Properties

Label 273.2.bf.b.152.12
Level $273$
Weight $2$
Character 273.152
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(152,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.152");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.12
Character \(\chi\) \(=\) 273.152
Dual form 273.2.bf.b.185.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.765058 + 0.441707i) q^{2} +(0.162694 - 1.72439i) q^{3} +(-0.609790 + 1.05619i) q^{4} +(-1.72131 + 2.98140i) q^{5} +(0.637205 + 1.39112i) q^{6} +(-0.0494112 - 2.64529i) q^{7} -2.84422i q^{8} +(-2.94706 - 0.561097i) q^{9} +O(q^{10})\) \(q+(-0.765058 + 0.441707i) q^{2} +(0.162694 - 1.72439i) q^{3} +(-0.609790 + 1.05619i) q^{4} +(-1.72131 + 2.98140i) q^{5} +(0.637205 + 1.39112i) q^{6} +(-0.0494112 - 2.64529i) q^{7} -2.84422i q^{8} +(-2.94706 - 0.561097i) q^{9} -3.04126i q^{10} -3.84076i q^{11} +(1.72207 + 1.22335i) q^{12} +(-0.144185 - 3.60267i) q^{13} +(1.20624 + 2.00198i) q^{14} +(4.86105 + 3.45327i) q^{15} +(0.0367306 + 0.0636193i) q^{16} +(0.0809974 - 0.140292i) q^{17} +(2.50251 - 0.872465i) q^{18} -1.63423i q^{19} +(-2.09928 - 3.63606i) q^{20} +(-4.56956 - 0.345169i) q^{21} +(1.69649 + 2.93840i) q^{22} +(-3.93521 + 2.27200i) q^{23} +(-4.90455 - 0.462738i) q^{24} +(-3.42582 - 5.93370i) q^{25} +(1.70163 + 2.69256i) q^{26} +(-1.44702 + 4.99060i) q^{27} +(2.82405 + 1.56088i) q^{28} +(-8.21721 - 4.74421i) q^{29} +(-5.24432 - 0.494795i) q^{30} +(0.139734 - 0.0806754i) q^{31} +(4.87013 + 2.81177i) q^{32} +(-6.62298 - 0.624869i) q^{33} +0.143108i q^{34} +(7.97171 + 4.40605i) q^{35} +(2.38971 - 2.77050i) q^{36} +(1.99228 + 3.45072i) q^{37} +(0.721851 + 1.25028i) q^{38} +(-6.23587 - 0.337501i) q^{39} +(8.47975 + 4.89579i) q^{40} +(2.41336 - 4.18006i) q^{41} +(3.64844 - 1.75433i) q^{42} +(4.32913 + 7.49828i) q^{43} +(4.05656 + 2.34206i) q^{44} +(6.74566 - 7.82054i) q^{45} +(2.00711 - 3.47642i) q^{46} +(3.42471 - 5.93177i) q^{47} +(0.115680 - 0.0529875i) q^{48} +(-6.99512 + 0.261414i) q^{49} +(5.24191 + 3.02642i) q^{50} +(-0.228740 - 0.162496i) q^{51} +(3.89302 + 2.04459i) q^{52} +(-11.2686 + 6.50591i) q^{53} +(-1.09733 - 4.45726i) q^{54} +(11.4508 + 6.61114i) q^{55} +(-7.52379 + 0.140536i) q^{56} +(-2.81806 - 0.265880i) q^{57} +8.38220 q^{58} +(4.45863 - 7.72257i) q^{59} +(-6.61153 + 3.02841i) q^{60} -6.50715i q^{61} +(-0.0712698 + 0.123443i) q^{62} +(-1.33865 + 7.82356i) q^{63} -5.11484 q^{64} +(10.9892 + 5.77144i) q^{65} +(5.34297 - 2.44735i) q^{66} -0.945460 q^{67} +(0.0987829 + 0.171097i) q^{68} +(3.27758 + 7.15549i) q^{69} +(-8.04501 + 0.150272i) q^{70} +(-4.33350 + 2.50195i) q^{71} +(-1.59588 + 8.38209i) q^{72} +(8.62581 - 4.98012i) q^{73} +(-3.04842 - 1.76000i) q^{74} +(-10.7894 + 4.94208i) q^{75} +(1.72606 + 0.996539i) q^{76} +(-10.1599 + 0.189777i) q^{77} +(4.91988 - 2.49622i) q^{78} +(-5.23295 + 9.06373i) q^{79} -0.252899 q^{80} +(8.37034 + 3.30717i) q^{81} +4.26399i q^{82} -1.04892 q^{83} +(3.15104 - 4.61583i) q^{84} +(0.278843 + 0.482971i) q^{85} +(-6.62408 - 3.82441i) q^{86} +(-9.51777 + 13.3978i) q^{87} -10.9240 q^{88} +(3.44435 + 5.96579i) q^{89} +(-1.70644 + 8.96277i) q^{90} +(-9.52297 + 0.559423i) q^{91} -5.54177i q^{92} +(-0.116382 - 0.254082i) q^{93} +6.05087i q^{94} +(4.87230 + 2.81302i) q^{95} +(5.64094 - 7.94056i) q^{96} +(-6.97520 + 4.02713i) q^{97} +(5.23621 - 3.28979i) q^{98} +(-2.15504 + 11.3189i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9} + 6 q^{12} - 12 q^{13} - 9 q^{15} - 16 q^{16} + 2 q^{18} + 10 q^{21} + 10 q^{22} - 24 q^{25} - 50 q^{28} - 16 q^{30} - 24 q^{31} - 33 q^{39} + 90 q^{40} - 48 q^{42} - 20 q^{43} - 3 q^{45} + 6 q^{48} - 10 q^{51} + 30 q^{52} - 27 q^{54} + 18 q^{55} + 4 q^{57} - 60 q^{58} + 55 q^{60} - 74 q^{63} - 84 q^{64} + 75 q^{66} - 88 q^{67} - 33 q^{69} + 20 q^{70} - 34 q^{72} + 84 q^{73} + 33 q^{75} + 18 q^{76} - 71 q^{78} + 20 q^{79} - 32 q^{81} - 6 q^{84} - 2 q^{85} + 3 q^{87} + 92 q^{88} - 76 q^{91} + 28 q^{93} + 30 q^{96} + 24 q^{97} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.765058 + 0.441707i −0.540978 + 0.312334i −0.745475 0.666533i \(-0.767777\pi\)
0.204497 + 0.978867i \(0.434444\pi\)
\(3\) 0.162694 1.72439i 0.0939315 0.995579i
\(4\) −0.609790 + 1.05619i −0.304895 + 0.528094i
\(5\) −1.72131 + 2.98140i −0.769794 + 1.33332i 0.167881 + 0.985807i \(0.446308\pi\)
−0.937675 + 0.347514i \(0.887026\pi\)
\(6\) 0.637205 + 1.39112i 0.260138 + 0.567924i
\(7\) −0.0494112 2.64529i −0.0186757 0.999826i
\(8\) 2.84422i 1.00558i
\(9\) −2.94706 0.561097i −0.982354 0.187032i
\(10\) 3.04126i 0.961730i
\(11\) 3.84076i 1.15803i −0.815316 0.579016i \(-0.803437\pi\)
0.815316 0.579016i \(-0.196563\pi\)
\(12\) 1.72207 + 1.22335i 0.497120 + 0.353152i
\(13\) −0.144185 3.60267i −0.0399897 0.999200i
\(14\) 1.20624 + 2.00198i 0.322382 + 0.535051i
\(15\) 4.86105 + 3.45327i 1.25512 + 0.891631i
\(16\) 0.0367306 + 0.0636193i 0.00918265 + 0.0159048i
\(17\) 0.0809974 0.140292i 0.0196448 0.0340257i −0.856036 0.516916i \(-0.827080\pi\)
0.875681 + 0.482891i \(0.160413\pi\)
\(18\) 2.50251 0.872465i 0.589848 0.205642i
\(19\) 1.63423i 0.374919i −0.982272 0.187459i \(-0.939975\pi\)
0.982272 0.187459i \(-0.0600253\pi\)
\(20\) −2.09928 3.63606i −0.469413 0.813047i
\(21\) −4.56956 0.345169i −0.997159 0.0753220i
\(22\) 1.69649 + 2.93840i 0.361693 + 0.626470i
\(23\) −3.93521 + 2.27200i −0.820549 + 0.473744i −0.850606 0.525804i \(-0.823764\pi\)
0.0300569 + 0.999548i \(0.490431\pi\)
\(24\) −4.90455 0.462738i −1.00114 0.0944560i
\(25\) −3.42582 5.93370i −0.685164 1.18674i
\(26\) 1.70163 + 2.69256i 0.333718 + 0.528055i
\(27\) −1.44702 + 4.99060i −0.278479 + 0.960442i
\(28\) 2.82405 + 1.56088i 0.533696 + 0.294979i
\(29\) −8.21721 4.74421i −1.52590 0.880978i −0.999528 0.0307223i \(-0.990219\pi\)
−0.526370 0.850255i \(-0.676447\pi\)
\(30\) −5.24432 0.494795i −0.957478 0.0903367i
\(31\) 0.139734 0.0806754i 0.0250970 0.0144897i −0.487399 0.873179i \(-0.662054\pi\)
0.512496 + 0.858690i \(0.328721\pi\)
\(32\) 4.87013 + 2.81177i 0.860926 + 0.497056i
