 3.54633i) q^{84} +(-7.59323 - 13.1519i) q^{85} +(0.0191392 + 0.0110500i) q^{86} +(3.42681 + 2.61503i) q^{87} +0.665058 q^{88} +(2.54744 + 4.41230i) q^{89} +(0.0918032 - 0.350054i) q^{90} +(-5.45215 - 7.82777i) q^{91} +7.56977i q^{92} +(8.13858 - 3.39651i) q^{93} +0.218085i q^{94} +(10.3077 + 5.95114i) q^{95} +(0.832010 + 0.634914i) q^{96} +(-11.0551 + 6.38267i) q^{97} +(-0.306647 - 0.175020i) q^{98} +(-2.51017 + 9.57152i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9} + 6 q^{12} - 12 q^{13} - 9 q^{15} - 16 q^{16} + 2 q^{18} + 10 q^{21} + 10 q^{22} - 24 q^{25} - 50 q^{28} - 16 q^{30} - 24 q^{31} - 33 q^{39} + 90 q^{40} - 48 q^{42} - 20 q^{43} - 3 q^{45} + 6 q^{48} - 10 q^{51} + 30 q^{52} - 27 q^{54} + 18 q^{55} + 4 q^{57} - 60 q^{58} + 55 q^{60} - 74 q^{63} - 84 q^{64} + 75 q^{66} - 88 q^{67} - 33 q^{69} + 20 q^{70} - 34 q^{72} + 84 q^{73} + 33 q^{75} + 18 q^{76} - 71 q^{78} + 20 q^{79} - 32 q^{81} - 6 q^{84} - 2 q^{85} + 3 q^{87} + 92 q^{88} - 76 q^{91} + 28 q^{93} + 30 q^{96} + 24 q^{97} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0436821 + 0.0252199i −0.0308879 + 0.0178331i −0.515364 0.856971i \(-0.672343\pi\)
0.484477 + 0.874804i \(0.339010\pi\)
\(3\) 1.71783 + 0.221508i 0.991789 + 0.127888i
\(4\) −0.998728 + 1.72985i −0.499364 + 0.864924i
\(5\) −1.19579 + 2.07117i −0.534774 + 0.926256i 0.464400 + 0.885625i \(0.346270\pi\)
−0.999174 + 0.0406302i \(0.987063\pi\)
\(6\) −0.0806247 + 0.0336474i −0.0329149 + 0.0137365i
\(7\) −2.29456 1.31719i −0.867263 0.497850i
\(8\) 0.201631i 0.0712872i
\(9\) 2.90187 + 0.761026i 0.967289 + 0.253675i
\(10\) 0.120631i 0.0381468i
\(11\) 3.29840i 0.994505i 0.867606 + 0.497253i \(0.165658\pi\)
−0.867606 + 0.497253i \(0.834342\pi\)
\(12\) −2.09882 + 2.75035i −0.605877 + 0.793959i
\(13\) 3.26013 + 1.53997i 0.904199 + 0.427112i
\(14\) 0.133451 0.000331113i 0.0356662 8.84936e-5i
\(15\) −2.51294 + 3.29304i −0.648840 + 0.850259i
\(16\) −1.99237 3.45089i −0.498093 0.862722i
\(17\) −3.17498 + 5.49923i −0.770046 + 1.33376i 0.167490 + 0.985874i \(0.446434\pi\)
−0.937537 + 0.347886i \(0.886900\pi\)
\(18\) −0.145953 + 0.0399415i −0.0344014 + 0.00941430i
\(19\) 4.97674i 1.14174i −0.821039 0.570871i \(-0.806605\pi\)
0.821039 0.570871i \(-0.193395\pi\)
\(20\) −2.38854 4.13707i −0.534094 0.925077i
\(21\) −3.64990 2.77097i −0.796473 0.604674i
\(22\) −0.0831852 0.144081i −0.0177351 0.0307182i
\(23\) 3.28198 1.89485i 0.684340 0.395104i −0.117148 0.993114i \(-0.537375\pi\)
0.801488 + 0.598010i \(0.204042\pi\)
\(24\) 0.0446628 0.346367i 0.00911676 0.0707018i
\(25\) −0.359831 0.623246i −0.0719663 0.124649i
\(26\) −0.181247 + 0.0149508i −0.0355455 + 0.00293210i
\(27\) 4.81634 + 1.95010i 0.926905 + 0.375297i
\(28\) 4.57018 2.65373i 0.863682 0.501508i
\(29\) 2.15531 + 1.24437i 0.400231 + 0.231073i 0.686584 0.727051i \(-0.259110\pi\)
−0.286353 + 0.958124i \(0.592443\pi\)
\(30\) 0.0267207 0.207223i 0.00487851 0.0378335i
\(31\) 4.40944 2.54579i 0.791960 0.457238i −0.0486923 0.998814i \(-0.515505\pi\)
0.840652 + 0.541576i \(0.182172\pi\)
\(32\) 0.523296 + 0.302125i 0.0925066 + 0.0534087i
\(33\) −0.730623 + 5.66609i −0.127185 + 0.986339i
\(34\) 0.320291i 0.0549294i
\(35\) 5.47194 3.17735i 0.924926 0.537070i
\(36\) −4.21464 + 4.25973i −0.702439 + 0.709955i
\(37\) −2.62306 4.54327i −0.431228 0.746909i 0.565751 0.824576i \(-0.308586\pi\)
−0.996979 + 0.0776668i \(0.975253\pi\)
\(38\) 0.125513 + 0.217394i 0.0203609 + 0.0352660i
\(39\) 5.25923 + 3.36756i 0.842151 + 0.539241i
\(40\) 0.417611 + 0.241108i 0.0660301 + 0.0381225i
\(41\) 0.726691 1.25866i 0.113490 0.196570i −0.803685 0.595055i \(-0.797130\pi\)
0.917175 + 0.398484i \(0.130464\pi\)
\(42\) 0.229318 + 0.0289916i 0.0353846 + 0.00447350i
\(43\) −0.219074 0.379447i −0.0334085 0.0578652i 0.848838 0.528653i \(-0.177303\pi\)
−0.882246 + 0.470788i \(0.843970\pi\)
\(44\) −5.70573 3.29420i −0.860171 0.496620i
\(45\) −5.04624 + 5.10024i −0.752249 + 0.760298i
\(46\) −0.0955758 + 0.165542i −0.0140919 + 0.0244079i
\(47\) 2.16184 3.74442i 0.315337 0.546180i −0.664172 0.747580i \(-0.731216\pi\)
0.979509 + 0.201400i \(0.0645491\pi\)
\(48\) −2.65815 6.36936i −0.383671 0.919338i
\(49\) 3.53004 + 6.04474i 0.504291 + 0.863534i
\(50\) 0.0314364 + 0.0181498i 0.00444577 + 0.00256677i
\(51\) −6.67220 + 8.74345i −0.934295 + 1.22433i
\(52\) −5.91991 + 4.10152i −0.820944 + 0.568778i
\(53\) 11.7501 6.78394i 1.61400 0.931845i 0.625574 0.780165i \(-0.284865\pi\)
0.988430 0.151681i \(-0.0484686\pi\)
\(54\) −0.259569 + 0.0362829i −0.0353229 + 0.00493748i
\(55\) −6.83155 3.94420i −0.921166 0.531835i
\(56\) −0.265585 + 0.462654i −0.0354903 + 0.0618247i
\(57\) 1.10239 8.54919i 0.146015 1.13237i
\(58\) −0.125531 −0.0164831
\(59\) −1.41773 + 2.45559i −0.184573 + 0.319690i −0.943433 0.331564i \(-0.892424\pi\)
0.758859 + 0.651254i \(0.225757\pi\)
\(60\) −3.18670 7.63586i −0.411402 0.985785i
\(61\) 2.84886i 0.364759i 0.983228 + 0.182380i \(0.0583800\pi\)
−0.983228 + 0.182380i \(0.941620\pi\)
\(62\) −0.128409 + 0.222411i −0.0163080 + 0.0282462i
\(63\) −5.65611 5.56852i −0.712602 0.701568i
\(64\) 7.93900 0.992376
\(65\) −7.08799 + 4.91081i −0.879157 + 0.609111i
\(66\) −0.110983 0.265933i −0.0136610 0.0327340i
\(67\) 1.43904 0.175806 0.0879032 0.996129i \(-0.471983\pi\)
0.0879032 + 0.996129i \(0.471983\pi\)
\(68\) −6.34189 10.9845i −0.769067 1.33206i
\(69\) 6.05761 2.52805i 0.729250 0.304341i
\(70\) −0.158893 + 0.276795i −0.0189914 + 0.0330833i
\(71\) −5.14430 + 2.97006i −0.610516 + 0.352482i −0.773167 0.634202i \(-0.781329\pi\)
0.162651 + 0.986684i \(0.447995\pi\)
\(72\) 0.153446 0.585105i 0.0180838 0.0689553i
\(73\) 4.79664 2.76934i 0.561404 0.324127i −0.192305 0.981335i \(-0.561596\pi\)
0.753709 + 0.657209i \(0.228263\pi\)
