Properties

Label 273.2.bf.b.152.11
Level $273$
Weight $2$
Character 273.152
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(152,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.152");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bf (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 152.11
Character \(\chi\) \(=\) 273.152
Dual form 273.2.bf.b.185.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.913280 + 0.527282i) q^{2} +(-1.53174 - 0.808559i) q^{3} +(-0.443947 + 0.768938i) q^{4} +(-0.000964697 + 0.00167090i) q^{5} +(1.82525 - 0.0692194i) q^{6} +(1.27194 - 2.31995i) q^{7} -3.04547i q^{8} +(1.69246 + 2.47701i) q^{9} +O(q^{10})\) \(q+(-0.913280 + 0.527282i) q^{2} +(-1.53174 - 0.808559i) q^{3} +(-0.443947 + 0.768938i) q^{4} +(-0.000964697 + 0.00167090i) q^{5} +(1.82525 - 0.0692194i) q^{6} +(1.27194 - 2.31995i) q^{7} -3.04547i q^{8} +(1.69246 + 2.47701i) q^{9} -0.00203467i q^{10} +2.49689i q^{11} +(1.30174 - 0.818857i) q^{12} +(-0.922193 + 3.48562i) q^{13} +(0.0616352 + 2.78943i) q^{14} +(0.00282869 - 0.00177938i) q^{15} +(0.717929 + 1.24349i) q^{16} +(-2.08762 + 3.61586i) q^{17} +(-2.85178 - 1.36979i) q^{18} +5.36837i q^{19} +(-0.000856548 - 0.00148358i) q^{20} +(-3.82410 + 2.52513i) q^{21} +(-1.31657 - 2.28036i) q^{22} +(4.21813 - 2.43534i) q^{23} +(-2.46244 + 4.66487i) q^{24} +(2.50000 + 4.33012i) q^{25} +(-0.995686 - 3.66960i) q^{26} +(-0.589610 - 5.16259i) q^{27} +(1.21923 + 2.00798i) q^{28} +(7.57023 + 4.37067i) q^{29} +(-0.00164515 + 0.00311659i) q^{30} +(-6.57778 + 3.79768i) q^{31} +(3.96357 + 2.28837i) q^{32} +(2.01888 - 3.82459i) q^{33} -4.40306i q^{34} +(0.00264938 + 0.00436333i) q^{35} +(-2.65603 + 0.201741i) q^{36} +(-1.82786 - 3.16594i) q^{37} +(-2.83065 - 4.90282i) q^{38} +(4.23089 - 4.59342i) q^{39} +(0.00508869 + 0.00293796i) q^{40} +(1.83038 - 3.17031i) q^{41} +(2.16101 - 4.32253i) q^{42} +(1.32938 + 2.30256i) q^{43} +(-1.91995 - 1.10849i) q^{44} +(-0.00577156 + 0.000438383i) q^{45} +(-2.56822 + 4.44829i) q^{46} +(1.79190 - 3.10366i) q^{47} +(-0.0942468 - 2.48519i) q^{48} +(-3.76435 - 5.90167i) q^{49} +(-4.56640 - 2.63641i) q^{50} +(6.12133 - 3.85060i) q^{51} +(-2.27082 - 2.25654i) q^{52} +(-12.3735 + 7.14382i) q^{53} +(3.26062 + 4.40400i) q^{54} +(-0.00417206 - 0.00240874i) q^{55} +(-7.06534 - 3.87365i) q^{56} +(4.34064 - 8.22295i) q^{57} -9.21832 q^{58} +(2.61565 - 4.53044i) q^{59} +(0.000112444 + 0.00296504i) q^{60} +7.57921i q^{61} +(4.00490 - 6.93670i) q^{62} +(7.89925 - 0.775837i) q^{63} -7.69818 q^{64} +(-0.00493450 - 0.00490346i) q^{65} +(0.172833 + 4.55744i) q^{66} +14.2543 q^{67} +(-1.85358 - 3.21050i) q^{68} +(-8.43019 + 0.319701i) q^{69} +(-0.00472034 - 0.00258797i) q^{70} +(-1.24050 + 0.716205i) q^{71} +(7.54365 - 5.15435i) q^{72} +(1.61067 - 0.929921i) q^{73} +(3.33869 + 1.92759i) q^{74} +(-0.328189 - 8.65403i) q^{75} +(-4.12794 - 2.38327i) q^{76} +(5.79266 + 3.17589i) q^{77} +(-1.44196 + 6.42596i) q^{78} +(3.64483 - 6.31302i) q^{79} -0.00277034 q^{80} +(-3.27113 + 8.38449i) q^{81} +3.86050i q^{82} +10.4089 q^{83} +(-0.243974 - 4.06152i) q^{84} +(-0.00402784 - 0.00697642i) q^{85} +(-2.42820 - 1.40192i) q^{86} +(-8.06169 - 12.8157i) q^{87} +7.60420 q^{88} +(2.70190 + 4.67983i) q^{89} +(0.00503989 - 0.00344361i) q^{90} +(6.91350 + 6.57294i) q^{91} +4.32464i q^{92} +(13.1461 - 0.498544i) q^{93} +3.77934i q^{94} +(-0.00897003 - 0.00517885i) q^{95} +(-4.22088 - 6.70997i) q^{96} +(-2.07015 + 1.19520i) q^{97} +(6.54975 + 3.40500i) q^{98} +(-6.18481 + 4.22589i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 64 q + 32 q^{4} - 12 q^{6} - 4 q^{7} + 8 q^{9} + 6 q^{12} - 12 q^{13} - 9 q^{15} - 16 q^{16} + 2 q^{18} + 10 q^{21} + 10 q^{22} - 24 q^{25} - 50 q^{28} - 16 q^{30} - 24 q^{31} - 33 q^{39} + 90 q^{40} - 48 q^{42} - 20 q^{43} - 3 q^{45} + 6 q^{48} - 10 q^{51} + 30 q^{52} - 27 q^{54} + 18 q^{55} + 4 q^{57} - 60 q^{58} + 55 q^{60} - 74 q^{63} - 84 q^{64} + 75 q^{66} - 88 q^{67} - 33 q^{69} + 20 q^{70} - 34 q^{72} + 84 q^{73} + 33 q^{75} + 18 q^{76} - 71 q^{78} + 20 q^{79} - 32 q^{81} - 6 q^{84} - 2 q^{85} + 3 q^{87} + 92 q^{88} - 76 q^{91} + 28 q^{93} + 30 q^{96} + 24 q^{97} + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.913280 + 0.527282i −0.645786 + 0.372845i −0.786840 0.617157i \(-0.788284\pi\)
0.141054 + 0.990002i \(0.454951\pi\)
\(3\) −1.53174 0.808559i −0.884351 0.466822i
\(4\) −0.443947 + 0.768938i −0.221973 + 0.384469i
\(5\) −0.000964697 0.00167090i −0.000431425 0.000747251i −0.866241 0.499626i \(-0.833471\pi\)
0.865810 + 0.500374i \(0.166804\pi\)
\(6\) 1.82525 0.0692194i 0.745154 0.0282587i
\(7\) 1.27194 2.31995i 0.480747 0.876859i
\(8\) 3.04547i 1.07674i
\(9\) 1.69246 + 2.47701i 0.564155 + 0.825669i
\(10\) 0.00203467i 0.000643419i
\(11\) 2.49689i 0.752840i 0.926449 + 0.376420i \(0.122845\pi\)
−0.926449 + 0.376420i \(0.877155\pi\)
\(12\) 1.30174 0.818857i 0.375781 0.236384i
\(13\) −0.922193 + 3.48562i −0.255770 + 0.966738i
\(14\) 0.0616352 + 2.78943i 0.0164727 + 0.745508i
\(15\) 0.00282869 0.00177938i 0.000730365 0.000459433i
\(16\) 0.717929 + 1.24349i 0.179482 + 0.310873i
\(17\) −2.08762 + 3.61586i −0.506322 + 0.876975i 0.493651 + 0.869660i \(0.335662\pi\)
−0.999973 + 0.00731523i \(0.997671\pi\)
\(18\) −2.85178 1.36979i −0.672170 0.322864i