\(33\) −6.62298 0.624869i −1.15291 0.108776i
\(34\) 0.143108i 0.0245429i
\(35\) 7.97171 + 4.40605i 1.34747 + 0.744759i
\(36\) 2.38971 2.77050i 0.398286 0.461750i
\(37\) 1.99228 + 3.45072i 0.327528 + 0.567296i 0.982021 0.188773i \(-0.0604510\pi\)
−0.654493 + 0.756068i \(0.727118\pi\)
\(38\) 0.721851 + 1.25028i 0.117100 + 0.202823i
\(39\) −6.23587 0.337501i −0.998539 0.0540434i
\(40\) 8.47975 + 4.89579i 1.34077 + 0.774092i
\(41\) 2.41336 4.18006i 0.376904 0.652816i −0.613706 0.789534i \(-0.710322\pi\)
0.990610 + 0.136718i \(0.0436555\pi\)
\(42\) 3.64844 1.75433i 0.562967 0.270699i
\(43\) 4.32913 + 7.49828i 0.660186 + 1.14348i 0.980566 + 0.196187i \(0.0628561\pi\)
−0.320380 + 0.947289i \(0.603811\pi\)
\(44\) 4.05656 + 2.34206i 0.611550 + 0.353078i
\(45\) 6.74566 7.82054i 1.00558 1.16582i
\(46\) 2.00711 3.47642i 0.295933 0.512570i
\(47\) 3.42471 5.93177i 0.499545 0.865238i −0.500455 0.865763i \(-0.666834\pi\)
1.00000 0.000525066i \(0.000167134\pi\)
\(48\) 0.115680 0.0529875i 0.0166970 0.00764809i
\(49\) −6.99512 + 0.261414i −0.999302 + 0.0373449i
\(50\) 5.24191 + 3.02642i 0.741317 + 0.428000i
\(51\) −0.228740 0.162496i −0.0320300 0.0227540i
\(52\) 3.89302 + 2.04459i 0.539864 + 0.283533i
\(53\) −11.2686 + 6.50591i −1.54786 + 0.893656i −0.549552 + 0.835459i \(0.685202\pi\)
−0.998305 + 0.0581968i \(0.981465\pi\)
\(54\) −1.09733 4.45726i −0.149327 0.606557i
\(55\) 11.4508 + 6.61114i 1.54403 + 0.891446i
\(56\) −7.52379 + 0.140536i −1.00541 + 0.0187800i
\(57\) −2.81806 0.265880i −0.373261 0.0352166i
\(58\) 8.38220 1.10064
\(59\) 4.45863 7.72257i 0.580464 1.00539i −0.414961 0.909839i \(-0.636205\pi\)
0.995424 0.0955531i \(-0.0304620\pi\)
\(60\) −6.61153 + 3.02841i −0.853544 + 0.390967i
\(61\) 6.50715i 0.833155i −0.909100 0.416577i \(-0.863229\pi\)
0.909100 0.416577i \(-0.136771\pi\)
\(62\) −0.0712698 + 0.123443i −0.00905127 + 0.0156773i
\(63\) −1.33865 + 7.82356i −0.168654 + 0.985675i
\(64\) −5.11484 −0.639355
\(65\) 10.9892 + 5.77144i 1.36304 + 0.715859i
\(66\) 5.34297 2.44735i 0.657674 0.301248i
\(67\) −0.945460 −0.115506 −0.0577532 0.998331i \(-0.518394\pi\)
−0.0577532 + 0.998331i \(0.518394\pi\)
\(68\) 0.0987829 + 0.171097i 0.0119792 + 0.0207486i
\(69\) 3.27758 + 7.15549i 0.394574 + 0.861420i
\(70\) −8.04501 + 0.150272i −0.961562 + 0.0179610i
\(71\) −4.33350 + 2.50195i −0.514292 + 0.296927i −0.734596 0.678505i \(-0.762628\pi\)
0.220304 + 0.975431i \(0.429295\pi\)
\(72\) −1.59588 + 8.38209i −0.188077 + 0.987839i
\(73\) 8.62581 4.98012i 1.00958 0.582878i 0.0985078 0.995136i \(-0.468593\pi\)
0.911067 + 0.412258i \(0.135260\pi\)
\(74\) −3.04842 1.76000i −0.354371 0.204596i
\(75\) −10.7894 + 4.94208i −1.24585 + 0.570663i
\(76\) 1.72606 + 0.996539i 0.197992 + 0.114311i
\(77\) −10.1599 + 0.189777i −1.15783 + 0.0216270i
\(78\) 4.91988 2.49622i 0.557067 0.282641i
\(79\) −5.23295 + 9.06373i −0.588753 + 1.01975i 0.405644 + 0.914031i \(0.367047\pi\)
−0.994396 + 0.105718i \(0.966286\pi\)
\(80\) −0.252899 −0.0282750
\(81\) 8.37034 + 3.30717i 0.930038 + 0.367464i
\(82\) 4.26399i 0.470879i
\(83\) −1.04892 −0.115134 −0.0575672 0.998342i \(-0.518334\pi\)
−0.0575672 + 0.998342i \(0.518334\pi\)
\(84\) 3.15104 4.61583i 0.343806 0.503628i
\(85\) 0.278843 + 0.482971i 0.0302448 + 0.0523856i
\(86\) −6.62408 3.82441i −0.714293 0.412397i
\(87\) −9.51777 + 13.3978i −1.02041 + 1.43640i
\(88\) −10.9240 −1.16450
\(89\) 3.44435 + 5.96579i 0.365100 + 0.632372i 0.988792 0.149298i \(-0.0477014\pi\)
−0.623692 + 0.781670i \(0.714368\pi\)
\(90\) −1.70644 + 8.96277i −0.179875 + 0.944759i
\(91\) −9.52297 + 0.559423i −0.998279 + 0.0586435i
\(92\) 5.54177i 0.577769i
\(93\) −0.116382 0.254082i −0.0120683 0.0263470i
\(94\) 6.05087i 0.624099i
\(95\) 4.87230 + 2.81302i 0.499887 + 0.288610i
\(96\) 5.64094 7.94056i 0.575726 0.810430i
\(97\) −6.97520 + 4.02713i −0.708224 + 0.408893i −0.810403 0.585873i \(-0.800752\pi\)
0.102179 + 0.994766i \(0.467419\pi\)
\(98\) 5.23621 3.28979i 0.528937 0.332319i
\(99\) −2.15504 + 11.3189i −0.216589 + 1.13760i
\(100\) 8.35613 0.835613
\(101\) 5.09912 0.507381 0.253691 0.967285i \(-0.418355\pi\)
0.253691 + 0.967285i \(0.418355\pi\)
\(102\) 0.246775 + 0.0232829i 0.0244344 + 0.00230535i
\(103\) −0.996557 0.575362i −0.0981937 0.0566921i 0.450099 0.892979i \(-0.351389\pi\)
−0.548293 + 0.836287i \(0.684722\pi\)
\(104\) −10.2468 + 0.410094i −1.00478 + 0.0402130i
\(105\) 8.89471 13.0295i 0.868035 1.27155i
\(106\) 5.74741 9.95481i 0.558238 0.966897i
\(107\) 16.5672 9.56507i 1.60161 0.924690i 0.610445 0.792058i \(-0.290991\pi\)
0.991165 0.132632i \(-0.0423428\pi\)
\(108\) −4.38864 4.57155i −0.422297 0.439897i
\(109\) −9.89648 17.1412i −0.947911 1.64183i −0.749815 0.661647i \(-0.769858\pi\)
−0.198096 0.980183i \(-0.563476\pi\)
\(110\) −11.6807 −1.11371
\(111\) 6.27454 2.87406i 0.595553 0.272793i
\(112\) 0.166476 0.100307i 0.0157305 0.00947808i
\(113\) 0.613946 0.354462i 0.0577552 0.0333450i −0.470844 0.882216i \(-0.656051\pi\)
0.528600 + 0.848871i \(0.322717\pi\)
\(114\) 2.27342 1.04134i 0.212925 0.0975306i
\(115\) 15.6432i 1.45874i
\(116\) 10.0216 5.78595i 0.930478 0.537212i
\(117\) −1.59652 + 10.6982i −0.147599 + 0.989047i
\(118\) 7.87762i 0.725194i
\(119\) −0.375114 0.207330i −0.0343867 0.0190059i
\(120\) 9.82187 13.8259i 0.896610 1.26213i
\(121\) −3.75142 −0.341038
\(122\) 2.87425 + 4.97835i 0.260222 + 0.450718i
\(123\) −6.81543 4.84165i −0.614527 0.436557i
\(124\) 0.196780i 0.0176714i
\(125\) 6.37450 0.570153
\(126\) −2.43157 6.57677i −0.216622 0.585905i
\(127\) 3.35273 5.80710i 0.297507 0.515297i −0.678058 0.735008i \(-0.737178\pi\)
0.975565 + 0.219711i \(0.0705116\pi\)
\(128\) −5.82712 + 3.36429i −0.515049 + 0.297364i
\(129\) 13.6343 6.24520i 1.20043 0.549859i
\(130\) −10.9566 + 0.438504i −0.960961 + 0.0384593i
\(131\) 5.07994 8.79871i 0.443836 0.768747i −0.554134 0.832427i \(-0.686951\pi\)
0.997970 + 0.0636806i \(0.0202839\pi\)
\(132\) 4.69861 6.61407i 0.408961 0.575681i
\(133\) −4.32302 + 0.0807494i −0.374853 + 0.00700186i
\(134\) 0.723332 0.417616i 0.0624864 0.0360765i