\(74\) 0.229161 + 0.132306i 0.0266395 + 0.0153803i
\(75\) −0.480074 1.15034i −0.0554342 0.132829i
\(76\) 8.60901 + 4.97041i 0.987521 + 0.570145i
\(77\) 4.34461 7.56839i 0.495114 0.862498i
\(78\) −0.314664 0.0144648i −0.0356286 0.00163782i
\(79\) 2.32507 4.02714i 0.261591 0.453088i −0.705074 0.709134i \(-0.749086\pi\)
0.966665 + 0.256045i \(0.0824197\pi\)
\(80\) 9.52983 1.06547
\(81\) 7.84168 + 4.41680i 0.871298 + 0.490755i
\(82\) 0.0733081i 0.00809553i
\(83\) −16.2715 −1.78603 −0.893015 0.450026i \(-0.851415\pi\)
−0.893015 + 0.450026i \(0.851415\pi\)
\(84\) 8.43860 3.54633i 0.920727 0.386936i
\(85\) −7.59323 13.1519i −0.823602 1.42652i
\(86\) 0.0191392 + 0.0110500i 0.00206384 + 0.00119156i
\(87\) 3.42681 + 2.61503i 0.367393 + 0.280361i
\(88\) 0.665058 0.0708955
\(89\) 2.54744 + 4.41230i 0.270028 + 0.467703i 0.968869 0.247575i \(-0.0796336\pi\)
−0.698841 + 0.715278i \(0.746300\pi\)
\(90\) 0.0918032 0.350054i 0.00967690 0.0368990i
\(91\) −5.45215 7.82777i −0.571541 0.820574i
\(92\) 7.56977i 0.789203i
\(93\) 8.13858 3.39651i 0.843932 0.352202i
\(94\) 0.218085i 0.0224938i
\(95\) 10.3077 + 5.95114i 1.05755 + 0.610574i
\(96\) 0.832010 + 0.634914i 0.0849166 + 0.0648006i
\(97\) −11.0551 + 6.38267i −1.12248 + 0.648062i −0.942032 0.335523i \(-0.891087\pi\)
−0.180445 + 0.983585i \(0.557754\pi\)
\(98\) −0.306647 0.175020i −0.0309760 0.0176796i
\(99\) −2.51017 + 9.57152i −0.252282 + 0.961974i
\(100\) 1.43749 0.143749
\(101\) −15.4014 −1.53250 −0.766250 0.642543i \(-0.777879\pi\)
−0.766250 + 0.642543i \(0.777879\pi\)
\(102\) 0.0709470 0.550204i 0.00702480 0.0544783i
\(103\) −8.35522 4.82389i −0.823264 0.475312i 0.0282768 0.999600i \(-0.490998\pi\)
−0.851541 + 0.524288i \(0.824331\pi\)
\(104\) 0.310506 0.657343i 0.0304476 0.0644578i
\(105\) 10.1037 4.24607i 0.986016 0.414374i
\(106\) −0.342180 + 0.592673i −0.0332355 + 0.0575655i
\(107\) 13.8559 7.99973i 1.33950 0.773363i 0.352770 0.935710i \(-0.385240\pi\)
0.986734 + 0.162347i \(0.0519065\pi\)
\(108\) −8.18359 + 6.38391i −0.787466 + 0.614292i
\(109\) −1.34089 2.32249i −0.128434 0.222454i 0.794636 0.607086i \(-0.207662\pi\)
−0.923070 + 0.384632i \(0.874328\pi\)
\(110\) 0.397888 0.0379372
\(111\) −3.49959 8.38559i −0.332167 0.795925i
\(112\) 0.0261579 + 10.5426i 0.00247169 + 0.996182i
\(113\) −1.59016 + 0.918079i −0.149590 + 0.0863656i −0.572927 0.819607i \(-0.694192\pi\)
0.423337 + 0.905972i \(0.360859\pi\)
\(114\) 0.167455 + 0.401248i 0.0156836 + 0.0375804i
\(115\) 9.06339i 0.845166i
\(116\) −4.30514 + 2.48557i −0.399722 + 0.230779i
\(117\) 8.28852 + 6.94985i 0.766274 + 0.642514i
\(118\) 0.143020i 0.0131661i
\(119\) 14.5287 8.43629i 1.33184 0.773353i
\(120\) 0.663977 + 0.506686i 0.0606125 + 0.0462539i
\(121\) 0.120556 0.0109597
\(122\) −0.0718479 0.124444i −0.00650480 0.0112666i
\(123\) 1.52713 2.00120i 0.137697 0.180442i
\(124\) 10.1702i 0.913313i
\(125\) −10.2368 −0.915605
\(126\) 0.387508 + 0.100599i 0.0345219 + 0.00896203i
\(127\) 2.35503 4.07903i 0.208975 0.361956i −0.742417 0.669938i \(-0.766321\pi\)
0.951392 + 0.307983i \(0.0996539\pi\)
\(128\) −1.39338 + 0.804471i −0.123159 + 0.0711059i
\(129\) −0.292281 0.700352i −0.0257339 0.0616626i
\(130\) 0.185768 0.393272i 0.0162930 0.0344923i
\(131\) −8.13750 + 14.0946i −0.710977 + 1.23145i 0.253514 + 0.967332i \(0.418413\pi\)
−0.964491 + 0.264116i \(0.914920\pi\)
\(132\) −9.07177 6.92274i −0.789596 0.602547i
\(133\) −6.55530 + 11.4194i −0.568416 + 0.990192i
\(134\) −0.0628601 + 0.0362923i −0.00543029 + 0.00313518i
\(135\) −9.79832 + 7.64354i −0.843305 + 0.657852i
\(136\) 1.10881 + 0.640174i 0.0950799 + 0.0548944i
\(137\) 7.68590 + 4.43746i 0.656651 + 0.379118i 0.791000 0.611817i \(-0.209561\pi\)
−0.134349 + 0.990934i \(0.542894\pi\)
\(138\) −0.200852 + 0.263202i −0.0170976 + 0.0224053i
\(139\) −4.70649 + 2.71729i −0.399199 + 0.230478i −0.686138 0.727471i \(-0.740696\pi\)
0.286939 + 0.957949i \(0.407362\pi\)
\(140\) 0.0313592 + 12.6389i 0.00265034 + 1.06818i
\(141\) 4.54309 5.95341i 0.382597 0.501367i
\(142\) 0.149809 0.259477i 0.0125717 0.0217748i
\(143\) −5.07945 + 10.7532i −0.424765 + 0.899230i
\(144\) −3.15538 11.5303i −0.262948 0.960856i
\(145\) −5.15460 + 2.97601i −0.428066 + 0.247144i
\(146\) −0.139685 + 0.241941i −0.0115604 + 0.0200232i
\(147\) 4.72504 + 11.1658i 0.389715 + 0.920936i
\(148\) 10.4789 0.861359
\(149\) 3.71608i 0.304433i 0.988347 + 0.152217i \(0.0486412\pi\)
−0.988347 + 0.152217i \(0.951359\pi\)
\(150\) 0.0499820 + 0.0381417i 0.00408101 + 0.00311425i
\(151\) 9.64969 + 16.7138i 0.785280 + 1.36015i 0.928831 + 0.370503i \(0.120815\pi\)
−0.143551 + 0.989643i \(0.545852\pi\)
\(152\) −1.00346 −0.0813916
\(153\) −13.3984 + 13.5418i −1.08320 + 1.09479i
\(154\) 0.00109214 + 0.440173i 8.80073e−5 + 0.0354702i
\(155\) 12.1769i 0.978076i
\(156\) −11.0779 + 5.73440i −0.886942 + 0.459119i
\(157\) −5.75610 + 3.32329i −0.459387 + 0.265227i −0.711786 0.702396i \(-0.752114\pi\)
0.252400 + 0.967623i \(0.418780\pi\)
\(158\) 0.234552i 0.0186599i
\(159\) 21.6874 9.05089i 1.71992 0.717782i
\(160\) −1.25151 + 0.722557i −0.0989402 + 0.0571232i
\(161\) −10.0266 + 0.0248776i −0.790206 + 0.00196063i
\(162\) −0.453932 + 0.00483116i −0.0356642 + 0.000379571i
\(163\) 19.3779 1.51779 0.758896 0.651212i \(-0.225739\pi\)
0.758896 + 0.651212i \(0.225739\pi\)
\(164\) 1.45153 + 2.51413i 0.113346 + 0.196320i
\(165\) −10.8618 8.28870i −0.845587 0.645274i
\(166\) 0.710774 0.410365i 0.0551667 0.0318505i
\(167\) 8.60942 14.9119i 0.666217 1.15392i −0.312737 0.949840i \(-0.601246\pi\)
0.978954 0.204081i \(-0.0654207\pi\)
\(168\) −0.558711 + 0.735931i −0.0431055 + 0.0567783i
\(169\) 8.25696 + 10.0410i 0.635150 + 0.772388i
\(170\) 0.663376 + 0.383000i 0.0508786 + 0.0293748i
\(171\) 3.78743 14.4419i 0.289632 1.10440i