\(19\) 5.36837i 1.23159i 0.787907 + 0.615794i \(0.211165\pi\)
−0.787907 + 0.615794i \(0.788835\pi\)
\(20\) −0.000856548 0.00148358i −0.000191530 0.000331740i
\(21\) −3.82410 + 2.52513i −0.834486 + 0.551029i
\(22\) −1.31657 2.28036i −0.280693 0.486174i
\(23\) 4.21813 2.43534i 0.879540 0.507803i 0.00903348 0.999959i \(-0.497125\pi\)
0.870507 + 0.492156i \(0.163791\pi\)
\(24\) −2.46244 + 4.66487i −0.502644 + 0.952213i
\(25\) 2.50000 + 4.33012i 0.500000 + 0.866025i
\(26\) −0.995686 3.66960i −0.195270 0.719669i
\(27\) −0.589610 5.16259i −0.113470 0.993541i
\(28\) 1.21923 + 2.00798i 0.230412 + 0.379472i
\(29\) 7.57023 + 4.37067i 1.40576 + 0.811614i 0.994975 0.100120i \(-0.0319227\pi\)
0.410781 + 0.911734i \(0.365256\pi\)
\(30\) −0.00164515 + 0.00311659i −0.000300362 + 0.000569009i
\(31\) −6.57778 + 3.79768i −1.18140 + 0.682084i −0.956339 0.292260i \(-0.905593\pi\)
−0.225065 + 0.974344i \(0.572260\pi\)
\(32\) 3.96357 + 2.28837i 0.700667 + 0.404530i
\(33\) 2.01888 3.82459i 0.351442 0.665775i
\(34\) 4.40306i 0.755118i
\(35\) 0.00264938 + 0.00436333i 0.000447827 + 0.000737538i
\(36\) −2.65603 + 0.201741i −0.442672 + 0.0336235i
\(37\) −1.82786 3.16594i −0.300498 0.520478i 0.675751 0.737130i \(-0.263820\pi\)
−0.976249 + 0.216652i \(0.930486\pi\)
\(38\) −2.83065 4.90282i −0.459191 0.795343i
\(39\) 4.23089 4.59342i 0.677485 0.735536i
\(40\) 0.00508869 + 0.00293796i 0.000804592 + 0.000464531i
\(41\) 1.83038 3.17031i 0.285857 0.495119i −0.686960 0.726696i \(-0.741055\pi\)
0.972817 + 0.231577i \(0.0743884\pi\)
\(42\) 2.16101 4.32253i 0.333452 0.666981i
\(43\) 1.32938 + 2.30256i 0.202729 + 0.351137i 0.949407 0.314049i \(-0.101686\pi\)
−0.746678 + 0.665186i \(0.768352\pi\)
\(44\) −1.91995 1.10849i −0.289444 0.167110i
\(45\) −0.00577156 0.000438383i −0.000860373 6.53503e-5i
\(46\) −2.56822 + 4.44829i −0.378663 + 0.655864i
\(47\) 1.79190 3.10366i 0.261375 0.452715i −0.705232 0.708976i \(-0.749157\pi\)
0.966608 + 0.256261i \(0.0824907\pi\)
\(48\) −0.0942468 2.48519i −0.0136033 0.358707i
\(49\) −3.76435 5.90167i −0.537765 0.843095i
\(50\) −4.56640 2.63641i −0.645786 0.372845i
\(51\) 6.12133 3.85060i 0.857158 0.539192i
\(52\) −2.27082 2.25654i −0.314907 0.312926i
\(53\) −12.3735 + 7.14382i −1.69962 + 0.981279i −0.753516 + 0.657429i \(0.771644\pi\)
−0.946108 + 0.323850i \(0.895023\pi\)
\(54\) 3.26062 + 4.40400i 0.443715 + 0.599309i
\(55\) −0.00417206 0.00240874i −0.000562561 0.000324795i
\(56\) −7.06534 3.87365i −0.944146 0.517638i
\(57\) 4.34064 8.22295i 0.574932 1.08916i
\(58\) −9.21832 −1.21042
\(59\) 2.61565 4.53044i 0.340529 0.589813i −0.644002 0.765023i \(-0.722727\pi\)
0.984531 + 0.175211i \(0.0560607\pi\)
\(60\) 0.000112444 0.00296504i 1.45165e−5 0.000382785i
\(61\) 7.57921i 0.970418i 0.874398 + 0.485209i \(0.161256\pi\)
−0.874398 + 0.485209i \(0.838744\pi\)
\(62\) 4.00490 6.93670i 0.508623 0.880961i
\(63\) 7.89925 0.775837i 0.995211 0.0977463i
\(64\) −7.69818 −0.962273
\(65\) −0.00493450 0.00490346i −0.000612050 0.000608200i
\(66\) 0.172833 + 4.55744i 0.0212743 + 0.560982i
\(67\) 14.2543 1.74143 0.870717 0.491784i \(-0.163655\pi\)
0.870717 + 0.491784i \(0.163655\pi\)
\(68\) −1.85358 3.21050i −0.224780 0.389330i
\(69\) −8.43019 + 0.319701i −1.01488 + 0.0384875i
\(70\) −0.00472034 0.00258797i −0.000564188 0.000309322i
\(71\) −1.24050 + 0.716205i −0.147221 + 0.0849979i −0.571801 0.820392i \(-0.693755\pi\)
0.424580 + 0.905390i \(0.360422\pi\)
\(72\) 7.54365 5.15435i 0.889028 0.607446i
\(73\) 1.61067 0.929921i 0.188515 0.108839i −0.402772 0.915300i \(-0.631953\pi\)
0.591287 + 0.806461i \(0.298620\pi\)
\(74\) 3.33869 + 1.92759i 0.388115 + 0.224078i
\(75\) −0.328189 8.65403i −0.0378960 0.999281i
\(76\) −4.12794 2.38327i −0.473508 0.273380i
\(77\) 5.79266 + 3.17589i 0.660135 + 0.361926i
\(78\) −1.44196 + 6.42596i −0.163270 + 0.727596i
\(79\) 3.64483 6.31302i 0.410075 0.710271i −0.584823 0.811161i \(-0.698836\pi\)
0.994898 + 0.100891i \(0.0321692\pi\)
\(80\) −0.00277034 −0.000309733
\(81\) −3.27113 + 8.38449i −0.363459 + 0.931610i
\(82\) 3.86050i 0.426321i
\(83\) 10.4089 1.14253 0.571263 0.820767i \(-0.306454\pi\)
0.571263 + 0.820767i \(0.306454\pi\)
\(84\) −0.243974 4.06152i −0.0266197 0.443148i
\(85\) −0.00402784 0.00697642i −0.000436880 0.000756699i
\(86\) −2.42820 1.40192i −0.261839 0.151173i
\(87\) −8.06169 12.8157i −0.864303 1.37399i
\(88\) 7.60420 0.810611
\(89\) 2.70190 + 4.67983i 0.286401 + 0.496061i 0.972948 0.231025i \(-0.0742078\pi\)
−0.686547 + 0.727085i \(0.740874\pi\)
\(90\) 0.00503989 0.00344361i 0.000531251 0.000362988i
\(91\) 6.91350 + 6.57294i 0.724732 + 0.689031i
\(92\) 4.32464i 0.450875i
\(93\) 13.1461 0.498544i 1.36319 0.0516966i
\(94\) 3.77934i 0.389809i
\(95\) −0.00897003 0.00517885i −0.000920305 0.000531339i
\(96\) −4.22088 6.70997i −0.430792 0.684833i
\(97\) −2.07015 + 1.19520i −0.210192 + 0.121354i −0.601401 0.798948i \(-0.705390\pi\)
0.391209 + 0.920302i \(0.372057\pi\)
\(98\) 6.54975 + 3.40500i 0.661625 + 0.343956i
\(99\) −6.18481 + 4.22589i −0.621597 + 0.424718i
\(100\) −4.43946 −0.443946
\(101\) −18.0599 −1.79703 −0.898514 0.438946i \(-0.855352\pi\)
−0.898514 + 0.438946i \(0.855352\pi\)
\(102\) −3.56013 + 6.74434i −0.352506 + 0.667790i
\(103\) −8.45144 4.87944i −0.832745 0.480786i 0.0220466 0.999757i \(-0.492982\pi\)