\(135\) −12.3882 12.9045i −1.06621 1.11064i
\(136\) −0.399020 0.230374i −0.0342157 0.0197544i
\(137\) 7.99479 + 4.61579i 0.683041 + 0.394354i 0.801000 0.598665i \(-0.204302\pi\)
−0.117959 + 0.993018i \(0.537635\pi\)
\(138\) −5.66817 4.02664i −0.482507 0.342771i
\(139\) −8.92213 + 5.15119i −0.756765 + 0.436919i −0.828133 0.560532i \(-0.810597\pi\)
0.0713680 + 0.997450i \(0.477264\pi\)
\(140\) −9.51469 + 5.73286i −0.804138 + 0.484515i
\(141\) −9.67152 6.87061i −0.814489 0.578610i
\(142\) 2.21026 3.82827i 0.185481 0.321262i
\(143\) −13.8370 + 0.553780i −1.15711 + 0.0463094i
\(144\) −0.0725507 0.208099i −0.00604590 0.0173416i
\(145\) 28.2888 16.3325i 2.34925 1.35634i
\(146\) −4.39950 + 7.62016i −0.364105 + 0.630649i
\(147\) −0.687283 + 12.1049i −0.0566862 + 0.998392i
\(148\) −4.85948 −0.399447
\(149\) 3.00651i 0.246303i 0.992388 + 0.123151i \(0.0393001\pi\)
−0.992388 + 0.123151i \(0.960700\pi\)
\(150\) 6.07156 8.54673i 0.495741 0.697837i
\(151\) 1.79991 + 3.11753i 0.146475 + 0.253701i 0.929922 0.367757i \(-0.119874\pi\)
−0.783448 + 0.621458i \(0.786541\pi\)
\(152\) −4.64812 −0.377012
\(153\) −0.317422 + 0.368001i −0.0256620 + 0.0297511i
\(154\) 7.68911 4.63289i 0.619606 0.373329i
\(155\) 0.555470i 0.0446164i
\(156\) 4.15904 6.38045i 0.332990 0.510845i
\(157\) 4.18032 2.41351i 0.333626 0.192619i −0.323824 0.946117i \(-0.604968\pi\)
0.657450 + 0.753498i \(0.271635\pi\)
\(158\) 9.24571i 0.735549i
\(159\) 9.38542 + 20.4899i 0.744312 + 1.62496i
\(160\) −16.7660 + 9.67987i −1.32547 + 0.765261i
\(161\) 6.20453 + 10.2975i 0.488986 + 0.811558i
\(162\) −7.86460 + 1.16705i −0.617901 + 0.0916924i
\(163\) −8.42882 −0.660196 −0.330098 0.943947i \(-0.607082\pi\)
−0.330098 + 0.943947i \(0.607082\pi\)
\(164\) 2.94329 + 5.09792i 0.229832 + 0.398081i
\(165\) 13.2632 18.6701i 1.03254 1.45347i
\(166\) 0.802488 0.463317i 0.0622852 0.0359604i
\(167\) −0.713480 + 1.23578i −0.0552108 + 0.0956279i −0.892310 0.451423i \(-0.850916\pi\)
0.837099 + 0.547051i \(0.184250\pi\)
\(168\) −0.981736 + 12.9968i −0.0757425 + 1.00273i
\(169\) −12.9584 + 1.03890i −0.996802 + 0.0799155i
\(170\) −0.426663 0.246334i −0.0327236 0.0188930i
\(171\) −0.916963 + 4.81618i −0.0701219 + 0.368303i
\(172\) −10.5595 −0.805151
\(173\) 16.7089 1.27036 0.635179 0.772365i \(-0.280926\pi\)
0.635179 + 0.772365i \(0.280926\pi\)
\(174\) 1.36373 14.4542i 0.103384 1.09577i
\(175\) −15.5271 + 9.35548i −1.17374 + 0.707208i
\(176\) 0.244346 0.141073i 0.0184183 0.0106338i
\(177\) −12.5913 8.94484i −0.946423 0.672335i
\(178\) −5.27026 3.04278i −0.395022 0.228066i
\(179\) 11.0051i 0.822561i −0.911509 0.411281i \(-0.865082\pi\)
0.911509 0.411281i \(-0.134918\pi\)
\(180\) 4.14652 + 11.8936i 0.309063 + 0.886495i
\(181\) 2.82101i 0.209684i 0.994489 + 0.104842i \(0.0334337\pi\)
−0.994489 + 0.104842i \(0.966566\pi\)
\(182\) 7.03853 4.63435i 0.521731 0.343521i
\(183\) −11.2209 1.05867i −0.829471 0.0782594i
\(184\) 6.46206 + 11.1926i 0.476389 + 0.825131i
\(185\) −13.7173 −1.00852
\(186\) 0.201269 + 0.142980i 0.0147577 + 0.0104838i
\(187\) −0.538826 0.311091i −0.0394029 0.0227493i
\(188\) 4.17671 + 7.23427i 0.304618 + 0.527614i
\(189\) 13.2731 + 3.58120i 0.965476 + 0.260494i
\(190\) −4.97012 −0.360570
\(191\) 2.53976i 0.183771i −0.995770 0.0918854i \(-0.970711\pi\)
0.995770 0.0918854i \(-0.0292893\pi\)
\(192\) −0.832154 + 8.81999i −0.0600555 + 0.636528i
\(193\) 10.7149 0.771275 0.385638 0.922650i \(-0.373982\pi\)
0.385638 + 0.922650i \(0.373982\pi\)
\(194\) 3.55762 6.16198i 0.255422 0.442405i
\(195\) 11.7401 18.0107i 0.840726 1.28977i
\(196\) 3.98945 7.54757i 0.284961 0.539112i
\(197\) 4.30705 + 2.48668i 0.306865 + 0.177168i 0.645523 0.763741i \(-0.276640\pi\)
−0.338658 + 0.940910i \(0.609973\pi\)
\(198\) −3.35093 9.61155i −0.238140 0.683063i
\(199\) 8.50598 + 4.91093i 0.602973 + 0.348127i 0.770210 0.637790i \(-0.220151\pi\)
−0.167237 + 0.985917i \(0.553485\pi\)
\(200\) −16.8767 + 9.74379i −1.19337 + 0.688990i
\(201\) −0.153821 + 1.63035i −0.0108497 + 0.114996i
\(202\) −3.90112 + 2.25231i −0.274482 + 0.158472i
\(203\) −12.1438 + 21.9713i −0.852327 + 1.54208i
\(204\) 0.311110 0.142504i 0.0217820 0.00997728i
\(205\) 8.30829 + 14.3904i 0.580276 + 1.00507i
\(206\) 1.01657 0.0708275
\(207\) 12.8721 4.48768i 0.894675 0.311915i
\(208\) 0.223903 0.141501i 0.0155249 0.00981133i
\(209\) −6.27669 −0.434168
\(210\) −1.04975 + 13.8972i −0.0724394 + 0.958998i
\(211\) 7.89735 13.6786i 0.543676 0.941675i −0.455013 0.890485i \(-0.650365\pi\)
0.998689 0.0511899i \(-0.0163014\pi\)
\(212\) 15.8690i 1.08989i
\(213\) 3.60931 + 7.87971i 0.247306 + 0.539909i
\(214\) −8.44991 + 14.6357i −0.577624 + 1.00047i
\(215\) −29.8071 −2.03283
\(216\) 14.1944 + 4.11565i 0.965805 + 0.280034i
\(217\) −0.220314 0.365651i −0.0149559 0.0248220i
\(218\) 15.1428 + 8.74268i 1.02560 + 0.592129i
\(219\) −7.18431 15.6845i −0.485470 1.05986i
\(220\) −13.9652 + 8.06282i −0.941534 + 0.543595i
\(221\) −0.517103 0.271579i −0.0347841 0.0182684i
\(222\) −3.53090 + 4.97032i −0.236978 + 0.333586i
\(223\) −0.772875 0.446219i −0.0517555 0.0298811i 0.473899 0.880579i \(-0.342846\pi\)
−0.525654 + 0.850698i \(0.676180\pi\)
\(224\) 7.19731 13.0218i 0.480891 0.870059i
\(225\) 6.76673 + 19.4092i 0.451115 + 1.29395i
\(226\) −0.313136 + 0.542368i −0.0208295 + 0.0360778i
\(227\) 1.41048 2.44303i 0.0936171 0.162150i −0.815414 0.578879i \(-0.803490\pi\)
0.909031 + 0.416729i \(0.136824\pi\)
\(228\) 1.99924 2.81427i 0.132403 0.186379i
\(229\) −15.0847 8.70916i −0.996826 0.575518i −0.0895184 0.995985i \(-0.528533\pi\)
−0.907308 + 0.420467i \(0.861866\pi\)
\(230\) 6.90973 + 11.9680i 0.455614 + 0.789146i
\(231\) −1.32571 + 17.5506i −0.0872252 + 1.15474i
\(232\) −13.4936 + 23.3716i −0.885897 + 1.53442i
\(233\) −17.8552 10.3087i −1.16973 0.675345i −0.216115 0.976368i \(-0.569338\pi\)
−0.953617 + 0.301023i \(0.902672\pi\)
\(234\) −3.50403 8.88993i −0.229065 0.581153i
\(235\) 11.7900 + 20.4208i 0.769093 + 1.33211i
\(236\) 5.43765 + 9.41829i 0.353961 + 0.613079i