\(172\) 0.875181 0.0667320
\(173\) 1.04020 0.0790850 0.0395425 0.999218i \(-0.487410\pi\)
0.0395425 + 0.999218i \(0.487410\pi\)
\(174\) −0.215641 0.0278062i −0.0163477 0.00210798i
\(175\) 0.00472424 + 1.90404i 0.000357119 + 0.143932i
\(176\) 11.3824 6.57164i 0.857981 0.495356i
\(177\) −2.97936 + 3.90424i −0.223942 + 0.293460i
\(178\) −0.222555 0.128492i −0.0166812 0.00963090i
\(179\) 3.13656i 0.234437i −0.993106 0.117219i \(-0.962602\pi\)
0.993106 0.117219i \(-0.0373979\pi\)
\(180\) −3.78281 13.8230i −0.281954 1.03030i
\(181\) 20.8722i 1.55142i −0.631091 0.775709i \(-0.717393\pi\)
0.631091 0.775709i \(-0.282607\pi\)
\(182\) 0.435577 + 0.204431i 0.0322871 + 0.0151534i
\(183\) −0.631046 + 4.89386i −0.0466483 + 0.361764i
\(184\) −0.382060 0.661748i −0.0281659 0.0487847i
\(185\) 12.5465 0.922439
\(186\) −0.269851 + 0.353621i −0.0197864 + 0.0259287i
\(187\) −18.1387 10.4724i −1.32643 0.765815i
\(188\) 4.31818 + 7.47931i 0.314936 + 0.545485i
\(189\) −8.48274 10.8186i −0.617029 0.786941i
\(190\) −0.600348 −0.0435538
\(191\) 24.2675i 1.75593i −0.478723 0.877966i \(-0.658900\pi\)
0.478723 0.877966i \(-0.341100\pi\)
\(192\) 13.6378 + 1.75856i 0.984227 + 0.126913i
\(193\) 1.54878 0.111484 0.0557419 0.998445i \(-0.482248\pi\)
0.0557419 + 0.998445i \(0.482248\pi\)
\(194\) 0.321940 0.557617i 0.0231140 0.0400346i
\(195\) −13.2637 + 6.86587i −0.949836 + 0.491676i
\(196\) −13.9820 + 0.0693838i −0.998716 + 0.00495598i
\(197\) −18.2395 10.5306i −1.29951 0.750273i −0.319191 0.947690i \(-0.603411\pi\)
−0.980319 + 0.197418i \(0.936744\pi\)
\(198\) −0.131743 0.481410i −0.00936257 0.0342123i
\(199\) 17.3749 + 10.0314i 1.23167 + 0.711106i 0.967378 0.253337i \(-0.0815280\pi\)
0.264293 + 0.964442i \(0.414861\pi\)
\(200\) −0.125666 + 0.0725530i −0.00888589 + 0.00513027i
\(201\) 2.47202 + 0.318759i 0.174363 + 0.0224835i
\(202\) 0.672766 0.388422i 0.0473357 0.0273293i
\(203\) −3.30643 5.69423i −0.232066 0.399656i
\(204\) −8.46112 20.2742i −0.592397 1.41948i
\(205\) 1.73794 + 3.01020i 0.121383 + 0.210241i
\(206\) 0.486631 0.0339052
\(207\) 10.9659 3.00094i 0.762183 0.208580i
\(208\) −1.18112 14.3186i −0.0818958 0.992813i
\(209\) 16.4153 1.13547
\(210\) −0.334263 + 0.440290i −0.0230664 + 0.0303829i
\(211\) −9.09366 + 15.7507i −0.626033 + 1.08432i 0.362307 + 0.932059i \(0.381989\pi\)
−0.988340 + 0.152263i \(0.951344\pi\)
\(212\) 27.1012i 1.86132i
\(213\) −9.49491 + 3.96255i −0.650581 + 0.271510i
\(214\) −0.403504 + 0.698889i −0.0275830 + 0.0477751i
\(215\) 1.04787 0.0714639
\(216\) 0.393200 0.971121i 0.0267539 0.0660764i
\(217\) −13.4710 + 0.0334238i −0.914473 + 0.00226896i
\(218\) 0.117146 + 0.0676341i 0.00793410 + 0.00458076i
\(219\) 8.85323 3.69475i 0.598246 0.249668i
\(220\) 13.6457 7.87836i 0.919994 0.531159i
\(221\) −18.8196 + 13.0388i −1.26594 + 0.877087i
\(222\) 0.364353 + 0.278041i 0.0244538 + 0.0186609i
\(223\) 21.7090 + 12.5337i 1.45374 + 0.839320i 0.998691 0.0511442i \(-0.0162868\pi\)
0.455053 + 0.890464i \(0.349620\pi\)
\(224\) −0.802781 1.38252i −0.0536381 0.0923738i
\(225\) −0.569876 2.08242i −0.0379918 0.138828i
\(226\) 0.0463076 0.0802072i 0.00308034 0.00533530i
\(227\) 2.81023 4.86746i 0.186522 0.323065i −0.757567 0.652758i \(-0.773612\pi\)
0.944088 + 0.329693i \(0.106945\pi\)
\(228\) 13.6878 + 10.4453i 0.906497 + 0.691756i
\(229\) −12.7089 7.33749i −0.839828 0.484875i 0.0173777 0.999849i \(-0.494468\pi\)
−0.857206 + 0.514974i \(0.827802\pi\)
\(230\) −0.228577 0.395908i −0.0150720 0.0261054i
\(231\) 9.13975 12.0388i 0.601352 0.792096i
\(232\) 0.250903 0.434576i 0.0164726 0.0285313i
\(233\) −12.2033 7.04557i −0.799464 0.461571i 0.0438198 0.999039i \(-0.486047\pi\)
−0.843284 + 0.537469i \(0.819381\pi\)
\(234\) −0.537334 0.0945487i −0.0351266 0.00618084i
\(235\) 5.17022 + 8.95509i 0.337268 + 0.584165i
\(236\) −2.83186 4.90493i −0.184338 0.319284i
\(237\) 4.88611 6.40291i 0.317387 0.415913i
\(238\) −0.421882 + 0.734927i −0.0273466 + 0.0476382i
\(239\) 23.9806i 1.55117i −0.631241 0.775587i \(-0.717454\pi\)
0.631241 0.775587i \(-0.282546\pi\)
\(240\) 16.3706 + 2.11094i 1.05672 + 0.136260i
\(241\) −13.4868 7.78659i −0.868759 0.501578i −0.00182319 0.999998i \(-0.500580\pi\)
−0.866936 + 0.498420i \(0.833914\pi\)
\(242\) −0.00526615 + 0.00304042i −0.000338521 + 0.000195445i
\(243\) 12.4923 + 9.32429i 0.801381 + 0.598154i
\(244\) −4.92810 2.84524i −0.315489 0.182148i
\(245\) −16.7409 + 0.0830741i −1.06953 + 0.00530741i
\(246\) −0.0162384 + 0.125931i −0.00103532 + 0.00802905i
\(247\) 7.66406 16.2249i 0.487652 1.03236i
\(248\) −0.513310 0.889079i −0.0325952 0.0564566i
\(249\) −27.9517 3.60428i −1.77136 0.228412i
\(250\) 0.447164 0.258170i 0.0282811 0.0163281i
\(251\) 5.82685 + 10.0924i 0.367788 + 0.637027i 0.989219 0.146441i \(-0.0467820\pi\)
−0.621432 + 0.783468i \(0.713449\pi\)
\(252\) 15.2816 4.22276i 0.962651 0.266009i
\(253\) 6.24998 + 10.8253i 0.392933 + 0.680580i
\(254\) 0.237574i 0.0149067i
\(255\) −10.1306 24.2746i −0.634404 1.52013i
\(256\) −7.89843 + 13.6805i −0.493652 + 0.855030i
\(257\) 0.00851839 + 0.0147543i 0.000531363 + 0.000920347i 0.866291 0.499540i \(-0.166498\pi\)
−0.865760 + 0.500460i \(0.833164\pi\)
\(258\) 0.0304302 + 0.0232216i 0.00189450 + 0.00144571i
\(259\) 0.0344383 + 13.8799i 0.00213989 + 0.862454i
\(260\) −1.41597 17.1657i −0.0878150 1.06457i
\(261\) 5.30743 + 5.25124i 0.328521 + 0.325044i
\(262\) 0.820906i 0.0507158i
\(263\) 11.0395i 0.680726i −0.940294 0.340363i \(-0.889450\pi\)
0.940294 0.340363i \(-0.110550\pi\)
\(264\) 1.14246 + 0.147316i 0.0703133 + 0.00906667i
\(265\) 32.4487i 1.99331i
\(266\) −0.00164786 0.664149i −0.000101037 0.0407216i
\(267\) 3.39871 + 8.14385i 0.207997 + 0.498395i
\(268\) −1.43721 + 2.48931i −0.0877914 + 0.152059i