−0.854792 + 0.518971i \(0.826315\pi\)
\(104\) 10.6154 + 2.80851i 1.04092 + 0.275397i
\(105\) −0.000530155 0.00882568i −5.17378e−5 0.000861298i
\(106\) 7.53362 13.0486i 0.731730 1.26739i
\(107\) −4.73086 + 2.73136i −0.457349 + 0.264051i −0.710929 0.703264i \(-0.751725\pi\)
0.253580 + 0.967314i \(0.418392\pi\)
\(108\) 4.23147 + 1.83854i 0.407173 + 0.176914i
\(109\) −3.68535 6.38321i −0.352993 0.611401i 0.633780 0.773514i \(-0.281503\pi\)
−0.986772 + 0.162113i \(0.948169\pi\)
\(110\) 0.00508035 0.000484392
\(111\) 0.239954 + 6.32734i 0.0227754 + 0.600564i
\(112\) 3.79800 0.0839203i 0.358877 0.00792972i
\(113\) −0.390686 + 0.225562i −0.0367526 + 0.0212191i −0.518264 0.855221i \(-0.673421\pi\)
0.481511 + 0.876440i \(0.340088\pi\)
\(114\) 0.371595 + 9.79860i 0.0348031 + 0.917723i
\(115\) 0.00939745i 0.000876316i
\(116\) −6.72156 + 3.88069i −0.624081 + 0.360313i
\(117\) −10.1947 + 3.61501i −0.942499 + 0.334208i
\(118\) 5.51674i 0.507857i
\(119\) 5.73330 + 9.44232i 0.525571 + 0.865576i
\(120\) −0.00541904 0.00861469i −0.000494689 0.000786410i
\(121\) 4.76555 0.433231
\(122\) −3.99638 6.92194i −0.361815 0.626683i
\(123\) −5.36705 + 3.37612i −0.483930 + 0.304415i
\(124\) 6.74388i 0.605618i
\(125\) −0.0192939 −0.00172570
\(126\) −6.80514 + 4.87369i −0.606250 + 0.434183i
\(127\) −4.71924 + 8.17397i −0.418765 + 0.725322i −0.995816 0.0913863i \(-0.970870\pi\)
0.577051 + 0.816708i \(0.304204\pi\)
\(128\) −0.896545 + 0.517620i −0.0792441 + 0.0457516i
\(129\) −0.174516 4.60181i −0.0153653 0.405167i
\(130\) 0.00709209 + 0.00187636i 0.000622017 + 0.000164568i
\(131\) −3.11100 + 5.38841i −0.271809 + 0.470788i −0.969325 0.245782i \(-0.920955\pi\)
0.697516 + 0.716569i \(0.254289\pi\)
\(132\) 2.04460 + 3.25031i 0.177959 + 0.282903i
\(133\) 12.4544 + 6.82823i 1.07993 + 0.592082i
\(134\) −13.0181 + 7.51602i −1.12459 + 0.649285i
\(135\) 0.00919499 + 0.00399515i 0.000791379 + 0.000343848i
\(136\) 11.0120 + 6.35778i 0.944271 + 0.545175i
\(137\) −5.33148 3.07813i −0.455499 0.262983i 0.254651 0.967033i \(-0.418040\pi\)
−0.710150 + 0.704051i \(0.751373\pi\)
\(138\) 7.53055 4.73707i 0.641043 0.403246i
\(139\) 10.6666 6.15838i 0.904731 0.522347i 0.0259992 0.999662i \(-0.491723\pi\)
0.878732 + 0.477315i \(0.158390\pi\)
\(140\) −0.00453132 0.000100124i −0.000382966 8.46200e-6i
\(141\) −5.25421 + 3.30515i −0.442485 + 0.278343i
\(142\) 0.755285 1.30819i 0.0633821 0.109781i
\(143\) −8.70321 2.30261i −0.727799 0.192554i
\(144\) −1.86506 + 3.88288i −0.155422 + 0.323573i
\(145\) −0.0146060 + 0.00843275i −0.00121296 + 0.000700302i
\(146\) −0.980661 + 1.69856i −0.0811601 + 0.140573i
\(147\) 0.994169 + 12.0835i 0.0819977 + 0.996633i
\(148\) 3.24589 0.266810
\(149\) 7.16171i 0.586710i 0.956004 + 0.293355i \(0.0947718\pi\)
−0.956004 + 0.293355i \(0.905228\pi\)
\(150\) 4.86284 + 7.73050i 0.397050 + 0.631193i
\(151\) −8.14880 14.1141i −0.663140 1.14859i −0.979786 0.200049i \(-0.935890\pi\)
0.316646 0.948544i \(-0.397443\pi\)
\(152\) 16.3492 1.32610
\(153\) −12.4897 + 0.948668i −1.00974 + 0.0766953i
\(154\) −6.96491 + 0.153896i −0.561248 + 0.0124013i
\(155\) 0.0146545i 0.00117707i
\(156\) 1.65377 + 5.29253i 0.132407 + 0.423742i
\(157\) 4.07713 2.35393i 0.325391 0.187864i −0.328402 0.944538i \(-0.606510\pi\)
0.653793 + 0.756674i \(0.273177\pi\)
\(158\) 7.68741i 0.611577i
\(159\) 24.7291 0.937811i 1.96115 0.0743732i
\(160\) −0.00764728 + 0.00441516i −0.000604571 + 0.000349049i
\(161\) −0.284672 12.8834i −0.0224353 1.01536i
\(162\) −1.43354 9.38220i −0.112629 0.737135i
\(163\) −4.20632 −0.329464 −0.164732 0.986338i \(-0.552676\pi\)
−0.164732 + 0.986338i \(0.552676\pi\)
\(164\) 1.62518 + 2.81490i 0.126905 + 0.219806i
\(165\) 0.00444291 + 0.00706293i 0.000345880 + 0.000549848i
\(166\) −9.50624 + 5.48843i −0.737828 + 0.425985i
\(167\) 7.24993 12.5573i 0.561017 0.971709i −0.436391 0.899757i \(-0.643744\pi\)
0.997408 0.0719525i \(-0.0229230\pi\)
\(168\) 7.69021 + 11.6462i 0.593312 + 0.898522i
\(169\) −11.2991 6.42883i −0.869163 0.494526i
\(170\) 0.00735708 + 0.00424761i 0.000564263 + 0.000325777i
\(171\) −13.2975 + 9.08577i −1.01688 + 0.694806i
\(172\) −2.36070 −0.180002
\(173\) −15.6967 −1.19340 −0.596700 0.802465i \(-0.703522\pi\)
−0.596700 + 0.802465i \(0.703522\pi\)
\(174\) 14.1201 + 7.45356i 1.07044 + 0.565053i
\(175\) 13.2255 0.292230i 0.999755 0.0220905i
\(176\) −3.10486 + 1.79259i −0.234037 + 0.135122i
\(177\) −7.66963 + 4.82455i −0.576484 + 0.362636i
\(178\) −4.93518 2.84933i −0.369907 0.213566i
\(179\) 6.46461i 0.483188i 0.970377 + 0.241594i \(0.0776702\pi\)
−0.970377 + 0.241594i \(0.922330\pi\)
\(180\) 0.00222517 0.00463259i 0.000165855 0.000345293i
\(181\) 0.939369i 0.0698227i −0.999390 0.0349114i \(-0.988885\pi\)
0.999390 0.0349114i \(-0.0111149\pi\)
\(182\) −9.77976 2.35756i −0.724924 0.174754i
\(183\) 6.12824 11.6094i 0.453012 0.858190i
\(184\) −7.41675 12.8462i −0.546770 0.947033i
\(185\) 0.00705331 0.000518570
\(186\) −11.7432 + 7.38702i −0.861054 + 0.541643i
\(187\) −9.02840 5.21255i −0.660222 0.381179i
\(188\) 1.59101 + 2.75572i 0.116037 + 0.200981i
\(189\) −12.7269 5.19863i −0.925747 0.378144i
\(190\) 0.0109229 0.000792428
\(191\) 5.37944i 0.389243i 0.980878 + 0.194621i \(0.0623478\pi\)
−0.980878 + 0.194621i \(0.937652\pi\)