\(237\) 14.7781 + 10.4983i 0.959938 + 0.681936i
\(238\) 0.378563 0.00707116i 0.0245386 0.000458355i
\(239\) 17.5634i 1.13608i −0.823000 0.568042i \(-0.807701\pi\)
0.823000 0.568042i \(-0.192299\pi\)
\(240\) −0.0411452 + 0.436097i −0.00265591 + 0.0281500i
\(241\) 1.70847 + 0.986388i 0.110053 + 0.0635389i 0.554016 0.832506i \(-0.313095\pi\)
−0.443963 + 0.896045i \(0.646428\pi\)
\(242\) 2.87006 1.65703i 0.184494 0.106518i
\(243\) 7.06467 13.8957i 0.453199 0.891409i
\(244\) 6.87277 + 3.96800i 0.439984 + 0.254025i
\(245\) 11.2614 21.3052i 0.719464 1.36114i
\(246\) 7.35279 + 0.693726i 0.468797 + 0.0442303i
\(247\) −5.88759 + 0.235632i −0.374619 + 0.0149929i
\(248\) −0.229459 0.397434i −0.0145706 0.0252371i
\(249\) −0.170654 + 1.80876i −0.0108147 + 0.114625i
\(250\) −4.87687 + 2.81566i −0.308440 + 0.178078i
\(251\) 0.542545 + 0.939716i 0.0342452 + 0.0593144i 0.882640 0.470050i \(-0.155764\pi\)
−0.848395 + 0.529364i \(0.822431\pi\)
\(252\) −7.44685 6.18459i −0.469108 0.389593i
\(253\) 8.72619 + 15.1142i 0.548611 + 0.950222i
\(254\) 5.92370i 0.371686i
\(255\) 0.878198 0.402259i 0.0549949 0.0251904i
\(256\) 8.08689 14.0069i 0.505431 0.875432i
\(257\) −6.98711 12.1020i −0.435844 0.754904i 0.561520 0.827463i \(-0.310217\pi\)
−0.997364 + 0.0725593i \(0.976883\pi\)
\(258\) −7.67249 + 10.8003i −0.477668 + 0.672397i
\(259\) 9.02973 5.44065i 0.561080 0.338066i
\(260\) −12.7968 + 8.08726i −0.793625 + 0.501551i
\(261\) 21.5547 + 18.5921i 1.33420 + 1.15082i
\(262\) 8.97537i 0.554500i
\(263\) 6.24938i 0.385353i 0.981262 + 0.192677i \(0.0617168\pi\)
−0.981262 + 0.192677i \(0.938283\pi\)
\(264\) −1.77726 + 18.8372i −0.109383 + 1.15935i
\(265\) 44.7948i 2.75172i
\(266\) 3.27169 1.97128i 0.200600 0.120867i
\(267\) 10.8477 4.96881i 0.663871 0.304086i
\(268\) 0.576533 0.998584i 0.0352173 0.0609982i
\(269\) 5.02185 8.69811i 0.306188 0.530333i −0.671337 0.741152i \(-0.734280\pi\)
0.977525 + 0.210819i \(0.0676131\pi\)
\(270\) 15.1777 + 4.40076i 0.923686 + 0.267822i
\(271\) 13.2862 7.67080i 0.807080 0.465968i −0.0388607 0.999245i \(-0.512373\pi\)
0.845941 + 0.533277i \(0.179040\pi\)
\(272\) 0.0119003 0.000721564
\(273\) −0.584666 + 16.5124i −0.0353856 + 0.999374i
\(274\) −8.15531 −0.492680
\(275\) −22.7899 + 13.1577i −1.37428 + 0.793442i
\(276\) −9.55618 0.901612i −0.575215 0.0542707i
\(277\) −4.72535 + 8.18454i −0.283919 + 0.491761i −0.972346 0.233544i \(-0.924968\pi\)
0.688428 + 0.725305i \(0.258301\pi\)
\(278\) 4.55063 7.88193i 0.272929 0.472727i
\(279\) −0.457071 + 0.159351i −0.0273641 + 0.00954010i
\(280\) 12.5318 22.6733i 0.748917 1.35499i
\(281\) 11.6272i 0.693622i −0.937935 0.346811i \(-0.887265\pi\)
0.937935 0.346811i \(-0.112735\pi\)
\(282\) 10.4341 + 0.984440i 0.621340 + 0.0586226i
\(283\) 1.62803i 0.0967762i −0.998829 0.0483881i \(-0.984592\pi\)
0.998829 0.0483881i \(-0.0154084\pi\)
\(284\) 6.10266i 0.362126i
\(285\) 5.64345 7.94409i 0.334289 0.470567i
\(286\) 10.3415 6.53556i 0.611505 0.386456i
\(287\) −11.1767 6.17750i −0.659741 0.364646i
\(288\) −12.7749 11.0191i −0.752768 0.649306i
\(289\) 8.48688 + 14.6997i 0.499228 + 0.864689i
\(290\) −14.4284 + 24.9907i −0.847263 + 1.46750i
\(291\) 5.80954 + 12.6832i 0.340561 + 0.743501i
\(292\) 12.1473i 0.710867i
\(293\) −2.80580 4.85979i −0.163917 0.283912i 0.772353 0.635193i \(-0.219079\pi\)
−0.936270 + 0.351281i \(0.885746\pi\)
\(294\) −4.82099 9.56450i −0.281166 0.557813i
\(295\) 15.3494 + 26.5859i 0.893674 + 1.54789i
\(296\) 9.81462 5.66647i 0.570463 0.329357i
\(297\) 19.1677 + 5.55766i 1.11222 + 0.322488i
\(298\) −1.32800 2.30016i −0.0769287 0.133244i
\(299\) 8.75265 + 13.8497i 0.506179 + 0.800947i
\(300\) 1.35949 14.4093i 0.0784903 0.831918i
\(301\) 19.6212 11.8223i 1.13095 0.681426i
\(302\) −2.75407 1.59006i −0.158479 0.0914979i
\(303\) 0.829596 8.79288i 0.0476591 0.505138i
\(304\) 0.103969 0.0600263i 0.00596301 0.00344275i
\(305\) 19.4004 + 11.2008i 1.11086 + 0.641357i
\(306\) 0.0802977 0.421749i 0.00459031 0.0241098i
\(307\) 8.81390i 0.503036i −0.967853 0.251518i \(-0.919070\pi\)
0.967853 0.251518i \(-0.0809297\pi\)
\(308\) 5.99498 10.8465i 0.341596 0.618037i
\(309\) −1.15428 + 1.62485i −0.0656650 + 0.0924343i
\(310\) −0.245355 0.424967i −0.0139352 0.0241365i
\(311\) 11.9788 + 20.7478i 0.679254 + 1.17650i 0.975206 + 0.221299i \(0.0710297\pi\)
−0.295952 + 0.955203i \(0.595637\pi\)
\(312\) −0.959927 + 17.7362i −0.0543452 + 1.00411i
\(313\) 5.88550 + 3.39799i 0.332668 + 0.192066i 0.657025 0.753869i \(-0.271815\pi\)
−0.324357 + 0.945935i \(0.605148\pi\)
\(314\) −2.13213 + 3.69295i −0.120323 + 0.208405i
\(315\) −21.0209 17.4578i −1.18439 0.983636i
\(316\) −6.38200 11.0540i −0.359016 0.621833i
\(317\) 6.84769 + 3.95352i 0.384605 + 0.222052i 0.679820 0.733379i \(-0.262058\pi\)
−0.295215 + 0.955431i \(0.595391\pi\)
\(318\) −16.2309 11.5304i −0.910185 0.646592i
\(319\) −18.2214 + 31.5603i −1.02020 + 1.76704i
\(320\) 8.80422 15.2494i 0.492171 0.852465i
\(321\) −13.7986 30.1245i −0.770160 1.68139i
\(322\) −9.29531 5.13762i −0.518008 0.286308i
\(323\) −0.229269 0.132369i −0.0127569 0.00736518i
\(324\) −8.59715 + 6.82397i −0.477619 + 0.379109i
\(325\) −20.8832 + 13.1976i −1.15839 + 0.732073i
\(326\) 6.44854 3.72307i 0.357151 0.206202i
\(327\) −31.1683 + 14.2766i −1.72361 + 0.789500i
\(328\) −11.8890 6.86413i −0.656461 0.379008i
\(329\) −15.8605 8.76625i −0.874416 0.483299i
\(330\) −1.90039 + 20.1422i −0.104613 + 1.10879i
\(331\) −8.82633 −0.485139 −0.242569 0.970134i \(-0.577990\pi\)
−0.242569 + 0.970134i \(0.577990\pi\)
\(332\) 0.639624 1.10786i 0.0351039 0.0608018i
\(333\) −3.93517 11.2874i −0.215646 0.618543i
\(334\) 1.26060i 0.0689768i
\(335\) 1.62743 2.81879i 0.0889161 0.154007i
\(336\) −0.145883 0.303390i −0.00795858 0.0165513i
\(337\) −11.5765 −0.630611 −0.315306 0.948990i \(-0.602107\pi\)
−0.315306 + 0.948990i \(0.602107\pi\)
\(338\) 9.45506 6.51864i 0.514287 0.354567i
\(339\) −0.511346 1.11635i −0.0277725 0.0606320i
\(340\) −0.680144 −0.0368860
\(341\) −0.309855 0.536684i −0.0167796 0.0290631i