\(269\) −7.50933 + 13.0065i −0.457852 + 0.793022i −0.998847 0.0480030i \(-0.984714\pi\)
0.540995 + 0.841026i \(0.318048\pi\)
\(270\) 0.235242 0.580998i 0.0143164 0.0353584i
\(271\) −11.4856 + 6.63121i −0.697700 + 0.402817i −0.806490 0.591248i \(-0.798636\pi\)
0.108790 + 0.994065i \(0.465302\pi\)
\(272\) 25.3030 1.53422
\(273\) −7.63194 14.6545i −0.461906 0.886929i
\(274\) −0.447648 −0.0270434
\(275\) 2.05572 1.18687i 0.123964 0.0715708i
\(276\) −1.67677 + 13.0036i −0.100929 + 0.782723i
\(277\) 11.5143 19.9433i 0.691826 1.19828i −0.279413 0.960171i \(-0.590140\pi\)
0.971239 0.238107i \(-0.0765269\pi\)
\(278\) 0.137060 0.237394i 0.00822028 0.0142379i
\(279\) 14.7330 4.03185i 0.882044 0.241381i
\(280\) −0.640651 1.10331i −0.0382862 0.0659353i
\(281\) 11.1312i 0.664031i −0.943274 0.332016i \(-0.892271\pi\)
0.943274 0.332016i \(-0.107729\pi\)
\(282\) −0.0483077 + 0.374633i −0.00287668 + 0.0223091i
\(283\) 21.6445i 1.28663i −0.765600 0.643317i \(-0.777558\pi\)
0.765600 0.643317i \(-0.222442\pi\)
\(284\) 11.8651i 0.704066i
\(285\) 16.3886 + 12.5063i 0.970777 + 0.740808i
\(286\) −0.0493139 0.597826i −0.00291599 0.0353502i
\(287\) −3.32533 + 1.93090i −0.196288 + 0.113977i
\(288\) 1.28861 + 1.27497i 0.0759321 + 0.0751283i
\(289\) −11.6610 20.1975i −0.685943 1.18809i
\(290\) 0.150109 0.259997i 0.00881471 0.0152675i
\(291\) −20.4046 + 8.51554i −1.19614 + 0.499190i
\(292\) 11.0633i 0.647429i
\(293\) −2.12989 3.68908i −0.124430 0.215519i 0.797080 0.603874i \(-0.206377\pi\)
−0.921510 + 0.388355i \(0.873043\pi\)
\(294\) −0.487998 0.368578i −0.0284606 0.0214959i
\(295\) −3.39063 5.87274i −0.197410 0.341924i
\(296\) −0.916062 + 0.528889i −0.0532451 + 0.0307410i
\(297\) −6.43221 + 15.8862i −0.373235 + 0.921811i
\(298\) −0.0937191 0.162326i −0.00542900 0.00940331i
\(299\) 13.6177 1.12331i 0.787533 0.0649625i
\(300\) 2.46937 + 0.318417i 0.142569 + 0.0183838i
\(301\) 0.00287623 + 1.15923i 0.000165783 + 0.0668168i
\(302\) −0.843037 0.486728i −0.0485113 0.0280080i
\(303\) −26.4570 3.41154i −1.51992 0.195988i
\(304\) −17.1742 + 9.91552i −0.985007 + 0.568694i
\(305\) −5.90048 3.40664i −0.337860 0.195064i
\(306\) 0.243750 0.929441i 0.0139342 0.0531326i
\(307\) 23.3540i 1.33288i −0.745557 0.666441i \(-0.767817\pi\)
0.745557 0.666441i \(-0.232183\pi\)
\(308\) 8.75307 + 15.0743i 0.498753 + 0.858936i
\(309\) −13.2843 10.1374i −0.755717 0.576694i
\(310\) −0.307101 0.531914i −0.0174422 0.0302107i
\(311\) −10.9226 18.9184i −0.619362 1.07277i −0.989602 0.143830i \(-0.954058\pi\)
0.370241 0.928936i \(-0.379275\pi\)
\(312\) 0.679003 1.06042i 0.0384410 0.0600346i
\(313\) 11.2662 + 6.50456i 0.636804 + 0.367659i 0.783383 0.621540i \(-0.213493\pi\)
−0.146578 + 0.989199i \(0.546826\pi\)
\(314\) 0.167626 0.290336i 0.00945966 0.0163846i
\(315\) 18.2969 5.05597i 1.03091 0.284872i
\(316\) 4.64422 + 8.04403i 0.261258 + 0.452512i
\(317\) 18.4310 + 10.6412i 1.03519 + 0.597667i 0.918467 0.395497i \(-0.129428\pi\)
0.116723 + 0.993165i \(0.462761\pi\)
\(318\) −0.719088 + 0.942315i −0.0403245 + 0.0528424i
\(319\) −4.10442 + 7.10907i −0.229804 + 0.398032i
\(320\) −9.49339 + 16.4430i −0.530697 + 0.919193i
\(321\) 25.5741 10.6730i 1.42741 0.595706i
\(322\) 0.437355 0.253956i 0.0243728 0.0141524i
\(323\) 27.3683 + 15.8011i 1.52281 + 0.879195i
\(324\) −15.4721 + 9.15373i −0.859560 + 0.508540i
\(325\) −0.213315 2.58600i −0.0118326 0.143445i
\(326\) −0.846465 + 0.488707i −0.0468814 + 0.0270670i
\(327\) −1.78897 4.28665i −0.0989301 0.237052i
\(328\) −0.253785 0.146523i −0.0140129 0.00809038i
\(329\) −9.89258 + 5.74426i −0.545396 + 0.316691i
\(330\) 0.683504 + 0.0881356i 0.0376257 + 0.00485170i
\(331\) −6.79074 −0.373253 −0.186626 0.982431i \(-0.559755\pi\)
−0.186626 + 0.982431i \(0.559755\pi\)
\(332\) 16.2508 28.1472i 0.891879 1.54478i
\(333\) −4.15422 15.1802i −0.227650 0.831870i
\(334\) 0.868513i 0.0475229i
\(335\) −1.72079 + 2.98049i −0.0940167 + 0.162842i
\(336\) −2.29034 + 18.1162i −0.124948 + 0.988318i
\(337\) −27.2006 −1.48171 −0.740854 0.671666i \(-0.765579\pi\)
−0.740854 + 0.671666i \(0.765579\pi\)
\(338\) −0.613915 0.230375i −0.0333926 0.0125307i
\(339\) −2.93498 + 1.22487i −0.159406 + 0.0665257i
\(340\) 30.3343 1.64511
\(341\) 8.39705 + 14.5441i 0.454726 + 0.787608i
\(342\) 0.198779 + 0.726369i 0.0107487 + 0.0392775i
\(343\) −0.137854 18.5197i −0.00744340 0.999972i
\(344\) −0.0765082 + 0.0441720i −0.00412505 + 0.00238160i
\(345\) −2.00762 + 15.5693i −0.108086 + 0.838226i
\(346\) −0.0454382 + 0.0262337i −0.00244277 + 0.00141033i
\(347\) −22.8690 13.2034i −1.22767 0.708796i −0.261129 0.965304i \(-0.584095\pi\)
−0.966542 + 0.256508i \(0.917428\pi\)
\(348\) −7.94606 + 3.31616i −0.425953 + 0.177765i
\(349\) 5.26120 + 3.03756i 0.281626 + 0.162597i 0.634159 0.773203i \(-0.281346\pi\)
−0.352533 + 0.935799i \(0.614680\pi\)
\(350\) −0.0482261 0.0830534i −0.00257779 0.00443939i
\(351\) 12.6988 + 13.7746i 0.677812 + 0.735235i
\(352\) −0.996530 + 1.72604i −0.0531152 + 0.0919983i
\(353\) 25.2183 1.34224 0.671118 0.741350i \(-0.265814\pi\)
0.671118 + 0.741350i \(0.265814\pi\)
\(354\) 0.0316802 0.245684i 0.00168378 0.0130580i
\(355\) 14.2063i 0.753992i
\(356\) −10.1768 −0.539369
\(357\) 26.8265 11.2739i 1.41981 0.596676i
\(358\) 0.0791036 + 0.137011i 0.00418076 + 0.00724128i
\(359\) 11.9864 + 6.92033i 0.632616 + 0.365241i 0.781764 0.623574i \(-0.214320\pi\)
−0.149149 + 0.988815i \(0.547653\pi\)
\(360\) 1.02836 + 1.01748i 0.0541995 + 0.0536257i
\(361\) −5.76796 −0.303577
\(362\) 0.526394 + 0.911740i 0.0276666 + 0.0479200i
\(363\) 0.207095 + 0.0267042i 0.0108697 + 0.00140161i
\(364\) 18.9861 1.61357i 0.995141 0.0845741i
\(365\) 13.2462i 0.693338i
\(366\) −0.0958569 0.229689i −0.00501052 0.0120060i
\(367\) 19.8158i 1.03438i −0.855872 0.517188i \(-0.826979\pi\)