\(192\) 11.7916 + 6.22443i 0.850987 + 0.449210i
\(193\) 21.1426 1.52188 0.760938 0.648825i \(-0.224739\pi\)
0.760938 + 0.648825i \(0.224739\pi\)
\(194\) 1.26042 2.18311i 0.0904928 0.156738i
\(195\) 0.00359364 + 0.0115007i 0.000257346 + 0.000823581i
\(196\) 6.20919 0.274530i 0.443513 0.0196093i
\(197\) 22.4348 + 12.9527i 1.59841 + 0.922843i 0.991794 + 0.127848i \(0.0408069\pi\)
0.606616 + 0.794995i \(0.292526\pi\)
\(198\) 3.42022 7.12057i 0.243065 0.506037i
\(199\) 2.39732 + 1.38409i 0.169941 + 0.0981157i 0.582558 0.812789i \(-0.302052\pi\)
−0.412617 + 0.910905i \(0.635385\pi\)
\(200\) 13.1873 7.61367i 0.932480 0.538368i
\(201\) −21.8338 11.5254i −1.54004 0.812940i
\(202\) 16.4937 9.52267i 1.16050 0.670012i
\(203\) 19.7686 12.0033i 1.38748 0.842470i
\(204\) 0.243331 + 6.41639i 0.0170365 + 0.449237i
\(205\) 0.00353152 + 0.00611677i 0.000246652 + 0.000427214i
\(206\) 10.2914 0.717034
\(207\) 13.1714 + 6.32661i 0.915474 + 0.439730i
\(208\) −4.99641 + 1.35569i −0.346438 + 0.0940003i
\(209\) −13.4042 −0.927189
\(210\) 0.00513781 + 0.00778078i 0.000354542 + 0.000536925i
\(211\) −3.90647 + 6.76621i −0.268933 + 0.465805i −0.968586 0.248677i \(-0.920004\pi\)
0.699654 + 0.714482i \(0.253338\pi\)
\(212\) 12.6859i 0.871271i
\(213\) 2.47923 0.0940204i 0.169874 0.00644217i
\(214\) 2.88040 4.98900i 0.196900 0.341041i
\(215\) −0.00512981 −0.000349850
\(216\) −15.7225 + 1.79564i −1.06978 + 0.122178i
\(217\) 0.443919 + 20.0906i 0.0301352 + 1.36384i
\(218\) 6.73151 + 3.88644i 0.455916 + 0.263223i
\(219\) −3.21903 + 0.122076i −0.217522 + 0.00824914i
\(220\) 0.00370435 0.00213870i 0.000249747 0.000144191i
\(221\) −10.6783 10.6112i −0.718303 0.713785i
\(222\) −3.55544 5.65211i −0.238625 0.379345i
\(223\) −6.48830 3.74602i −0.434489 0.250852i 0.266768 0.963761i \(-0.414044\pi\)
−0.701257 + 0.712909i \(0.747377\pi\)
\(224\) 10.3503 6.28463i 0.691559 0.419909i
\(225\) −6.49459 + 13.5211i −0.432973 + 0.901406i
\(226\) 0.237870 0.412003i 0.0158229 0.0274061i
\(227\) 4.27068 7.39703i 0.283455 0.490958i −0.688779 0.724972i \(-0.741853\pi\)
0.972233 + 0.234014i \(0.0751861\pi\)
\(228\) 4.39593 + 6.98824i 0.291127 + 0.462808i
\(229\) 8.92049 + 5.15025i 0.589482 + 0.340338i 0.764893 0.644158i \(-0.222792\pi\)
−0.175410 + 0.984495i \(0.556125\pi\)
\(230\) −0.00495511 0.00858250i −0.000326730 0.000565913i
\(231\) −6.30497 9.54835i −0.414837 0.628235i
\(232\) 13.3108 23.0549i 0.873894 1.51363i
\(233\) 1.09700 + 0.633351i 0.0718666 + 0.0414922i 0.535503 0.844534i \(-0.320122\pi\)
−0.463636 + 0.886026i \(0.653456\pi\)
\(234\) 7.40447 8.67700i 0.484046 0.567233i
\(235\) 0.00345727 + 0.00598818i 0.000225528 + 0.000390626i
\(236\) 2.32242 + 4.02255i 0.151177 + 0.261845i
\(237\) −10.6874 + 6.72286i −0.694220 + 0.436697i
\(238\) −10.2149 5.60041i −0.662132 0.363021i
\(239\) 18.8399i 1.21865i −0.792921 0.609325i \(-0.791441\pi\)
0.792921 0.609325i \(-0.208559\pi\)
\(240\) 0.00424344 + 0.00223998i 0.000273913 + 0.000144590i
\(241\) −1.05943 0.611661i −0.0682438 0.0394006i 0.465490 0.885053i \(-0.345878\pi\)
−0.533734 + 0.845653i \(0.679212\pi\)
\(242\) −4.35228 + 2.51279i −0.279775 + 0.161528i
\(243\) 11.7899 10.1980i 0.756322 0.654200i
\(244\) −5.82794 3.36476i −0.373096 0.215407i
\(245\) 0.0134926 0.000596553i 0.000862009 3.81124e-5i
\(246\) 3.12145 5.91329i 0.199016 0.377018i
\(247\) −18.7121 4.95067i −1.19062 0.315004i
\(248\) 11.5657 + 20.0324i 0.734425 + 1.27206i
\(249\) −15.9438 8.41622i −1.01039 0.533356i
\(250\) 0.0176208 0.0101733i 0.00111443 0.000643419i
\(251\) 4.42278 + 7.66048i 0.279163 + 0.483525i 0.971177 0.238359i \(-0.0766096\pi\)
−0.692014 + 0.721884i \(0.743276\pi\)
\(252\) −2.91027 + 6.41846i −0.183330 + 0.404325i
\(253\) 6.08077 + 10.5322i 0.382294 + 0.662153i
\(254\) 9.95349i 0.624538i
\(255\) 0.000528758 0.0139428i 3.31121e−5 0.000873133i
\(256\) 8.24404 14.2791i 0.515253 0.892444i
\(257\) −5.47193 9.47765i −0.341329 0.591200i 0.643350 0.765572i \(-0.277544\pi\)
−0.984680 + 0.174372i \(0.944210\pi\)
\(258\) 2.58584 + 4.11072i 0.160987 + 0.255922i
\(259\) −9.66976 + 0.213662i −0.600849 + 0.0132763i
\(260\) 0.00596112 0.00161745i 0.000369693 0.000100310i
\(261\) 1.98615 + 26.1487i 0.122940 + 1.61857i
\(262\) 6.56150i 0.405371i
\(263\) 12.7145i 0.784011i −0.919963 0.392005i \(-0.871781\pi\)
0.919963 0.392005i \(-0.128219\pi\)
\(264\) −11.6477 6.14845i −0.716865 0.378411i
\(265\) 0.0275665i 0.00169339i
\(266\) −14.9747 + 0.330880i −0.918159 + 0.0202876i
\(267\) −0.354694 9.35293i −0.0217069 0.572390i
\(268\) −6.32813 + 10.9606i −0.386552 + 0.669528i
\(269\) 11.5793 20.0560i 0.706003 1.22283i −0.260325 0.965521i \(-0.583830\pi\)
0.966328 0.257313i \(-0.0828370\pi\)
\(270\) −0.0105042 + 0.00119966i −0.000639264 + 7.30091e-5i
\(271\) −22.8158 + 13.1727i −1.38596 + 0.800185i −0.992857 0.119309i \(-0.961932\pi\)
−0.393104 + 0.919494i \(0.628599\pi\)
\(272\) −5.99505 −0.363503
\(273\) −5.27509 15.6580i −0.319263 0.947666i
\(274\) 6.49218 0.392207
\(275\) −10.8118 + 6.24222i −0.651978 + 0.376420i
\(276\) 3.49673 6.62423i 0.210478 0.398732i
\(277\) 2.20225 3.81442i 0.132321 0.229186i −0.792250 0.610196i \(-0.791090\pi\)
0.924571 + 0.381010i \(0.124424\pi\)
\(278\) −6.49441 + 11.2486i −0.389509 + 0.674649i