\(342\) −1.42581 4.08969i −0.0770990 0.221145i
\(343\) 1.03715 + 18.4912i 0.0560010 + 0.998431i
\(344\) 21.3268 12.3130i 1.14986 0.663873i
\(345\) −26.9751 2.54506i −1.45229 0.137022i
\(346\) −12.7833 + 7.38045i −0.687235 + 0.396776i
\(347\) −16.1319 9.31375i −0.866005 0.499988i 1.36023e−5 1.00000i \(-0.499996\pi\)
−0.866019 + 0.500012i \(0.833329\pi\)
\(348\) −8.34680 18.2224i −0.447435 0.976825i
\(349\) −9.48259 5.47477i −0.507591 0.293058i 0.224252 0.974531i \(-0.428006\pi\)
−0.731843 + 0.681473i \(0.761340\pi\)
\(350\) 7.74674 14.0159i 0.414081 0.749181i
\(351\) 18.1881 + 4.49356i 0.970810 + 0.239849i
\(352\) 10.7993 18.7050i 0.575607 0.996980i
\(353\) 22.8725 1.21738 0.608691 0.793408i \(-0.291695\pi\)
0.608691 + 0.793408i \(0.291695\pi\)
\(354\) 13.5841 + 1.28164i 0.721987 + 0.0681185i
\(355\) 17.2265i 0.914289i
\(356\) −8.40132 −0.445269
\(357\) −0.418547 + 0.613113i −0.0221518 + 0.0324494i
\(358\) 4.86104 + 8.41956i 0.256914 + 0.444988i
\(359\) 29.3954 + 16.9714i 1.55143 + 0.895719i 0.998026 + 0.0628057i \(0.0200048\pi\)
0.553404 + 0.832913i \(0.313328\pi\)
\(360\) −22.2433 19.1861i −1.17233 1.01120i
\(361\) 16.3293 0.859436
\(362\) −1.24606 2.15824i −0.0654915 0.113435i
\(363\) −0.610334 + 6.46893i −0.0320342 + 0.339531i
\(364\) 5.21616 10.3992i 0.273401 0.545065i
\(365\) 34.2893i 1.79478i
\(366\) 9.05225 4.14639i 0.473169 0.216735i
\(367\) 28.2805i 1.47623i 0.674675 + 0.738115i \(0.264284\pi\)
−0.674675 + 0.738115i \(0.735716\pi\)
\(368\) −0.289085 0.166904i −0.0150696 0.00870045i
\(369\) −9.45774 + 10.9648i −0.492350 + 0.570803i
\(370\) 10.4945 6.05903i 0.545585 0.314994i
\(371\) 17.7668 + 29.4872i 0.922407 + 1.53090i
\(372\) 0.339327 + 0.0320150i 0.0175933 + 0.00165990i
\(373\) 4.22220 0.218617 0.109309 0.994008i \(-0.465136\pi\)
0.109309 + 0.994008i \(0.465136\pi\)
\(374\) 0.549645 0.0284215
\(375\) 1.03709 10.9921i 0.0535553 0.567632i
\(376\) −16.8713 9.74063i −0.870069 0.502335i
\(377\) −15.9070 + 30.2879i −0.819253 + 1.55991i
\(378\) −11.7365 + 3.12299i −0.603662 + 0.160629i
\(379\) 16.6762 28.8840i 0.856599 1.48367i −0.0185539 0.999828i \(-0.505906\pi\)
0.875153 0.483846i \(-0.160760\pi\)
\(380\) −5.94216 + 3.43071i −0.304826 + 0.175992i
\(381\) −9.46826 6.72621i −0.485073 0.344594i
\(382\) 1.12183 + 1.94307i 0.0573978 + 0.0994159i
\(383\) 17.8717 0.913202 0.456601 0.889672i \(-0.349067\pi\)
0.456601 + 0.889672i \(0.349067\pi\)
\(384\) 4.85332 + 10.5956i 0.247670 + 0.540704i
\(385\) 16.9226 30.6174i 0.862454 1.56041i
\(386\) −8.19752 + 4.73284i −0.417243 + 0.240895i
\(387\) −8.55096 24.5269i −0.434670 1.24677i
\(388\) 9.82283i 0.498679i
\(389\) −21.4374 + 12.3769i −1.08692 + 0.627533i −0.932755 0.360512i \(-0.882602\pi\)
−0.154165 + 0.988045i \(0.549269\pi\)
\(390\) −1.02643 + 18.9649i −0.0519752 + 0.960325i
\(391\) 0.736103i 0.0372263i
\(392\) 0.743519 + 19.8957i 0.0375534 + 1.00488i
\(393\) −14.3460 10.1913i −0.723658 0.514083i
\(394\) −4.39353 −0.221343
\(395\) −18.0151 31.2030i −0.906436 1.56999i
\(396\) −10.6408 9.17831i −0.534721 0.461228i
\(397\) 22.6228i 1.13541i −0.823233 0.567704i \(-0.807832\pi\)
0.823233 0.567704i \(-0.192168\pi\)
\(398\) −8.67676 −0.434927
\(399\) −0.564086 + 7.46772i −0.0282396 + 0.373853i
\(400\) 0.251665 0.435896i 0.0125832 0.0217948i
\(401\) −21.1382 + 12.2042i −1.05559 + 0.609446i −0.924210 0.381885i \(-0.875275\pi\)
−0.131383 + 0.991332i \(0.541942\pi\)
\(402\) −0.602452 1.31525i −0.0300476 0.0655989i
\(403\) −0.310794 0.491783i −0.0154818 0.0244974i
\(404\) −3.10939 + 5.38563i −0.154698 + 0.267945i
\(405\) −24.2680 + 19.2626i −1.20588 + 0.957168i
\(406\) −0.414175 22.1733i −0.0205551 1.10044i
\(407\) 13.2534 7.65185i 0.656947 0.379288i
\(408\) −0.462174 + 0.650587i −0.0228810 + 0.0322089i
\(409\) 27.5146 + 15.8856i 1.36051 + 0.785492i 0.989692 0.143213i \(-0.0457435\pi\)
0.370819 + 0.928705i \(0.379077\pi\)
\(410\) −12.7126 7.33965i −0.627833 0.362480i
\(411\) 9.26014 13.0352i 0.456769 0.642979i
\(412\) 1.21538 0.701701i 0.0598775 0.0345703i
\(413\) −20.6487 11.4128i −1.01606 0.561586i
\(414\) −7.86569 + 9.11904i −0.386578 + 0.448176i
\(415\) 1.80552 3.12726i 0.0886297 0.153511i
\(416\) 9.42768 17.9509i 0.462230 0.880114i
\(417\) 7.43110 + 16.2233i 0.363903 + 0.794460i
\(418\) 4.80203 2.77246i 0.234875 0.135605i
\(419\) 9.86318 17.0835i 0.481848 0.834585i −0.517935 0.855420i \(-0.673299\pi\)
0.999783 + 0.0208352i \(0.00663253\pi\)
\(420\) 8.33772 + 17.3398i 0.406839 + 0.846094i
\(421\) −14.3999 −0.701807 −0.350903 0.936412i \(-0.614125\pi\)
−0.350903 + 0.936412i \(0.614125\pi\)
\(422\) 13.9533i 0.679234i
\(423\) −13.4211 + 15.5597i −0.652558 + 0.756538i
\(424\) 18.5043 + 32.0503i 0.898646 + 1.55650i
\(425\) −1.10993 −0.0538395
\(426\) −6.24185 4.43419i −0.302419 0.214837i
\(427\) −17.2133 + 0.321526i −0.833009 + 0.0155597i
\(428\) 23.3308i 1.12773i
\(429\) −1.29626 + 23.9505i −0.0625840 + 1.15634i
\(430\) 22.8042 13.1660i 1.09972 0.634921i
\(431\) 5.03575i 0.242564i 0.992618 + 0.121282i \(0.0387005\pi\)
−0.992618 + 0.121282i \(0.961300\pi\)
\(432\) −0.370648 + 0.0912495i −0.0178328 + 0.00439024i
\(433\) 27.2316 15.7222i 1.30867 0.755561i 0.326795 0.945095i \(-0.394031\pi\)
0.981874 + 0.189535i \(0.0606979\pi\)
\(434\) 0.330064 + 0.182430i 0.0158436 + 0.00875691i
\(435\) −23.5613 51.4381i −1.12968 2.46627i
\(436\) 24.1391 1.15605
\(437\) 3.71297 + 6.43105i 0.177615 + 0.307639i
\(438\) 12.4244 + 8.82622i 0.593660 + 0.421733i
\(439\) −7.05969 + 4.07592i −0.336941 + 0.194533i −0.658918 0.752214i \(-0.728986\pi\)
0.321978 + 0.946747i \(0.395652\pi\)
\(440\) 18.8035 32.5687i 0.896423 1.55265i
\(441\) 20.7617 + 3.15454i 0.988653 + 0.150216i
\(442\) 0.515572 0.0206341i 0.0245233 0.000981463i
\(443\) 18.0400 + 10.4154i 0.857106 + 0.494850i 0.863042 0.505132i \(-0.168556\pi\)
−0.00593636 + 0.999982i \(0.501890\pi\)
\(444\) −0.790609 + 8.37966i −0.0375207 + 0.397681i
\(445\) −23.7152 −1.12421
\(446\) 0.788393 0.0373315
\(447\) 5.18440 + 0.489141i 0.245214 + 0.0231356i