0.855872 0.517188i \(-0.173021\pi\)
\(368\) −13.0778 7.55050i −0.681730 0.393597i
\(369\) 3.06664 3.09945i 0.159643 0.161351i
\(370\) −0.548058 + 0.316422i −0.0284922 + 0.0164500i
\(371\) −35.8971 + 0.0890666i −1.86369 + 0.00462411i
\(372\) −2.25279 + 17.4707i −0.116802 + 0.905813i
\(373\) −17.5663 −0.909550 −0.454775 0.890606i \(-0.650280\pi\)
−0.454775 + 0.890606i \(0.650280\pi\)
\(374\) 1.05645 0.0546275
\(375\) −17.5850 2.26753i −0.908087 0.117095i
\(376\) −0.754990 0.435893i −0.0389356 0.0224795i
\(377\) 5.11030 + 7.37593i 0.263194 + 0.379880i
\(378\) 0.643389 + 0.258647i 0.0330923 + 0.0133034i
\(379\) 9.24290 16.0092i 0.474776 0.822336i −0.524807 0.851221i \(-0.675862\pi\)
0.999583 + 0.0288853i \(0.00919576\pi\)
\(380\) −20.5891 + 11.8871i −1.05620 + 0.609798i
\(381\) 4.94908 6.48542i 0.253549 0.332258i
\(382\) 0.612022 + 1.06005i 0.0313138 + 0.0542370i
\(383\) 3.16515 0.161732 0.0808659 0.996725i \(-0.474231\pi\)
0.0808659 + 0.996725i \(0.474231\pi\)
\(384\) −2.57179 + 1.07330i −0.131241 + 0.0547714i
\(385\) 10.4802 + 18.0486i 0.534119 + 0.919843i
\(386\) −0.0676540 + 0.0390601i −0.00344350 + 0.00198811i
\(387\) −0.346955 1.26783i −0.0176367 0.0644473i
\(388\) 25.4982i 1.29448i
\(389\) −13.6079 + 7.85653i −0.689949 + 0.398342i −0.803593 0.595179i \(-0.797081\pi\)
0.113644 + 0.993522i \(0.463748\pi\)
\(390\) 0.406231 0.634425i 0.0205703 0.0321254i
\(391\) 24.0645i 1.21699i
\(392\) 1.21880 0.711764i 0.0615589 0.0359495i
\(393\) −17.1009 + 22.4095i −0.862626 + 1.13041i
\(394\) 1.06232 0.0535189
\(395\) 5.56059 + 9.63122i 0.279784 + 0.484599i
\(396\) −14.0503 13.9016i −0.706054 0.698580i
\(397\) 17.3611i 0.871328i 0.900109 + 0.435664i \(0.143486\pi\)
−0.900109 + 0.435664i \(0.856514\pi\)
\(398\) −1.01196 −0.0507250
\(399\) −13.7904 + 18.1646i −0.690382 + 0.909367i
\(400\) −1.43384 + 2.48348i −0.0716918 + 0.124174i
\(401\) −5.99869 + 3.46334i −0.299560 + 0.172951i −0.642245 0.766499i \(-0.721997\pi\)
0.342685 + 0.939450i \(0.388664\pi\)
\(402\) −0.116022 + 0.0484199i −0.00578665 + 0.00241497i
\(403\) 18.2958 1.50920i 0.911381 0.0751785i
\(404\) 15.3818 26.6421i 0.765275 1.32550i
\(405\) −18.5249 + 10.9599i −0.920512 + 0.544601i
\(406\) 0.288039 + 0.165348i 0.0142951 + 0.00820608i
\(407\) 14.9855 8.65190i 0.742805 0.428859i
\(408\) 1.76295 + 1.34532i 0.0872789 + 0.0666032i
\(409\) −3.27394 1.89021i −0.161886 0.0934648i 0.416868 0.908967i \(-0.363128\pi\)
−0.578754 + 0.815502i \(0.696461\pi\)
\(410\) −0.151834 0.0876612i −0.00749853 0.00432928i
\(411\) 12.2201 + 9.32528i 0.602774 + 0.459982i
\(412\) 16.6892 9.63550i 0.822217 0.474707i
\(413\) 6.48755 3.76708i 0.319231 0.185366i
\(414\) −0.403331 + 0.407646i −0.0198226 + 0.0200347i
\(415\) 19.4573 33.7011i 0.955123 1.65432i
\(416\) 1.24075 + 1.79083i 0.0608328 + 0.0878027i
\(417\) −8.68685 + 3.62532i −0.425397 + 0.177533i
\(418\) −0.717054 + 0.413991i −0.0350723 + 0.0202490i
\(419\) −12.6236 + 21.8647i −0.616703 + 1.06816i 0.373380 + 0.927678i \(0.378199\pi\)
−0.990083 + 0.140483i \(0.955135\pi\)
\(420\) −2.74576 + 21.7184i −0.133979 + 1.05975i
\(421\) 18.4740 0.900367 0.450184 0.892936i \(-0.351358\pi\)
0.450184 + 0.892936i \(0.351358\pi\)
\(422\) 0.917363i 0.0446565i
\(423\) 9.12298 9.22059i 0.443575 0.448321i
\(424\) −1.36785 2.36918i −0.0664286 0.115058i
\(425\) 4.56983 0.221670
\(426\) 0.314823 0.412553i 0.0152532 0.0199883i
\(427\) 3.75248 6.53689i 0.181595 0.316342i
\(428\) 31.9582i 1.54476i
\(429\) −11.1076 + 17.3471i −0.536278 + 0.837524i
\(430\) −0.0457730 + 0.0264271i −0.00220737 + 0.00127443i
\(431\) 30.7005i 1.47879i 0.673270 + 0.739397i \(0.264889\pi\)
−0.673270 + 0.739397i \(0.735111\pi\)
\(432\) −2.86635 20.5060i −0.137907 0.986594i
\(433\) 5.40561 3.12093i 0.259777 0.149982i −0.364456 0.931221i \(-0.618745\pi\)
0.624233 + 0.781238i \(0.285412\pi\)
\(434\) 0.587600 0.341198i 0.0282057 0.0163780i
\(435\) −9.51393 + 3.97049i −0.456158 + 0.190370i
\(436\) 5.35673 0.256541
\(437\) −9.43019 16.3336i −0.451107 0.781341i
\(438\) −0.293546 + 0.384672i −0.0140262 + 0.0183803i
\(439\) −5.15298 + 2.97507i −0.245938 + 0.141993i −0.617903 0.786254i \(-0.712018\pi\)
0.371965 + 0.928247i \(0.378684\pi\)
\(440\) −0.795271 + 1.37745i −0.0379130 + 0.0656673i
\(441\) 5.64351 + 20.2275i 0.268738 + 0.963213i
\(442\) 0.493239 1.04419i 0.0234610 0.0496671i
\(443\) 6.56417 + 3.78983i 0.311873 + 0.180060i 0.647764 0.761841i \(-0.275704\pi\)
−0.335891 + 0.941901i \(0.609037\pi\)
\(444\) 18.0009 + 2.32116i 0.854287 + 0.110157i
\(445\) −12.1848 −0.577616
\(446\) −1.26439 −0.0598708
\(447\) −0.823143 + 6.38359i −0.0389333 + 0.301934i
\(448\) −18.2165 10.4572i −0.860651 0.494054i
\(449\) −31.9151 + 18.4262i −1.50617 + 0.869586i −0.506192 + 0.862421i \(0.668947\pi\)
−0.999974 + 0.00716492i \(0.997719\pi\)
\(450\) 0.0774117 + 0.0765922i 0.00364922 + 0.00361059i
\(451\) 4.15158 + 2.39692i 0.195490 + 0.112866i
\(452\) 3.66764i 0.172511i
\(453\) 12.8743 + 30.8488i 0.604886 + 1.44940i
\(454\) 0.283495i 0.0133051i
\(455\) 22.7323 1.93195i 1.06571 0.0905713i
\(456\) −1.72378 0.222275i −0.0807233 0.0104090i
\(457\) 7.61524 + 13.1900i 0.356226 + 0.617001i 0.987327 0.158699i \(-0.0507301\pi\)
−0.631101 + 0.775700i \(0.717397\pi\)
\(458\) 0.740202 0.0345874
\(459\) −26.0158 + 20.2946i −1.21432 + 0.947272i
\(460\) −15.6783 9.05186i −0.731004 0.422045i
\(461\) 6.56203 + 11.3658i 0.305624 + 0.529356i 0.977400 0.211398i \(-0.0678016\pi\)
−0.671776 + 0.740754i \(0.734468\pi\)
\(462\) −0.0956259 + 0.756384i −0.00444892 + 0.0351902i
\(463\) −4.01885 −0.186772 −0.0933859 0.995630i \(-0.529769\pi\)
−0.0933859 + 0.995630i \(0.529769\pi\)
\(464\) 9.91697i 0.460384i
\(465\) −2.69730 + 20.9179i −0.125084 + 0.970045i