\(279\) −20.5395 9.86577i −1.22967 0.590648i
\(280\) 0.0132884 0.00806862i 0.000794134 0.000482192i
\(281\) 13.2912i 0.792885i −0.918060 0.396442i \(-0.870245\pi\)
0.918060 0.396442i \(-0.129755\pi\)
\(282\) 3.05582 5.78898i 0.181972 0.344729i
\(283\) 16.3786i 0.973605i −0.873512 0.486803i \(-0.838163\pi\)
0.873512 0.486803i \(-0.161837\pi\)
\(284\) 1.27183i 0.0754691i
\(285\) 0.00955236 + 0.0151855i 0.000565833 + 0.000899509i
\(286\) 9.16259 2.48612i 0.541796 0.147007i
\(287\) −5.02684 8.27882i −0.296725 0.488683i
\(288\) 1.03989 + 13.6908i 0.0612763 + 0.806736i
\(289\) −0.216300 0.374642i −0.0127235 0.0220378i
\(290\) 0.00889288 0.0154029i 0.000522208 0.000904491i
\(291\) 4.13733 0.156901i 0.242534 0.00919771i
\(292\) 1.65134i 0.0966374i
\(293\) −9.96323 17.2568i −0.582058 1.00815i −0.995235 0.0975037i \(-0.968914\pi\)
0.413177 0.910651i \(-0.364419\pi\)
\(294\) −7.27938 10.5114i −0.424542 0.613039i
\(295\) 0.00504662 + 0.00874100i 0.000293825 + 0.000508920i
\(296\) −9.64179 + 5.56669i −0.560417 + 0.323557i
\(297\) 12.8904 1.47219i 0.747978 0.0854252i
\(298\) −3.77624 6.54065i −0.218752 0.378889i
\(299\) 4.59874 + 16.9486i 0.265952 + 0.980166i
\(300\) 6.80011 + 3.58957i 0.392605 + 0.207244i
\(301\) 7.03272 0.155395i 0.405359 0.00895679i
\(302\) 14.8843 + 8.59344i 0.856494 + 0.494497i
\(303\) 27.6631 + 14.6025i 1.58920 + 0.838892i
\(304\) −6.67551 + 3.85411i −0.382867 + 0.221048i
\(305\) −0.0126641 0.00731164i −0.000725146 0.000418663i
\(306\) 10.9064 7.45201i 0.623478 0.426003i
\(307\) 4.93316i 0.281551i 0.990042 + 0.140775i \(0.0449595\pi\)
−0.990042 + 0.140775i \(0.955040\pi\)
\(308\) −5.01369 + 3.04428i −0.285682 + 0.173464i
\(309\) 9.00010 + 14.3075i 0.511998 + 0.813927i
\(310\) 0.00772703 + 0.0133836i 0.000438866 + 0.000760138i
\(311\) 6.69213 + 11.5911i 0.379476 + 0.657272i 0.990986 0.133965i \(-0.0427710\pi\)
−0.611510 + 0.791237i \(0.709438\pi\)
\(312\) −13.9891 12.8851i −0.791979 0.729473i
\(313\) 23.9599 + 13.8332i 1.35429 + 0.781901i 0.988847 0.148932i \(-0.0475835\pi\)
0.365445 + 0.930833i \(0.380917\pi\)
\(314\) −2.48238 + 4.29960i −0.140089 + 0.242641i
\(315\) −0.00632403 + 0.0139473i −0.000356319 + 0.000785843i
\(316\) 3.23622 + 5.60529i 0.182051 + 0.315322i
\(317\) 12.8384 + 7.41223i 0.721075 + 0.416313i 0.815148 0.579253i \(-0.196656\pi\)
−0.0940735 + 0.995565i \(0.529989\pi\)
\(318\) −22.0901 + 13.8957i −1.23875 + 0.779233i
\(319\) −10.9131 + 18.9020i −0.611016 + 1.05831i
\(320\) 0.00742641 0.0128629i 0.000415149 0.000719059i
\(321\) 9.45492 0.358562i 0.527722 0.0200130i
\(322\) 7.05320 + 11.6161i 0.393059 + 0.647339i
\(323\) −19.4113 11.2071i −1.08007 0.623580i
\(324\) −4.99495 6.23757i −0.277497 0.346531i
\(325\) −17.3987 + 4.72084i −0.965104 + 0.261865i
\(326\) 3.84155 2.21792i 0.212764 0.122839i
\(327\) 0.483797 + 12.7573i 0.0267541 + 0.705478i
\(328\) −9.65508 5.57436i −0.533113 0.307793i
\(329\) −4.92115 8.10477i −0.271312 0.446831i
\(330\) −0.00778178 0.00410776i −0.000428373 0.000226125i
\(331\) 5.80880 0.319280 0.159640 0.987175i \(-0.448967\pi\)
0.159640 + 0.987175i \(0.448967\pi\)
\(332\) −4.62100 + 8.00380i −0.253610 + 0.439266i
\(333\) 4.74848 9.88586i 0.260215 0.541742i
\(334\) 15.2910i 0.836689i
\(335\) −0.0137510 + 0.0238175i −0.000751299 + 0.00130129i
\(336\) −5.88541 2.94236i −0.321075 0.160519i
\(337\) −9.55520 −0.520505 −0.260252 0.965541i \(-0.583806\pi\)
−0.260252 + 0.965541i \(0.583806\pi\)
\(338\) 13.7091 0.0865022i 0.745675 0.00470510i
\(339\) 0.780810 0.0296109i 0.0424078 0.00160824i
\(340\) 0.00715258 0.000387903
\(341\) −9.48239 16.4240i −0.513500 0.889409i
\(342\) 7.35356 15.3094i 0.397635 0.827837i
\(343\) −18.4796 + 1.22657i −0.997804 + 0.0662285i
\(344\) 7.01238 4.04860i 0.378082 0.218286i
\(345\) 0.00759839 0.0143945i 0.000409084 0.000774972i
\(346\) 14.3355 8.27660i 0.770681 0.444953i
\(347\) 25.2168 + 14.5589i 1.35371 + 0.781563i 0.988767 0.149467i \(-0.0477558\pi\)
0.364941 + 0.931031i \(0.381089\pi\)
\(348\) 13.4335 0.509441i 0.720109 0.0273089i
\(349\) 27.1567 + 15.6790i 1.45367 + 0.839275i 0.998687 0.0512262i \(-0.0163129\pi\)
0.454980 + 0.890501i \(0.349646\pi\)
\(350\) −11.9245 + 7.24047i −0.637392 + 0.387019i
\(351\) 18.5386 + 2.70575i 0.989516 + 0.144422i
\(352\) −5.71380 + 9.89659i −0.304547 + 0.527490i
\(353\) −1.59546 −0.0849177 −0.0424588 0.999098i \(-0.513519\pi\)
−0.0424588 + 0.999098i \(0.513519\pi\)
\(354\) 4.46061 8.45022i 0.237079 0.449124i
\(355\) 0.00276368i 0.000146681i
\(356\) −4.79800 −0.254293
\(357\) −1.14726 19.0989i −0.0607196 1.01082i
\(358\) −3.40868 5.90400i −0.180154 0.312036i
\(359\) 11.1728 + 6.45064i 0.589680 + 0.340452i 0.764971 0.644065i \(-0.222753\pi\)
−0.175291 + 0.984517i \(0.556087\pi\)
\(360\) 0.00133508 + 0.0175771i 7.03651e−5 + 0.000926395i
\(361\) −9.81939 −0.516810
\(362\) 0.495312 + 0.857906i 0.0260330 + 0.0450906i
\(363\) −7.29958 3.85323i −0.383129 0.202242i
\(364\) −8.12341 + 2.39802i −0.425782 + 0.125691i
\(365\) 0.00358837i 0.000187824i
\(366\) 0.524628 + 13.8339i 0.0274228 + 0.723111i
\(367\) 13.0999i 0.683807i −0.939735 0.341903i \(-0.888928\pi\)
0.939735 0.341903i \(-0.111072\pi\)
\(368\) 6.05663 + 3.49680i 0.315724 + 0.182283i
\(369\) 10.9507 0.831772i 0.570072 0.0433003i
\(370\) −0.00644165 + 0.00371909i −0.000334885 + 0.000193346i