\(448\) 0.252730 + 13.5302i 0.0119404 + 0.639243i
\(449\) 2.96108 1.70958i 0.139742 0.0806801i −0.428499 0.903542i \(-0.640957\pi\)
0.568241 + 0.822862i \(0.307624\pi\)
\(450\) −13.7501 11.8603i −0.648186 0.559098i
\(451\) −16.0546 9.26913i −0.755982 0.436466i
\(452\) 0.864590i 0.0406669i
\(453\) 5.66869 2.59655i 0.266338 0.121996i
\(454\) 2.49208i 0.116959i
\(455\) 14.7241 29.3547i 0.690278 1.37617i
\(456\) −0.756221 + 8.01518i −0.0354133 + 0.375345i
\(457\) −16.2857 28.2076i −0.761812 1.31950i −0.941916 0.335849i \(-0.890977\pi\)
0.180104 0.983648i \(-0.442357\pi\)
\(458\) 15.3876 0.719015
\(459\) 0.582935 + 0.607231i 0.0272091 + 0.0283431i
\(460\) 16.5222 + 9.53910i 0.770352 + 0.444763i
\(461\) −17.7020 30.6608i −0.824467 1.42802i −0.902326 0.431054i \(-0.858142\pi\)
0.0778597 0.996964i \(-0.475191\pi\)
\(462\) −6.73796 14.0128i −0.313478 0.651934i
\(463\) 17.8630 0.830164 0.415082 0.909784i \(-0.363753\pi\)
0.415082 + 0.909784i \(0.363753\pi\)
\(464\) 0.697031i 0.0323588i
\(465\) 0.957848 + 0.0903717i 0.0444192 + 0.00419089i
\(466\) 18.2137 0.843732
\(467\) −20.0513 + 34.7299i −0.927864 + 1.60711i −0.140976 + 0.990013i \(0.545024\pi\)
−0.786888 + 0.617095i \(0.788309\pi\)
\(468\) −10.3257 8.20988i −0.477308 0.379502i
\(469\) 0.0467164 + 2.50102i 0.00215716 + 0.115486i
\(470\) −18.0400 10.4154i −0.832125 0.480428i
\(471\) −3.48173 7.60118i −0.160430 0.350244i
\(472\) −21.9647 12.6813i −1.01101 0.583705i
\(473\) 28.7991 16.6271i 1.32418 0.764517i
\(474\) −15.9432 1.50422i −0.732297 0.0690912i
\(475\) −9.69704 + 5.59859i −0.444930 + 0.256881i
\(476\) 0.447720 0.269763i 0.0205212 0.0123646i
\(477\) 36.8596 12.8506i 1.68769 0.588387i
\(478\) 7.75788 + 13.4370i 0.354837 + 0.614596i
\(479\) −25.9586 −1.18608 −0.593039 0.805174i \(-0.702072\pi\)
−0.593039 + 0.805174i \(0.702072\pi\)
\(480\) 13.9642 + 30.4861i 0.637374 + 1.39149i
\(481\) 12.1446 7.67505i 0.553744 0.349952i
\(482\) −1.74278 −0.0793813
\(483\) 18.7664 9.02371i 0.853901 0.410593i
\(484\) 2.28758 3.96221i 0.103981 0.180100i
\(485\) 27.7278i 1.25905i
\(486\) 0.732936 + 13.7515i 0.0332467 + 0.623782i
\(487\) 12.8783 22.3058i 0.583570 1.01077i −0.411482 0.911418i \(-0.634989\pi\)
0.995052 0.0993553i \(-0.0316780\pi\)
\(488\) −18.5078 −0.837807
\(489\) −1.37132 + 14.5346i −0.0620132 + 0.657277i
\(490\) 0.795028 + 21.2740i 0.0359157 + 0.961059i
\(491\) −3.64975 2.10719i −0.164711 0.0950959i 0.415379 0.909649i \(-0.363649\pi\)
−0.580090 + 0.814553i \(0.696982\pi\)
\(492\) 9.26968 4.24598i 0.417909 0.191424i
\(493\) −1.33115 + 0.768537i −0.0599518 + 0.0346132i
\(494\) 4.40027 2.78086i 0.197978 0.125117i
\(495\) −30.0368 25.9085i −1.35005 1.16450i
\(496\) 0.0102650 + 0.00592651i 0.000460913 + 0.000266108i
\(497\) 6.83250 + 11.3397i 0.306480 + 0.508657i
\(498\) −0.668380 1.45918i −0.0299508 0.0653876i
\(499\) 4.79919 8.31244i 0.214841 0.372116i −0.738382 0.674383i \(-0.764410\pi\)
0.953223 + 0.302266i \(0.0977432\pi\)
\(500\) −3.88711 + 6.73267i −0.173837 + 0.301094i
\(501\) 2.01490 + 1.43138i 0.0900190 + 0.0639491i
\(502\) −0.830158 0.479292i −0.0370518 0.0213918i
\(503\) 2.79256 + 4.83685i 0.124514 + 0.215664i 0.921543 0.388277i \(-0.126930\pi\)
−0.797029 + 0.603941i \(0.793596\pi\)
\(504\) 22.2519 + 3.80740i 0.991179 + 0.169595i
\(505\) −8.77717 + 15.2025i −0.390579 + 0.676502i
\(506\) −13.3521 7.70883i −0.593573 0.342699i
\(507\) −0.316785 + 22.5144i −0.0140689 + 0.999901i
\(508\) 4.08893 + 7.08223i 0.181417 + 0.314223i
\(509\) −16.3326 28.2889i −0.723929 1.25388i −0.959413 0.282003i \(-0.909001\pi\)
0.235485 0.971878i \(-0.424332\pi\)
\(510\) −0.494192 + 0.695657i −0.0218832 + 0.0308042i
\(511\) −13.6001 22.5717i −0.601631 0.998513i
\(512\) 0.830992i 0.0367250i
\(513\) 8.15581 + 2.36477i 0.360088 + 0.104407i
\(514\) 10.6911 + 6.17250i 0.471564 + 0.272258i
\(515\) 3.43077 1.98075i 0.151178 0.0872825i
\(516\) −1.71796 + 18.2086i −0.0756290 + 0.801591i
\(517\) −22.7825 13.1535i −1.00197 0.578489i
\(518\) −4.50509 + 8.15091i −0.197942 + 0.358130i
\(519\) 2.71845 28.8128i 0.119327 1.26474i
\(520\) 16.4152 31.2556i 0.719856 1.37065i
\(521\) −11.5944 20.0821i −0.507961 0.879815i −0.999958 0.00921756i \(-0.997066\pi\)
0.491996 0.870597i \(-0.336267\pi\)
\(522\) −24.7029 4.70323i −1.08121 0.205855i
\(523\) −22.1779 + 12.8044i −0.969771 + 0.559897i −0.899166 0.437607i \(-0.855826\pi\)
−0.0706045 + 0.997504i \(0.522493\pi\)
\(524\) 6.19539 + 10.7307i 0.270647 + 0.468774i
\(525\) 13.6064 + 28.2969i 0.593830 + 1.23498i
\(526\) −2.76039 4.78114i −0.120359 0.208468i
\(527\) 0.0261380i 0.00113859i
\(528\) −0.203512 0.444301i −0.00885673 0.0193357i
\(529\) −1.17606 + 2.03700i −0.0511332 + 0.0885652i
\(530\) 19.7862 + 34.2706i 0.859456 + 1.48862i
\(531\) −17.4730 + 20.2572i −0.758261 + 0.879086i
\(532\) 2.55085 4.61516i 0.110593 0.200093i
\(533\) −15.4073 8.09183i −0.667366 0.350496i
\(534\) −6.10439 + 8.59295i −0.264163 + 0.371853i
\(535\) 65.8578i 2.84728i
\(536\) 2.68910i 0.116151i
\(537\) −18.9772 1.79047i −0.818924 0.0772644i
\(538\) 8.87275i 0.382531i
\(539\) 1.00403 + 26.8666i 0.0432466 + 1.15722i
\(540\) 21.1838 5.21522i 0.911606 0.224427i
\(541\) −20.3485 + 35.2447i −0.874851 + 1.51529i −0.0179303 + 0.999839i \(0.505708\pi\)
−0.856921 + 0.515448i \(0.827626\pi\)
\(542\) −6.77649 + 11.7372i −0.291075 + 0.504157i
\(543\) 4.86453 + 0.458962i 0.208757 + 0.0196959i
\(544\) 0.788936 0.455493i 0.0338254 0.0195291i
\(545\) 68.1397 2.91878
\(546\) −6.84632 12.8912i −0.292995 0.551691i
\(547\) −24.1727 −1.03355 −0.516776 0.856121i \(-0.672868\pi\)
−0.516776 + 0.856121i \(0.672868\pi\)
\(548\) −9.75029 + 5.62933i −0.416512 + 0.240473i
\(549\) −3.65114 + 19.1770i −0.155827 + 0.818453i
\(550\) 11.6237 20.1329i 0.495638 0.858469i
\(551\) −7.75314 + 13.4288i −0.330295 + 0.572088i
\(552\) 20.3518 9.32216i 0.866230 0.396777i
\(553\) 24.2348 + 13.3948i 1.03057 + 0.569605i
\(554\) 8.34887i 0.354709i
\(555\) −2.23172 + 23.6540i −0.0947314 + 1.00406i
\(556\) 12.5646i 0.532857i