\(466\) 0.710753 0.0329250
\(467\) 3.22927 5.59327i 0.149433 0.258825i −0.781585 0.623799i \(-0.785589\pi\)
0.931018 + 0.364973i \(0.118922\pi\)
\(468\) −20.3002 + 7.39686i −0.938375 + 0.341920i
\(469\) −3.30196 1.89548i −0.152470 0.0875251i
\(470\) −0.451692 0.260785i −0.0208350 0.0120291i
\(471\) −10.6241 + 4.43381i −0.489534 + 0.204299i
\(472\) 0.495121 + 0.285858i 0.0227898 + 0.0131577i
\(473\) 1.25157 0.722594i 0.0575472 0.0332249i
\(474\) −0.0519551 + 0.402919i −0.00238638 + 0.0185067i
\(475\) −3.10174 + 1.79079i −0.142317 + 0.0821670i
\(476\) 0.0832629 + 33.5580i 0.00381635 + 1.53813i
\(477\) 39.2601 10.7439i 1.79760 0.491931i
\(478\) 0.604787 + 1.04752i 0.0276623 + 0.0479125i
\(479\) −24.0394 −1.09839 −0.549195 0.835694i \(-0.685065\pi\)
−0.549195 + 0.835694i \(0.685065\pi\)
\(480\) −2.30992 + 0.964010i −0.105433 + 0.0440008i
\(481\) −1.55500 18.8511i −0.0709020 0.859537i
\(482\) 0.785506 0.0357788
\(483\) −17.2295 2.17824i −0.783968 0.0991132i
\(484\) −0.120403 + 0.208544i −0.00547286 + 0.00947928i
\(485\) 30.5294i 1.38627i
\(486\) −0.780847 0.0922506i −0.0354199 0.00418457i
\(487\) −5.56310 + 9.63558i −0.252088 + 0.436630i −0.964101 0.265537i \(-0.914451\pi\)
0.712012 + 0.702167i \(0.247784\pi\)
\(488\) 0.574418 0.0260027
\(489\) 33.2878 + 4.29236i 1.50533 + 0.194107i
\(490\) 0.729181 0.425831i 0.0329410 0.0192371i
\(491\) 0.596057 + 0.344134i 0.0268997 + 0.0155305i 0.513390 0.858156i \(-0.328390\pi\)
−0.486490 + 0.873686i \(0.661723\pi\)
\(492\) 1.93658 + 4.64037i 0.0873079 + 0.209204i
\(493\) −13.6861 + 7.90170i −0.616393 + 0.355875i
\(494\) 0.0744065 + 0.902022i 0.00334771 + 0.0405839i
\(495\) −16.8226 16.6445i −0.756120 0.748116i
\(496\) −17.5705 10.1443i −0.788939 0.455494i
\(497\) 15.7160 0.0389941i 0.704961 0.00174912i
\(498\) 1.31189 0.547495i 0.0587870 0.0245338i
\(499\) 7.85879 13.6118i 0.351808 0.609349i −0.634759 0.772711i \(-0.718900\pi\)
0.986566 + 0.163362i \(0.0522338\pi\)
\(500\) 10.2238 17.7081i 0.457220 0.791929i
\(501\) 18.0926 23.7091i 0.808319 1.05924i
\(502\) −0.509058 0.293905i −0.0227204 0.0131176i
\(503\) 4.12748 + 7.14901i 0.184035 + 0.318758i 0.943251 0.332081i \(-0.107751\pi\)
−0.759216 + 0.650839i \(0.774417\pi\)
\(504\) −1.12278 + 1.14044i −0.0500128 + 0.0507994i
\(505\) 18.4169 31.8990i 0.819541 1.41949i
\(506\) −0.546025 0.315247i −0.0242738 0.0140145i
\(507\) 11.9599 + 19.0778i 0.531156 + 0.847274i
\(508\) 4.70407 + 8.14769i 0.208709 + 0.361495i
\(509\) −4.10928 7.11748i −0.182141 0.315477i 0.760469 0.649375i \(-0.224969\pi\)
−0.942609 + 0.333898i \(0.891636\pi\)
\(510\) 1.05473 + 0.804872i 0.0467042 + 0.0356403i
\(511\) −14.6539 + 0.0363588i −0.648251 + 0.00160842i
\(512\) 4.01467i 0.177425i
\(513\) 9.70515 23.9697i 0.428493 1.05829i
\(514\) −0.000744202 0 0.000429665i −3.28254e−5 0 1.89517e-5i
\(515\) 19.9822 11.5367i 0.880520 0.508369i
\(516\) 1.50341 + 0.193860i 0.0661840 + 0.00853421i
\(517\) 12.3506 + 7.13062i 0.543179 + 0.313604i
\(518\) −0.351553 0.605434i −0.0154464 0.0266012i
\(519\) 1.78689 + 0.230413i 0.0784357 + 0.0101140i
\(520\) 0.990169 + 1.42916i 0.0434218 + 0.0626726i
\(521\) −16.9788 29.4082i −0.743856 1.28840i −0.950727 0.310028i \(-0.899661\pi\)
0.206871 0.978368i \(-0.433672\pi\)
\(522\) −0.364275 0.0955326i −0.0159439 0.00418135i
\(523\) 22.3419 12.8991i 0.976941 0.564037i 0.0755959 0.997139i \(-0.475914\pi\)
0.901345 + 0.433101i \(0.142581\pi\)
\(524\) −16.2543 28.1533i −0.710072 1.22988i
\(525\) −0.413646 + 3.27187i −0.0180530 + 0.142796i
\(526\) 0.278415 + 0.482229i 0.0121395 + 0.0210262i
\(527\) 32.3314i 1.40838i
\(528\) 21.0087 8.76764i 0.914286 0.381563i
\(529\) −4.31907 + 7.48084i −0.187785 + 0.325254i
\(530\) −0.818351 1.41743i −0.0355469 0.0615690i
\(531\) −5.98284 + 6.04686i −0.259633 + 0.262411i
\(532\) −13.2069 22.7446i −0.572594 0.986103i
\(533\) 4.30742 2.98433i 0.186575 0.129266i
\(534\) −0.353849 0.270025i −0.0153126 0.0116851i
\(535\) 38.2640i 1.65430i
\(536\) 0.290154i 0.0125327i
\(537\) 0.694774 5.38807i 0.0299817 0.232512i
\(538\) 0.757537i 0.0326597i
\(539\) −19.9380 + 11.6435i −0.858789 + 0.501520i
\(540\) −3.43631 24.5834i −0.147875 1.05790i
\(541\) −6.70147 + 11.6073i −0.288119 + 0.499036i −0.973361 0.229279i \(-0.926363\pi\)
0.685242 + 0.728315i \(0.259696\pi\)
\(542\) 0.334476 0.579330i 0.0143670 0.0248843i
\(543\) 4.62336 35.8548i 0.198407 1.53868i
\(544\) −3.32291 + 1.91848i −0.142469 + 0.0822544i
\(545\) 6.41369 0.274732
\(546\) 0.702963 + 0.447661i 0.0300840 + 0.0191581i
\(547\) 27.6554 1.18246 0.591230 0.806503i \(-0.298642\pi\)
0.591230 + 0.806503i \(0.298642\pi\)
\(548\) −15.3522 + 8.86362i −0.655815 + 0.378635i
\(549\) −2.16806 + 8.26702i −0.0925305 + 0.352828i
\(550\) −0.0598653 + 0.103690i −0.00255266 + 0.00442135i
\(551\) 6.19290 10.7264i 0.263826 0.456961i
\(552\) −0.509731 1.22140i −0.0216956 0.0519862i
\(553\) −10.6395 + 6.17797i −0.452438 + 0.262714i
\(554\) 1.16155i 0.0493497i
\(555\) 21.5528 + 2.77916i 0.914864 + 0.117969i
\(556\) 10.8553i 0.460369i
\(557\) 13.8889i 0.588491i −0.955730 0.294245i \(-0.904932\pi\)
0.955730 0.294245i \(-0.0950683\pi\)
\(558\) −0.541887 + 0.547685i −0.0229399 + 0.0231854i
\(559\) −0.129872 1.57442i −0.00549298 0.0665908i
\(560\) −21.8668 12.5526i −0.924041 0.530443i
\(561\) −28.8394 22.0076i −1.21760 0.929161i
\(562\) 0.280727 + 0.486234i 0.0118418 + 0.0205105i
\(563\) 5.84070 10.1164i 0.246156 0.426355i −0.716300 0.697792i \(-0.754166\pi\)
0.962456 + 0.271438i \(0.0874991\pi\)
\(564\) 5.76117 + 13.8047i 0.242589 + 0.581282i
\(565\) 4.39132i 0.184744i
\(566\) 0.545872 + 0.945478i 0.0229447 + 0.0397414i
\(567\) −12.1755 20.4636i −0.511322 0.859389i
\(568\) 0.598855 + 1.03725i 0.0251274 + 0.0435220i