\(371\) 0.835056 + 37.7923i 0.0433540 + 1.96208i
\(372\) −5.45282 + 10.3299i −0.282716 + 0.535579i
\(373\) 6.13740 0.317783 0.158891 0.987296i \(-0.449208\pi\)
0.158891 + 0.987296i \(0.449208\pi\)
\(374\) 10.9939 0.568483
\(375\) 0.0295533 + 0.0156003i 0.00152613 + 0.000805595i
\(376\) −9.45210 5.45717i −0.487455 0.281432i
\(377\) −22.2157 + 22.3564i −1.14417 + 1.15141i
\(378\) 14.3644 1.96288i 0.738824 0.100959i
\(379\) 6.45103 11.1735i 0.331367 0.573945i −0.651413 0.758723i \(-0.725823\pi\)
0.982780 + 0.184779i \(0.0591568\pi\)
\(380\) 0.00796443 0.00459826i 0.000408567 0.000235886i
\(381\) 13.8378 8.70462i 0.708932 0.445951i
\(382\) −2.83648 4.91293i −0.145127 0.251368i
\(383\) 9.23976 0.472130 0.236065 0.971737i \(-0.424142\pi\)
0.236065 + 0.971737i \(0.424142\pi\)
\(384\) 1.79180 0.0679510i 0.0914375 0.00346761i
\(385\) −0.0108948 + 0.00661521i −0.000555248 + 0.000337143i
\(386\) −19.3091 + 11.1481i −0.982806 + 0.567423i
\(387\) −3.45352 + 7.18989i −0.175553 + 0.365483i
\(388\) 2.12242i 0.107750i
\(389\) 11.3864 6.57391i 0.577311 0.333311i −0.182753 0.983159i \(-0.558501\pi\)
0.760064 + 0.649848i \(0.225168\pi\)
\(390\) −0.00934610 0.00860847i −0.000473258 0.000435907i
\(391\) 20.3362i 1.02845i
\(392\) −17.9733 + 11.4642i −0.907791 + 0.579031i
\(393\) 9.12210 5.73823i 0.460149 0.289455i
\(394\) −27.3189 −1.37631
\(395\) 0.00703230 + 0.0121803i 0.000353834 + 0.000612858i
\(396\) −0.503725 6.63181i −0.0253131 0.333261i
\(397\) 18.5599i 0.931495i 0.884918 + 0.465747i \(0.154214\pi\)
−0.884918 + 0.465747i \(0.845786\pi\)
\(398\) −2.91923 −0.146328
\(399\) −13.5558 20.5292i −0.678640 1.02774i
\(400\) −3.58964 + 6.21745i −0.179482 + 0.310872i
\(401\) −10.6982 + 6.17658i −0.534240 + 0.308444i −0.742741 0.669578i \(-0.766475\pi\)
0.208501 + 0.978022i \(0.433142\pi\)
\(402\) 26.0176 0.986671i 1.29764 0.0492107i
\(403\) −7.17130 26.4299i −0.357228 1.31656i
\(404\) 8.01763 13.8869i 0.398892 0.690901i
\(405\) −0.0108540 0.0135542i −0.000539341 0.000673515i
\(406\) −11.7251 + 21.3861i −0.581908 + 1.06137i
\(407\) 7.90501 4.56396i 0.391837 0.226227i
\(408\) −11.7269 18.6423i −0.580568 0.922933i
\(409\) 4.99900 + 2.88618i 0.247185 + 0.142712i 0.618475 0.785805i \(-0.287751\pi\)
−0.371290 + 0.928517i \(0.621084\pi\)
\(410\) −0.00645053 0.00372422i −0.000318569 0.000183926i
\(411\) 5.67760 + 9.02572i 0.280055 + 0.445206i
\(412\) 7.50398 4.33242i 0.369694 0.213443i
\(413\) −7.18346 11.8306i −0.353475 0.582146i
\(414\) −15.3651 + 1.16707i −0.755152 + 0.0573582i
\(415\) −0.0100414 + 0.0173923i −0.000492915 + 0.000853753i
\(416\) −11.6316 + 11.7052i −0.570284 + 0.573894i
\(417\) −21.3179 + 0.808446i −1.04394 + 0.0395898i
\(418\) 12.2418 7.06781i 0.598766 0.345698i
\(419\) −17.6169 + 30.5134i −0.860644 + 1.49068i 0.0106648 + 0.999943i \(0.496605\pi\)
−0.871309 + 0.490736i \(0.836728\pi\)
\(420\) 0.00702177 + 0.00351048i 0.000342627 + 0.000171294i
\(421\) 27.0300 1.31736 0.658682 0.752421i \(-0.271114\pi\)
0.658682 + 0.752421i \(0.271114\pi\)
\(422\) 8.23926i 0.401081i
\(423\) 10.7205 0.814285i 0.521249 0.0395919i
\(424\) 21.7563 + 37.6830i 1.05658 + 1.83005i
\(425\) −20.8762 −1.01264
\(426\) −2.21465 + 1.39312i −0.107300 + 0.0674968i
\(427\) 17.5834 + 9.64027i 0.850920 + 0.466526i
\(428\) 4.85032i 0.234449i
\(429\) 11.4693 + 10.5641i 0.553742 + 0.510038i
\(430\) 0.00468495 0.00270486i 0.000225928 0.000130440i
\(431\) 31.3272i 1.50898i −0.656312 0.754490i \(-0.727884\pi\)
0.656312 0.754490i \(-0.272116\pi\)
\(432\) 5.99633 4.43955i 0.288499 0.213598i
\(433\) −3.41909 + 1.97401i −0.164311 + 0.0948649i −0.579900 0.814687i \(-0.696909\pi\)
0.415590 + 0.909552i \(0.363575\pi\)
\(434\) −10.9988 18.1142i −0.527960 0.869511i
\(435\) 0.0291909 0.00110702i 0.00139960 5.30774e-5i
\(436\) 6.54440 0.313420
\(437\) 13.0738 + 22.6445i 0.625404 + 1.08323i
\(438\) 2.87550 1.80883i 0.137397 0.0864290i
\(439\) 26.7313 15.4333i 1.27582 0.736593i 0.299739 0.954021i \(-0.403100\pi\)
0.976076 + 0.217429i \(0.0697669\pi\)
\(440\) −0.00733575 + 0.0127059i −0.000349718 + 0.000605729i
\(441\) 8.24744 19.3127i 0.392735 0.919652i
\(442\) 15.3474 + 4.06047i 0.730001 + 0.193137i
\(443\) −16.2769 9.39748i −0.773340 0.446488i 0.0607250 0.998155i \(-0.480659\pi\)
−0.834065 + 0.551667i \(0.813992\pi\)
\(444\) −4.97186 2.62449i −0.235954 0.124553i
\(445\) −0.0104261 −0.000494242
\(446\) 7.90084 0.374116
\(447\) 5.79067 10.9699i 0.273889 0.518858i
\(448\) −9.79160 + 17.8594i −0.462610 + 0.843778i
\(449\) −4.95835 + 2.86270i −0.233999 + 0.135099i −0.612415 0.790536i \(-0.709802\pi\)
0.378417 + 0.925635i \(0.376469\pi\)
\(450\) −1.19805 15.7730i −0.0564768 0.743547i
\(451\) 7.91591 + 4.57025i 0.372745 + 0.215205i
\(452\) 0.400551i 0.0188403i
\(453\) 1.06974 + 28.2080i 0.0502608 + 1.32533i
\(454\) 9.00741i 0.422739i
\(455\) −0.0176522 + 0.00521091i −0.000827547 + 0.000244291i
\(456\) −25.0428 13.2193i −1.17273 0.619051i
\(457\) −16.9493 29.3570i −0.792854 1.37326i −0.924193 0.381926i \(-0.875261\pi\)
0.131339 0.991337i \(-0.458072\pi\)
\(458\) −10.8625 −0.507573
\(459\) 19.8981 + 8.64557i 0.928764 + 0.403541i
\(460\) −0.00722605 0.00417196i −0.000336917 0.000194519i
\(461\) 9.37925 + 16.2453i 0.436835 + 0.756621i 0.997443 0.0714602i \(-0.0227659\pi\)