\(557\) 6.69804i 0.283805i 0.989881 + 0.141903i \(0.0453220\pi\)
−0.989881 + 0.141903i \(0.954678\pi\)
\(558\) 0.279300 0.323804i 0.0118237 0.0137077i
\(559\) 26.3896 16.6776i 1.11616 0.705386i
\(560\) 0.0124961 + 0.668991i 0.000528055 + 0.0282700i
\(561\) −0.624108 + 0.878535i −0.0263498 + 0.0370918i
\(562\) 5.13582 + 8.89550i 0.216642 + 0.375234i
\(563\) 6.04230 10.4656i 0.254653 0.441072i −0.710148 0.704052i \(-0.751372\pi\)
0.964801 + 0.262981i \(0.0847055\pi\)
\(564\) 13.1543 6.02532i 0.553894 0.253712i
\(565\) 2.44056i 0.102675i
\(566\) 0.719110 + 1.24554i 0.0302265 + 0.0523538i
\(567\) 8.33485 22.3054i 0.350031 0.936738i
\(568\) 7.11610 + 12.3254i 0.298585 + 0.517164i
\(569\) −10.1564 + 5.86379i −0.425778 + 0.245823i −0.697546 0.716540i \(-0.745725\pi\)
0.271768 + 0.962363i \(0.412392\pi\)
\(570\) −0.808609 + 8.57044i −0.0338689 + 0.358976i
\(571\) −15.1381 26.2200i −0.633511 1.09727i −0.986829 0.161770i \(-0.948280\pi\)
0.353318 0.935503i \(-0.385053\pi\)
\(572\) 7.85276 14.9521i 0.328340 0.625180i
\(573\) −4.37955 0.413204i −0.182958 0.0172619i
\(574\) 11.2795 0.210689i 0.470797 0.00879399i
\(575\) 26.9627 + 15.5669i 1.12442 + 0.649185i
\(576\) 15.0737 + 2.86992i 0.628072 + 0.119580i
\(577\) −27.0888 + 15.6397i −1.12772 + 0.651089i −0.943360 0.331770i \(-0.892354\pi\)
−0.184359 + 0.982859i \(0.559021\pi\)
\(578\) −12.9859 7.49742i −0.540143 0.311852i
\(579\) 1.74325 18.4767i 0.0724470 0.767865i
\(580\) 39.8377i 1.65417i
\(581\) 0.0518286 + 2.77471i 0.00215021 + 0.115114i
\(582\) −10.0469 7.13726i −0.416456 0.295849i
\(583\) 24.9876 + 43.2799i 1.03488 + 1.79247i
\(584\) −14.1645 24.5337i −0.586133 1.01521i
\(585\) −29.1474 23.1748i −1.20510 0.958159i
\(586\) 4.29320 + 2.47868i 0.177351 + 0.102393i
\(587\) 0.348443 0.603522i 0.0143818 0.0249100i −0.858745 0.512403i \(-0.828755\pi\)
0.873127 + 0.487493i \(0.162089\pi\)
\(588\) −12.3659 8.10733i −0.509961 0.334341i
\(589\) −0.131842 0.228358i −0.00543247 0.00940931i
\(590\) −23.4863 13.5598i −0.966916 0.558249i
\(591\) 4.98874 7.02248i 0.205209 0.288866i
\(592\) −0.146355 + 0.253494i −0.00601515 + 0.0104186i
\(593\) −14.0745 + 24.3778i −0.577972 + 1.00108i 0.417740 + 0.908567i \(0.362822\pi\)
−0.995712 + 0.0925098i \(0.970511\pi\)
\(594\) −17.1193 + 4.21457i −0.702412 + 0.172926i
\(595\) 1.26382 0.761486i 0.0518116 0.0312179i
\(596\) −3.17544 1.83334i −0.130071 0.0750966i
\(597\) 9.85224 13.8687i 0.403225 0.567607i
\(598\) −12.8138 6.72971i −0.523994 0.275198i
\(599\) 5.29808 3.05885i 0.216474 0.124981i −0.387843 0.921726i \(-0.626780\pi\)
0.604316 + 0.796744i \(0.293446\pi\)
\(600\) 14.0564 + 30.6874i 0.573849 + 1.25281i
\(601\) −4.63482 2.67591i −0.189058 0.109153i 0.402483 0.915427i \(-0.368147\pi\)
−0.591542 + 0.806275i \(0.701480\pi\)
\(602\) −9.78938 + 17.7116i −0.398985 + 0.721870i
\(603\) 2.78633 + 0.530495i 0.113468 + 0.0216034i
\(604\) −4.39027 −0.178638
\(605\) 6.45737 11.1845i 0.262529 0.454714i
\(606\) 3.24919 + 7.09351i 0.131989 + 0.288154i
\(607\) 21.7643i 0.883386i 0.897166 + 0.441693i \(0.145622\pi\)
−0.897166 + 0.441693i \(0.854378\pi\)
\(608\) 4.59509 7.95893i 0.186355 0.322777i
\(609\) 35.9115 + 24.5153i 1.45521 + 0.993409i
\(610\) −19.7899 −0.801270
\(611\) −21.8640 11.4828i −0.884522 0.464545i
\(612\) −0.195117 0.559660i −0.00788715 0.0226229i
\(613\) −20.7209 −0.836908 −0.418454 0.908238i \(-0.637428\pi\)
−0.418454 + 0.908238i \(0.637428\pi\)
\(614\) 3.89316 + 6.74315i 0.157115 + 0.272131i
\(615\) 26.1664 11.9855i 1.05513 0.483303i
\(616\) 0.539767 + 28.8971i 0.0217478 + 1.16430i
\(617\) −23.0797 + 13.3251i −0.929153 + 0.536447i −0.886544 0.462645i \(-0.846900\pi\)
−0.0426095 + 0.999092i \(0.513567\pi\)
\(618\) 0.165389 1.75296i 0.00665293 0.0705143i
\(619\) 29.5414 17.0557i 1.18737 0.685527i 0.229660 0.973271i \(-0.426239\pi\)
0.957707 + 0.287744i \(0.0929052\pi\)
\(620\) −0.586681 0.338720i −0.0235617 0.0136033i
\(621\) −5.64430 22.9267i −0.226498 0.920018i
\(622\) −18.3289 10.5822i −0.734923 0.424308i
\(623\) 15.6110 9.40608i 0.625443 0.376847i
\(624\) −0.207576 0.409118i −0.00830968 0.0163778i
\(625\) 6.15661 10.6636i 0.246264 0.426542i
\(626\) −6.00367 −0.239955
\(627\) −1.02118 + 10.8235i −0.0407820 + 0.432248i
\(628\) 5.88694i 0.234915i
\(629\) 0.645477 0.0257368
\(630\) 23.7935 + 4.07117i 0.947954 + 0.162199i
\(631\) −2.85221 4.94018i −0.113545 0.196665i 0.803652 0.595099i \(-0.202887\pi\)
−0.917197 + 0.398434i \(0.869554\pi\)
\(632\) 25.7793 + 14.8837i 1.02544 + 0.592040i
\(633\) −22.3025 15.8436i −0.886443 0.629725i
\(634\) −6.98518 −0.277417
\(635\) 11.5422 + 19.9917i 0.458038 + 0.793345i
\(636\) −27.3643 2.58179i −1.08507 0.102375i
\(637\) 1.95038 + 25.1634i 0.0772768 + 0.997010i
\(638\) 32.1940i 1.27457i
\(639\) 14.1749 4.94188i 0.560752 0.195498i
\(640\) 23.1639i 0.915635i
\(641\) −2.36730 1.36676i −0.0935029 0.0539839i 0.452519 0.891755i \(-0.350525\pi\)
−0.546022 + 0.837771i \(0.683859\pi\)
\(642\) 23.8629 + 16.9521i 0.941794 + 0.669046i
\(643\) 1.97815 1.14209i 0.0780108 0.0450395i −0.460487 0.887666i \(-0.652325\pi\)
0.538498 + 0.842627i \(0.318992\pi\)
\(644\) −14.6596 + 0.273826i −0.577668 + 0.0107902i
\(645\) −4.84944 + 51.3992i −0.190947 + 2.02384i
\(646\) 0.233872 0.00920158
\(647\) 34.3748 1.35141 0.675707 0.737170i \(-0.263838\pi\)
0.675707 + 0.737170i \(0.263838\pi\)
\(648\) 9.40633 23.8071i 0.369516 0.935231i
\(649\) −29.6605 17.1245i −1.16428 0.672196i
\(650\) 10.1474 19.3212i 0.398012 0.757840i
\(651\) −0.666369 + 0.320419i −0.0261171 + 0.0125582i
\(652\) 5.13981 8.90242i 0.201291 0.348645i
\(653\) −3.81525 + 2.20274i −0.149302 + 0.0861998i −0.572790 0.819702i \(-0.694139\pi\)
0.423488 + 0.905902i \(0.360806\pi\)
\(654\) 17.5395 24.6897i 0.685847 0.965444i
\(655\) 17.4883 + 30.2906i 0.683324 + 1.18355i
\(656\) 0.354577 0.0138439
\(657\) −28.2151 + 9.83679i −1.10078 + 0.383770i
\(658\) 16.0063 0.298981i 0.623991 0.0116555i
\(659\) −40.5474 + 23.4100i −1.57950 + 0.911926i −0.584573 + 0.811341i \(0.698738\pi\)
−0.994928 + 0.100585i \(0.967929\pi\)