\(569\) 12.4870 7.20937i 0.523482 0.302233i −0.214876 0.976641i \(-0.568935\pi\)
0.738358 + 0.674409i \(0.235601\pi\)
\(570\) −1.03129 0.132982i −0.0431962 0.00557001i
\(571\) −1.58864 2.75161i −0.0664827 0.115151i 0.830868 0.556469i \(-0.187844\pi\)
−0.897351 + 0.441318i \(0.854511\pi\)
\(572\) −13.5285 19.5262i −0.565653 0.816433i
\(573\) 5.37544 41.6873i 0.224562 1.74151i
\(574\) 0.0965605 0.168210i 0.00403036 0.00702096i
\(575\) −2.36192 1.36366i −0.0984989 0.0568684i
\(576\) 23.0379 + 6.04179i 0.959914 + 0.251741i
\(577\) 28.1688 16.2633i 1.17268 0.677048i 0.218371 0.975866i \(-0.429926\pi\)
0.954310 + 0.298818i \(0.0965922\pi\)
\(578\) 1.01876 + 0.588179i 0.0423747 + 0.0244650i
\(579\) 2.66054 + 0.343068i 0.110568 + 0.0142574i
\(580\) 11.8889i 0.493659i
\(581\) 37.3360 + 21.4326i 1.54896 + 0.889175i
\(582\) 0.676555 0.886578i 0.0280441 0.0367498i
\(583\) 22.3761 + 38.7566i 0.926725 + 1.60513i
\(584\) −0.558383 0.967148i −0.0231061 0.0400209i
\(585\) −24.3057 + 8.85637i −1.00492 + 0.366166i
\(586\) 0.186076 + 0.107431i 0.00768674 + 0.00443794i
\(587\) −15.9879 + 27.6918i −0.659890 + 1.14296i 0.320754 + 0.947163i \(0.396064\pi\)
−0.980644 + 0.195800i \(0.937270\pi\)
\(588\) −24.0341 2.97794i −0.991149 0.122808i
\(589\) −12.6698 21.9447i −0.522048 0.904214i
\(590\) 0.296219 + 0.171022i 0.0121952 + 0.00704087i
\(591\) −28.9997 22.1299i −1.19289 0.910304i
\(592\) −10.4522 + 18.1038i −0.429583 + 0.744060i
\(593\) 9.25724 16.0340i 0.380149 0.658438i −0.610934 0.791681i \(-0.709206\pi\)
0.991083 + 0.133244i \(0.0425393\pi\)
\(594\) −0.119676 0.856162i −0.00491035 0.0351288i
\(595\) 0.0996918 + 40.1795i 0.00408697 + 1.64720i
\(596\) −6.42826 3.71136i −0.263312 0.152023i
\(597\) 27.6250 + 21.0809i 1.13062 + 0.862782i
\(598\) −0.566521 + 0.392506i −0.0231668 + 0.0160507i
\(599\) 17.5513 10.1332i 0.717125 0.414033i −0.0965683 0.995326i \(-0.530787\pi\)
0.813694 + 0.581294i \(0.197453\pi\)
\(600\) −0.231943 + 0.0967977i −0.00946903 + 0.00395175i
\(601\) −28.7369 16.5912i −1.17220 0.676771i −0.218004 0.975948i \(-0.569955\pi\)
−0.954198 + 0.299177i \(0.903288\pi\)
\(602\) −0.0293612 0.0505649i −0.00119667 0.00206087i
\(603\) 4.17590 + 1.09515i 0.170056 + 0.0445978i
\(604\) −38.5497 −1.56856
\(605\) −0.144160 + 0.249693i −0.00586095 + 0.0101515i
\(606\) 1.24174 0.518219i 0.0504421 0.0210512i
\(607\) 9.93135i 0.403101i 0.979478 + 0.201551i \(0.0645980\pi\)
−0.979478 + 0.201551i \(0.935402\pi\)
\(608\) 1.50360 2.60431i 0.0609790 0.105619i
\(609\) −4.41856 10.5141i −0.179049 0.426053i
\(610\) 0.343660 0.0139144
\(611\) 12.8142 8.87813i 0.518407 0.359171i
\(612\) −10.0439 36.7018i −0.405999 1.48358i
\(613\) 23.8083 0.961606 0.480803 0.876829i \(-0.340345\pi\)
0.480803 + 0.876829i \(0.340345\pi\)
\(614\) 0.588985 + 1.02015i 0.0237695 + 0.0411699i
\(615\) 2.31870 + 5.55597i 0.0934989 + 0.224039i
\(616\) −1.52602 0.876006i −0.0614850 0.0352953i
\(617\) 24.2100 13.9777i 0.974659 0.562720i 0.0740057 0.997258i \(-0.476422\pi\)
0.900653 + 0.434538i \(0.143088\pi\)
\(618\) 0.835948 + 0.107793i 0.0336268 + 0.00433606i
\(619\) −10.8076 + 6.23976i −0.434393 + 0.250797i −0.701216 0.712949i \(-0.747359\pi\)
0.266823 + 0.963745i \(0.414026\pi\)
\(620\) −21.0643 12.1615i −0.845961 0.488416i
\(621\) 19.5023 2.72606i 0.782600 0.109393i
\(622\) 0.954240 + 0.550931i 0.0382615 + 0.0220903i
\(623\) −0.0334455 13.4798i −0.00133996 0.540055i
\(624\) 1.14272 24.8585i 0.0457455 0.995134i
\(625\) 14.0402 24.3183i 0.561608 0.972734i
\(626\) −0.656176 −0.0262261
\(627\) 28.1986 + 3.63612i 1.12615 + 0.145213i
\(628\) 13.2762i 0.529779i
\(629\) 33.3127 1.32826
\(630\) −0.671735 + 0.682300i −0.0267626 + 0.0271835i
\(631\) 0.0948913 + 0.164357i 0.00377756 + 0.00654293i 0.867908 0.496725i \(-0.165464\pi\)
−0.864130 + 0.503268i \(0.832131\pi\)
\(632\) −0.811994 0.468805i −0.0322994 0.0186481i
\(633\) −19.1103 + 25.0426i −0.759564 + 0.995356i
\(634\) −1.07347 −0.0426331
\(635\) 5.63225 + 9.75534i 0.223509 + 0.387129i
\(636\) −6.00315 + 46.5553i −0.238040 + 1.84604i
\(637\) 2.19966 + 25.1428i 0.0871539 + 0.996195i
\(638\) 0.414052i 0.0163925i
\(639\) −17.1884 + 4.70378i −0.679961 + 0.186079i
\(640\) 3.84792i 0.152102i
\(641\) −20.6497 11.9221i −0.815614 0.470895i 0.0332875 0.999446i \(-0.489402\pi\)
−0.848902 + 0.528551i \(0.822736\pi\)
\(642\) −0.847960 + 1.11119i −0.0334663 + 0.0438553i
\(643\) −30.1098 + 17.3839i −1.18741 + 0.685553i −0.957718 0.287709i \(-0.907106\pi\)
−0.229696 + 0.973263i \(0.573773\pi\)
\(644\) 9.97080 17.3693i 0.392905 0.684447i
\(645\) 1.80006 + 0.232111i 0.0708771 + 0.00913937i
\(646\) −1.59400 −0.0627152
\(647\) −12.7566 −0.501515 −0.250757 0.968050i \(-0.580680\pi\)
−0.250757 + 0.968050i \(0.580680\pi\)
\(648\) 0.890561 1.58112i 0.0349845 0.0621123i
\(649\) −8.09951 4.67625i −0.317934 0.183559i
\(650\) 0.0745366 + 0.107582i 0.00292356 + 0.00421971i
\(651\) −23.1483 2.92653i −0.907255 0.114700i
\(652\) −19.3532 + 33.5207i −0.757930 + 1.31277i
\(653\) −10.7080 + 6.18226i −0.419036 + 0.241931i −0.694665 0.719334i \(-0.744447\pi\)
0.275629 + 0.961264i \(0.411114\pi\)
\(654\) 0.186255 + 0.142132i 0.00728313 + 0.00555782i
\(655\) −19.4615 33.7083i −0.760423 1.31709i
\(656\) −5.79135 −0.226114
\(657\) 16.0267 4.38589i 0.625263 0.171110i
\(658\) 0.287259 0.500411i 0.0111985 0.0195080i
\(659\) −7.20356 + 4.15898i −0.280611 + 0.162011i −0.633700 0.773579i \(-0.718465\pi\)
0.353089 + 0.935590i \(0.385131\pi\)
\(660\) 25.1861 10.5110i 0.980368 0.409141i
\(661\) 33.1766i 1.29042i 0.764005 + 0.645210i \(0.223230\pi\)
−0.764005 + 0.645210i \(0.776770\pi\)
\(662\) 0.296634 0.171261i 0.0115290 0.00665627i
\(663\) −35.2170 + 18.2298i −1.36771 + 0.707987i
\(664\) 3.28083i 0.127321i
\(665\) −15.8129 27.2324i −0.613196 1.05603i