−0.560608 + 0.828081i \(0.689433\pi\)
\(462\) 10.7929 + 5.39581i 0.502130 + 0.251036i
\(463\) −20.1902 −0.938317 −0.469158 0.883114i \(-0.655443\pi\)
−0.469158 + 0.883114i \(0.655443\pi\)
\(464\) 12.5513i 0.582681i
\(465\) −0.0118490 + 0.0224468i −0.000549484 + 0.00104095i
\(466\) −1.33582 −0.0618806
\(467\) −3.57259 + 6.18791i −0.165320 + 0.286342i −0.936769 0.349949i \(-0.886199\pi\)
0.771449 + 0.636291i \(0.219532\pi\)
\(468\) 1.74618 9.44396i 0.0807172 0.436547i
\(469\) 18.1305 33.0692i 0.837190 1.52699i
\(470\) −0.00631492 0.00364592i −0.000291285 0.000168174i
\(471\) −8.14841 + 0.309015i −0.375459 + 0.0142386i
\(472\) −13.7973 7.96588i −0.635073 0.366659i
\(473\) −5.74924 + 3.31932i −0.264350 + 0.152623i
\(474\) 6.21572 11.7751i 0.285498 0.540849i
\(475\) −23.2457 + 13.4209i −1.06659 + 0.615794i
\(476\) −9.80584 + 0.216669i −0.449450 + 0.00993102i
\(477\) −38.6369 18.5585i −1.76906 0.849735i
\(478\) 9.93393 + 17.2061i 0.454367 + 0.786987i
\(479\) 9.23925 0.422152 0.211076 0.977470i \(-0.432303\pi\)
0.211076 + 0.977470i \(0.432303\pi\)
\(480\) 0.0152836 0.000579604i 0.000697597 2.64552e-5i
\(481\) 12.7209 3.45161i 0.580024 0.157380i
\(482\) 1.29007 0.0587612
\(483\) −9.98099 + 19.9643i −0.454151 + 0.908406i
\(484\) −2.11565 + 3.66441i −0.0961658 + 0.166564i
\(485\) 0.00461203i 0.000209422i
\(486\) −5.39026 + 15.5302i −0.244507 + 0.704464i
\(487\) −0.650774 + 1.12717i −0.0294894 + 0.0510771i −0.880393 0.474244i \(-0.842721\pi\)
0.850904 + 0.525321i \(0.176055\pi\)
\(488\) 23.0822 1.04488
\(489\) 6.44299 + 3.40106i 0.291362 + 0.153801i
\(490\) −0.0120079 + 0.00765922i −0.000542464 + 0.000346008i
\(491\) −11.4486 6.60986i −0.516668 0.298299i 0.218902 0.975747i \(-0.429752\pi\)
−0.735570 + 0.677448i \(0.763086\pi\)
\(492\) −0.213347 5.62575i −0.00961842 0.253628i
\(493\) −31.6075 + 18.2486i −1.42353 + 0.821876i
\(494\) 19.6998 5.34521i 0.886335 0.240492i
\(495\) −0.00109459 0.0144109i −4.91984e−5 0.000647723i
\(496\) −9.44476 5.45294i −0.424082 0.244844i
\(497\) 0.0837188 + 3.78888i 0.00375530 + 0.169954i
\(498\) 18.9988 0.720498i 0.851358 0.0322863i
\(499\) 3.18217 5.51168i 0.142454 0.246737i −0.785966 0.618269i \(-0.787834\pi\)
0.928420 + 0.371532i \(0.121168\pi\)
\(500\) 0.00856547 0.0148358i 0.000383060 0.000663479i
\(501\) −21.2583 + 13.3725i −0.949751 + 0.597438i
\(502\) −8.07847 4.66411i −0.360560 0.208169i
\(503\) −17.7261 30.7026i −0.790370 1.36896i −0.925738 0.378165i \(-0.876555\pi\)
0.135369 0.990795i \(-0.456778\pi\)
\(504\) −2.36279 24.0569i −0.105247 1.07158i
\(505\) 0.0174223 0.0301764i 0.000775283 0.00134283i
\(506\) −11.1069 6.41256i −0.493761 0.285073i
\(507\) 12.1092 + 18.9833i 0.537790 + 0.843079i
\(508\) −4.19018 7.25761i −0.185909 0.322004i
\(509\) 7.82495 + 13.5532i 0.346835 + 0.600736i 0.985685 0.168595i \(-0.0539231\pi\)
−0.638850 + 0.769331i \(0.720590\pi\)
\(510\) −0.00783470 0.0124549i −0.000346926 0.000551512i
\(511\) −0.108700 4.91948i −0.00480862 0.217625i
\(512\) 15.3173i 0.676934i
\(513\) 27.7147 3.16524i 1.22363 0.139749i
\(514\) 9.99480 + 5.77050i 0.440852 + 0.254526i
\(515\) 0.0163062 0.00941436i 0.000718535 0.000414846i
\(516\) 3.61599 + 1.90877i 0.159185 + 0.0840288i
\(517\) 7.74949 + 4.47417i 0.340822 + 0.196774i
\(518\) 8.71853 5.29382i 0.383070 0.232597i
\(519\) 24.0433 + 12.6917i 1.05538 + 0.557105i
\(520\) −0.0149334 + 0.0150279i −0.000654871 + 0.000659016i
\(521\) 19.1120 + 33.1029i 0.837310 + 1.45026i 0.892136 + 0.451767i \(0.149206\pi\)
−0.0548261 + 0.998496i \(0.517460\pi\)
\(522\) −15.6017 22.8338i −0.682867 0.999410i
\(523\) −26.5888 + 15.3510i −1.16265 + 0.671254i −0.951937 0.306295i \(-0.900911\pi\)
−0.210709 + 0.977549i \(0.567577\pi\)
\(524\) −2.76224 4.78434i −0.120669 0.209005i
\(525\) −20.4944 10.2460i −0.894447 0.447172i
\(526\) 6.70414 + 11.6119i 0.292314 + 0.506303i
\(527\) 31.7125i 1.38142i
\(528\) 6.20525 0.235324i 0.270049 0.0102411i
\(529\) 0.361731 0.626536i 0.0157274 0.0272407i
\(530\) 0.0145353 + 0.0251759i 0.000631374 + 0.00109357i
\(531\) 15.6488 1.18862i 0.679101 0.0515817i
\(532\) −10.7796 + 6.54526i −0.467353 + 0.283773i
\(533\) 9.36253 + 9.30364i 0.405536 + 0.402985i
\(534\) 5.25557 + 8.35482i 0.227431 + 0.361548i
\(535\) 0.0105397i 0.000455673i
\(536\) 43.4109i 1.87507i
\(537\) 5.22702 9.90212i 0.225563 0.427308i
\(538\) 24.4223i 1.05292i
\(539\) 14.7358 9.39917i 0.634716 0.404851i
\(540\) −0.00715411 + 0.00529674i −0.000307864 + 0.000227936i
\(541\) 4.56917 7.91403i 0.196444 0.340251i −0.750929 0.660383i \(-0.770394\pi\)
0.947373 + 0.320132i \(0.103727\pi\)
\(542\) 13.8915 24.0607i 0.596690 1.03350i
\(543\) −0.759535 + 1.43887i −0.0325948 + 0.0617478i
\(544\) −16.5488 + 9.55448i −0.709525 + 0.409645i
\(545\) 0.0142210 0.000609160
\(546\) 13.0738 + 11.5187i 0.559508 + 0.492954i
\(547\) −35.4176 −1.51435 −0.757173 0.653214i \(-0.773420\pi\)
−0.757173 + 0.653214i \(0.773420\pi\)
\(548\) 4.73379 2.73305i 0.202217 0.116750i
\(549\) −18.7738 + 12.8275i −0.801244 + 0.547466i
\(550\) 6.58282 11.4018i 0.280692 0.486174i
\(551\) −23.4634 + 40.6398i −0.999574 + 1.73131i
\(552\) 0.973639 + 25.6739i 0.0414408 + 1.09275i
\(553\) −10.0099 16.4856i −0.425665 0.701038i
\(554\) 4.64484i 0.197340i