\(660\) 11.6314 + 25.3933i 0.452752 + 0.988432i
\(661\) 26.9642i 1.04879i −0.851476 0.524393i \(-0.824292\pi\)
0.851476 0.524393i \(-0.175708\pi\)
\(662\) 6.75266 3.89865i 0.262449 0.151525i
\(663\) −0.552438 + 0.847504i −0.0214549 + 0.0329143i
\(664\) 2.98337i 0.115777i
\(665\) 7.20051 13.0276i 0.279224 0.505190i
\(666\) 7.99634 + 6.89730i 0.309852 + 0.267265i
\(667\) 43.1153 1.66943
\(668\) −0.870147 1.50714i −0.0336670 0.0583129i
\(669\) −0.895200 + 1.26014i −0.0346104 + 0.0487199i
\(670\) 2.87539i 0.111086i
\(671\) −24.9924 −0.964820
\(672\) −21.2838 14.5296i −0.821041 0.560490i
\(673\) −7.16313 + 12.4069i −0.276118 + 0.478251i −0.970417 0.241436i \(-0.922381\pi\)
0.694298 + 0.719687i \(0.255715\pi\)
\(674\) 8.85668 5.11341i 0.341147 0.196961i
\(675\) 34.5700 8.51073i 1.33060 0.327578i
\(676\) 6.80465 14.3200i 0.261717 0.550771i
\(677\) 19.8879 34.4468i 0.764353 1.32390i −0.176235 0.984348i \(-0.556392\pi\)
0.940588 0.339550i \(-0.110275\pi\)
\(678\) 0.884310 + 0.628210i 0.0339617 + 0.0241263i
\(679\) 10.9976 + 18.2524i 0.422049 + 0.700464i
\(680\) 1.37368 0.793092i 0.0526781 0.0304137i
\(681\) −3.98326 2.82969i −0.152639 0.108434i
\(682\) 0.474114 + 0.273730i 0.0181548 + 0.0104817i
\(683\) 21.6231 + 12.4841i 0.827386 + 0.477692i 0.852957 0.521981i \(-0.174807\pi\)
−0.0255707 + 0.999673i \(0.508140\pi\)
\(684\) −4.52764 3.90535i −0.173119 0.149325i
\(685\) −27.5230 + 15.8904i −1.05160 + 0.607142i
\(686\) −8.96117 13.6887i −0.342139 0.522638i
\(687\) −17.4722 + 24.5950i −0.666607 + 0.938360i
\(688\) −0.318023 + 0.550832i −0.0121245 + 0.0210003i
\(689\) 25.0634 + 39.6589i 0.954840 + 1.51088i
\(690\) 21.7617 9.96796i 0.828454 0.379474i
\(691\) −19.8811 + 11.4784i −0.756313 + 0.436657i −0.827970 0.560772i \(-0.810504\pi\)
0.0716575 + 0.997429i \(0.477171\pi\)
\(692\) −10.1890 + 17.6478i −0.387326 + 0.670868i
\(693\) 30.0484 + 5.14142i 1.14144 + 0.195306i
\(694\) 16.4558 0.624653
\(695\) 35.4672i 1.34535i
\(696\) 38.1064 + 27.0707i 1.44442 + 1.02611i
\(697\) −0.390952 0.677149i −0.0148084 0.0256488i
\(698\) 9.67298 0.366128
\(699\) −20.6812 + 29.1122i −0.782233 + 1.10112i
\(700\) −0.412887 22.1044i −0.0156056 0.835467i
\(701\) 12.8742i 0.486253i −0.969995 0.243126i \(-0.921827\pi\)
0.969995 0.243126i \(-0.0781730\pi\)
\(702\) −15.8998 + 4.59598i −0.600100 + 0.173464i
\(703\) 5.63928 3.25584i 0.212690 0.122796i
\(704\) 19.6449i 0.740393i
\(705\) 37.1317 17.0082i 1.39846 0.640566i
\(706\) −17.4988 + 10.1029i −0.658576 + 0.380229i
\(707\) −0.251954 13.4886i −0.00947569 0.507293i
\(708\) 17.1255 7.84435i 0.643616 0.294809i
\(709\) −37.2273 −1.39810 −0.699050 0.715073i \(-0.746393\pi\)
−0.699050 + 0.715073i \(0.746393\pi\)
\(710\) 7.60907 + 13.1793i 0.285563 + 0.494610i
\(711\) 20.5074 23.7752i 0.769089 0.891639i
\(712\) 16.9680 9.79649i 0.635903 0.367139i
\(713\) −0.366589 + 0.634950i −0.0137289 + 0.0237791i
\(714\) 0.0493965 0.653942i 0.00184862 0.0244732i
\(715\) 22.1667 42.2067i 0.828987 1.57844i
\(716\) 11.6235 + 6.71082i 0.434390 + 0.250795i
\(717\) −30.2862 2.85747i −1.13106 0.106714i
\(718\) −29.9856 −1.11905
\(719\) −47.8697 −1.78524 −0.892619 0.450811i \(-0.851135\pi\)
−0.892619 + 0.450811i \(0.851135\pi\)
\(720\) 0.745309 + 0.141901i 0.0277760 + 0.00528833i
\(721\) −1.47276 + 2.66461i −0.0548484 + 0.0992353i
\(722\) −12.4929 + 7.21275i −0.464936 + 0.268431i
\(723\) 1.97888 2.78560i 0.0735953 0.103598i
\(724\) −2.97952 1.72023i −0.110733 0.0639317i
\(725\) 65.0113i 2.41446i
\(726\) −2.39043 5.21870i −0.0887171 0.193684i
\(727\) 10.2075i 0.378574i 0.981922 + 0.189287i \(0.0606176\pi\)
−0.981922 + 0.189287i \(0.939382\pi\)
\(728\) 1.59112 + 27.0854i 0.0589710 + 1.00385i
\(729\) −22.8123 14.4430i −0.844899 0.534927i
\(730\) −15.1458 26.2333i −0.560572 0.970939i
\(731\) 1.40259 0.0518768
\(732\) 7.96054 11.2058i 0.294230 0.414178i
\(733\) 36.4929 + 21.0692i 1.34789 + 0.778208i 0.987951 0.154766i \(-0.0494625\pi\)
0.359944 + 0.932974i \(0.382796\pi\)
\(734\) −12.4917 21.6362i −0.461076 0.798608i
\(735\) −34.9064 22.8853i −1.28754 0.844137i
\(736\) −25.5534 −0.941909
\(737\) 3.63128i 0.133760i
\(738\) 2.39251 12.5662i 0.0880696 0.462570i
\(739\) 7.12014 0.261919 0.130959 0.991388i \(-0.458194\pi\)
0.130959 + 0.991388i \(0.458194\pi\)
\(740\) 8.36468 14.4881i 0.307492 0.532591i
\(741\) −0.551555 + 10.1909i −0.0202619 + 0.374371i
\(742\) −26.6173 14.7117i −0.977153 0.540083i
\(743\) 19.3136 + 11.1507i 0.708546 + 0.409079i 0.810522 0.585708i \(-0.199183\pi\)
−0.101976 + 0.994787i \(0.532517\pi\)
\(744\) −0.722664 + 0.331017i −0.0264942 + 0.0121357i
\(745\) −8.96360 5.17514i −0.328401 0.189602i
\(746\) −3.23023 + 1.86497i −0.118267 + 0.0682815i
\(747\) 3.09124 + 0.588548i 0.113103 + 0.0215338i
\(748\) 0.657142 0.379401i 0.0240275 0.0138723i
\(749\) −26.1210 43.3524i −0.954440 1.58406i
\(750\) 4.06187 + 8.86772i 0.148318 + 0.323803i
\(751\) −11.7813 20.4059i −0.429908 0.744622i 0.566957 0.823747i \(-0.308121\pi\)
−0.996865 + 0.0791256i \(0.974787\pi\)
\(752\) 0.503166 0.0183486
\(753\) 1.70871 0.782675i 0.0622688 0.0285223i
\(754\) −1.20859 30.1983i −0.0440141 1.09976i
\(755\) −12.3928 −0.451021
\(756\) −11.8762 + 11.8351i −0.431934 + 0.430438i
\(757\) −3.94895 + 6.83979i −0.143527 + 0.248596i −0.928822 0.370525i \(-0.879178\pi\)
0.785295 + 0.619121i \(0.212511\pi\)
\(758\) 29.4640i 1.07018i
\(759\) 27.4825 12.5884i 0.997552 0.456930i
\(760\) 8.00085 13.8579i 0.290221 0.502678i
\(761\) 42.8464 1.55318 0.776590 0.630007i \(-0.216948\pi\)
0.776590 + 0.630007i \(0.216948\pi\)
\(762\) 10.2148 + 0.963750i 0.370042 + 0.0349130i
\(763\) −44.8545 + 27.0260i −1.62384 + 0.978408i
\(764\) 2.68247 + 1.54872i 0.0970482 + 0.0560308i
\(765\) −0.550775 1.57980i −0.0199133 0.0571179i
\(766\) −13.6729 + 7.89405i −0.494022 + 0.285224i
\(767\) −28.4647 14.9495i −1.02780 0.539794i
\(768\) −22.8377 16.2238i −0.824085 0.585427i
\(769\) −28.1847 16.2725i −1.01637 0.586800i −0.103318 0.994648i \(-0.532946\pi\)
−0.913050 + 0.407848i \(0.866279\pi\)