\(666\) 0.564307 + 0.558334i 0.0218665 + 0.0216350i
\(667\) 9.43158 0.365192
\(668\) 17.1969 + 29.7860i 0.665369 + 1.15245i
\(669\) 34.5161 + 26.3395i 1.33447 + 1.01834i
\(670\) 0.173592i 0.00670645i
\(671\) −9.39669 −0.362755
\(672\) −1.07280 2.55276i −0.0413841 0.0984749i
\(673\) −10.9583 + 18.9804i −0.422412 + 0.731640i −0.996175 0.0873819i \(-0.972150\pi\)
0.573762 + 0.819022i \(0.305483\pi\)
\(674\) 1.18818 0.685994i 0.0457669 0.0264235i
\(675\) −0.517677 3.70347i −0.0199254 0.142547i
\(676\) −25.6159 + 4.25500i −0.985228 + 0.163654i
\(677\) −16.0223 + 27.7515i −0.615787 + 1.06658i 0.374458 + 0.927244i \(0.377829\pi\)
−0.990246 + 0.139331i \(0.955505\pi\)
\(678\) 0.0973151 0.127525i 0.00373736 0.00489755i
\(679\) 33.7738 0.0837984i 1.29612 0.00321589i
\(680\) −2.65182 + 1.53103i −0.101693 + 0.0587122i
\(681\) 5.90568 7.73898i 0.226306 0.296558i
\(682\) −0.733601 0.423545i −0.0280910 0.0162184i
\(683\) 15.8147 + 9.13064i 0.605134 + 0.349374i 0.771059 0.636764i \(-0.219727\pi\)
−0.165924 + 0.986138i \(0.553061\pi\)
\(684\) 21.1996 + 20.9752i 0.810586 + 0.802005i
\(685\) −18.3815 + 10.6125i −0.702319 + 0.405484i
\(686\) 0.473087 + 0.805504i 0.0180626 + 0.0307543i
\(687\) −20.2064 15.4197i −0.770922 0.588297i
\(688\) −0.872953 + 1.51200i −0.0332810 + 0.0576445i
\(689\) 48.7541 4.02166i 1.85738 0.153213i
\(690\) −0.304960 0.730733i −0.0116096 0.0278185i
\(691\) 20.7881 12.0020i 0.790816 0.456578i −0.0494335 0.998777i \(-0.515742\pi\)
0.840250 + 0.542199i \(0.182408\pi\)
\(692\) −1.03888 + 1.79939i −0.0394922 + 0.0684025i
\(693\) 18.3672 18.6561i 0.697713 0.708687i
\(694\) 1.33195 0.0505602
\(695\) 12.9973i 0.493014i
\(696\) 0.527270 0.690950i 0.0199861 0.0261904i
\(697\) 4.61446 + 7.99248i 0.174785 + 0.302737i
\(698\) −0.306427 −0.0115984
\(699\) −19.4025 14.8062i −0.733870 0.560022i
\(700\) −3.29842 1.89345i −0.124669 0.0715656i
\(701\) 21.5626i 0.814410i −0.913337 0.407205i \(-0.866504\pi\)
0.913337 0.407205i \(-0.133496\pi\)
\(702\) −0.902104 0.281442i −0.0340477 0.0106224i
\(703\) −22.6107 + 13.0543i −0.852778 + 0.492352i
\(704\) 26.1860i 0.986923i
\(705\) 6.89793 + 16.5285i 0.259791 + 0.622501i
\(706\) −1.10159 + 0.636003i −0.0414589 + 0.0239363i
\(707\) 35.3395 + 20.2866i 1.32908 + 0.762954i
\(708\) −3.77817 9.05310i −0.141992 0.340236i
\(709\) −15.5353 −0.583439 −0.291719 0.956504i \(-0.594227\pi\)
−0.291719 + 0.956504i \(0.594227\pi\)
\(710\) 0.358281 + 0.620560i 0.0134460 + 0.0232892i
\(711\) 9.81180 9.91678i 0.367971 0.371908i
\(712\) 0.889654 0.513642i 0.0333412 0.0192495i
\(713\) 9.64781 16.7105i 0.361313 0.625813i
\(714\) −0.887514 + 1.16903i −0.0332144 + 0.0437498i
\(715\) −16.1978 23.3790i −0.605764 0.874326i
\(716\) 5.42577 + 3.13257i 0.202771 + 0.117070i
\(717\) 5.31189 41.1945i 0.198376 1.53844i
\(718\) −0.698119 −0.0260536
\(719\) 24.0466 0.896789 0.448394 0.893836i \(-0.351996\pi\)
0.448394 + 0.893836i \(0.351996\pi\)
\(720\) 27.6543 + 7.25246i 1.03062 + 0.270283i
\(721\) 12.8176 + 22.0741i 0.477353 + 0.822082i
\(722\) 0.251957 0.145467i 0.00937686 0.00541373i
\(723\) −21.4431 16.3634i −0.797479 0.608563i
\(724\) 36.1057 + 20.8456i 1.34186 + 0.774722i
\(725\) 1.79105i 0.0665180i
\(726\) −0.00971983 + 0.00405641i −0.000360737 + 0.000150548i
\(727\) 14.4681i 0.536592i −0.963337 0.268296i \(-0.913539\pi\)
0.963337 0.268296i \(-0.0864605\pi\)
\(728\) −1.57832 + 1.09932i −0.0584964 + 0.0407435i
\(729\) 19.3942 + 18.7847i 0.718304 + 0.695729i
\(730\) −0.334067 0.578622i −0.0123644 0.0214157i
\(731\) 2.78223 0.102904
\(732\) −7.83538 5.97924i −0.289604 0.220999i
\(733\) 33.3177 + 19.2360i 1.23062 + 0.710496i 0.967158 0.254175i \(-0.0818038\pi\)
0.263457 + 0.964671i \(0.415137\pi\)
\(734\) 0.499751 + 0.865595i 0.0184462 + 0.0319497i
\(735\) −28.7763 3.56553i −1.06143 0.131517i
\(736\) 2.28993 0.0844080
\(737\) 4.74652i 0.174840i
\(738\) −0.0557894 + 0.212731i −0.00205364 + 0.00783072i
\(739\) 6.01527 0.221275 0.110638 0.993861i \(-0.464711\pi\)
0.110638 + 0.993861i \(0.464711\pi\)
\(740\) −12.5306 + 21.7036i −0.460633 + 0.797839i
\(741\) 16.7595 26.1739i 0.615675 0.961521i
\(742\) 1.56581 0.909211i 0.0574829 0.0333782i
\(743\) −27.6154 15.9438i −1.01311 0.584920i −0.101010 0.994885i \(-0.532208\pi\)
−0.912101 + 0.409965i \(0.865541\pi\)
\(744\) −0.684840 1.64099i −0.0251075 0.0601615i
\(745\) −7.69664 4.44366i −0.281983 0.162803i
\(746\) 0.767334 0.443021i 0.0280941 0.0162201i
\(747\) −47.2178 12.3831i −1.72761 0.453072i
\(748\) 36.2312 20.9181i 1.32474 0.764841i
\(749\) −42.3304 + 0.105029i −1.54672 + 0.00383767i
\(750\) 0.825337 0.344441i 0.0301371 0.0125772i
\(751\) 5.17581 + 8.96476i 0.188868 + 0.327129i 0.944873 0.327437i \(-0.106185\pi\)
−0.756005 + 0.654566i \(0.772852\pi\)
\(752\) −17.2288 −0.628268
\(753\) 7.77398 + 18.6277i 0.283300 + 0.678832i
\(754\) −0.409249 0.193315i −0.0149040 0.00704011i
\(755\) −46.1560 −1.67979
\(756\) 27.1866 3.86897i 0.988766 0.140713i
\(757\) 2.99136 5.18119i 0.108723 0.188313i −0.806530 0.591193i \(-0.798657\pi\)
0.915253 + 0.402879i \(0.131991\pi\)
\(758\) 0.932419i 0.0338670i
\(759\) 8.33851 + 19.9804i 0.302669 + 0.725243i
\(760\) 1.19993 2.07834i 0.0435261 0.0753894i
\(761\) −1.91278 −0.0693382 −0.0346691 0.999399i \(-0.511038\pi\)
−0.0346691 + 0.999399i \(0.511038\pi\)
\(762\) −0.0526247 + 0.408112i −0.00190639 + 0.0147843i
\(763\) 0.0176046 + 7.09530i 0.000637329 + 0.256867i
\(764\) 41.9790 + 24.2366i 1.51875 + 0.876849i
\(765\) −12.0256 43.9436i −0.434788 1.58878i
\(766\) −0.138260 + 0.0798247i −0.00499555 + 0.00288418i
\(767\) −8.40355 + 5.82227i −0.303434 + 0.210230i
\(768\) −16.5985 + 21.7511i −0.598946 + 0.784877i
\(769\) −3.32745 1.92110i −0.119991 0.0692768i 0.438803 0.898583i \(-0.355402\pi\)