\(555\) −0.0108039 0.00570302i −0.000458598 0.000242080i
\(556\) 10.9360i 0.463788i
\(557\) 4.53358i 0.192094i −0.995377 0.0960470i \(-0.969380\pi\)
0.995377 0.0960470i \(-0.0306199\pi\)
\(558\) 23.9604 1.81993i 1.01432 0.0770439i
\(559\) −9.25180 + 2.51032i −0.391310 + 0.106175i
\(560\) −0.00352369 + 0.00642705i −0.000148903 + 0.000271592i
\(561\) 9.61452 + 15.2843i 0.405925 + 0.645303i
\(562\) 7.00820 + 12.1386i 0.295623 + 0.512034i
\(563\) 6.06622 10.5070i 0.255661 0.442817i −0.709414 0.704792i \(-0.751040\pi\)
0.965075 + 0.261975i \(0.0843737\pi\)
\(564\) −0.208862 5.50747i −0.00879466 0.231906i
\(565\) 0 0.000870398i 0 3.66179e-5i
\(566\) 8.63613 + 14.9582i 0.363004 + 0.628741i
\(567\) 15.2909 + 18.2534i 0.642159 + 0.766571i
\(568\) 2.18118 + 3.77792i 0.0915204 + 0.158518i
\(569\) 31.4844 18.1775i 1.31990 0.762042i 0.336184 0.941796i \(-0.390864\pi\)
0.983712 + 0.179754i \(0.0575303\pi\)
\(570\) −0.0167310 0.00883178i −0.000700784 0.000369923i
\(571\) 7.04698 + 12.2057i 0.294907 + 0.510794i 0.974963 0.222366i \(-0.0713780\pi\)
−0.680056 + 0.733160i \(0.738045\pi\)
\(572\) 5.63433 5.66999i 0.235583 0.237074i
\(573\) 4.34960 8.23991i 0.181707 0.344227i
\(574\) 8.95618 + 4.91032i 0.373824 + 0.204953i
\(575\) 21.0906 + 12.1767i 0.879540 + 0.507802i
\(576\) −13.0289 19.0684i −0.542871 0.794519i
\(577\) 11.4758 6.62558i 0.477745 0.275826i −0.241731 0.970343i \(-0.577715\pi\)
0.719476 + 0.694517i \(0.244382\pi\)
\(578\) 0.395085 + 0.228102i 0.0164334 + 0.00948780i
\(579\) −32.3849 17.0950i −1.34587 0.710445i
\(580\) 0.0149748i 0.000621793i
\(581\) 13.2395 24.1482i 0.549266 1.00183i
\(582\) −3.69581 + 2.32483i −0.153196 + 0.0963675i
\(583\) −17.8373 30.8951i −0.738746 1.27955i
\(584\) −2.83205 4.90525i −0.117191 0.202981i
\(585\) 0.00379445 0.0205217i 0.000156881 0.000848469i
\(586\) 18.1984 + 10.5069i 0.751771 + 0.434035i
\(587\) 15.6011 27.0220i 0.643928 1.11532i −0.340620 0.940201i \(-0.610637\pi\)
0.984548 0.175115i \(-0.0560296\pi\)
\(588\) −9.73284 4.59999i −0.401376 0.189700i
\(589\) −20.3874 35.3120i −0.840047 1.45500i
\(590\) −0.00921795 0.00532198i −0.000379497 0.000219103i
\(591\) −23.8912 37.9800i −0.982753 1.56229i
\(592\) 2.62455 4.54585i 0.107868 0.186833i
\(593\) 5.48292 9.49670i 0.225157 0.389983i −0.731210 0.682153i \(-0.761044\pi\)
0.956366 + 0.292170i \(0.0943773\pi\)
\(594\) −10.9963 + 8.14141i −0.451184 + 0.334046i
\(595\) −0.0213081 0.000470823i −0.000873547 1.93018e-5i
\(596\) −5.50691 3.17942i −0.225572 0.130234i
\(597\) −2.55295 4.05845i −0.104485 0.166101i
\(598\) −13.1367 13.0540i −0.537198 0.533819i
\(599\) −12.1466 + 7.01285i −0.496297 + 0.286537i −0.727183 0.686444i \(-0.759171\pi\)
0.230886 + 0.972981i \(0.425838\pi\)
\(600\) −26.3556 + 0.999491i −1.07596 + 0.0408040i
\(601\) 3.15684 + 1.82260i 0.128770 + 0.0743455i 0.563001 0.826456i \(-0.309647\pi\)
−0.434231 + 0.900801i \(0.642980\pi\)
\(602\) −6.34091 + 3.85015i −0.258436 + 0.156920i
\(603\) 24.1248 + 35.3079i 0.982439 + 1.43785i
\(604\) 14.4705 0.588798
\(605\) −0.00459731 + 0.00796277i −0.000186907 + 0.000323733i
\(606\) −32.9638 + 1.25010i −1.33906 + 0.0507817i
\(607\) 17.2352i 0.699557i 0.936833 + 0.349778i \(0.113743\pi\)
−0.936833 + 0.349778i \(0.886257\pi\)
\(608\) −12.2848 + 21.2779i −0.498214 + 0.862933i
\(609\) −39.9858 + 2.40193i −1.62031 + 0.0973311i
\(610\) 0.0154212 0.000624386
\(611\) 9.16570 + 9.10805i 0.370805 + 0.368472i
\(612\) 4.81531 10.0250i 0.194647 0.405236i
\(613\) −30.5124 −1.23239 −0.616193 0.787596i \(-0.711326\pi\)
−0.616193 + 0.787596i \(0.711326\pi\)
\(614\) −2.60117 4.50536i −0.104975 0.181821i
\(615\) −0.000463603 0.0122248i −1.86943e−5 0.000492950i
\(616\) 9.67207 17.6414i 0.389699 0.710791i
\(617\) 5.82452 3.36279i 0.234486 0.135381i −0.378154 0.925743i \(-0.623441\pi\)
0.612640 + 0.790362i \(0.290108\pi\)
\(618\) −15.7637 8.32118i −0.634110 0.334727i
\(619\) 8.43263 4.86858i 0.338936 0.195685i −0.320865 0.947125i \(-0.603974\pi\)
0.659801 + 0.751440i \(0.270640\pi\)
\(620\) 0.0112684 + 0.00650580i 0.000452549 + 0.000261279i
\(621\) −15.0597 20.3406i −0.604325 0.816239i
\(622\) −12.2236 7.05729i −0.490121 0.282971i
\(623\) 14.2936 0.315831i 0.572662 0.0126535i
\(624\) 8.74936 + 1.96332i 0.350255 + 0.0785957i
\(625\) −12.5000 + 21.6506i −0.499999 + 0.866023i
\(626\) −29.1761 −1.16611
\(627\) 20.5318 + 10.8381i 0.819961 + 0.432832i
\(628\) 4.18009i 0.166804i
\(629\) 15.2635 0.608595
\(630\) −0.00157857 0.0160724i −6.28918e−5 0.000640338i
\(631\) −1.16211 2.01284i −0.0462630 0.0801299i 0.841967 0.539530i \(-0.181398\pi\)
−0.888230 + 0.459400i \(0.848065\pi\)
\(632\) −19.2261 11.1002i −0.764774 0.441543i
\(633\) 11.4546 7.20547i 0.455279 0.286392i
\(634\) −15.6334 −0.620880
\(635\) −0.00910527 0.0157708i −0.000361332 0.000625845i
\(636\) −10.2573 + 19.4315i −0.406728 + 0.770510i
\(637\) 24.0424 7.67863i 0.952596 0.304239i
\(638\) 23.0171i 0.911256i
\(639\) −3.87355 1.86059i −0.153235 0.0736036i
\(640\) 0.00199739i 7.89536e-5i
\(641\) 9.55907 + 5.51893i 0.377561 + 0.217985i 0.676756 0.736207i \(-0.263385\pi\)
−0.299196 + 0.954192i \(0.596718\pi\)
\(642\) −8.44592 + 5.31288i −0.333334 + 0.209683i
\(643\) 2.75926 1.59306i 0.108815 0.0628241i −0.444605 0.895727i \(-0.646656\pi\)
0.553420 + 0.832903i \(0.313323\pi\)
\(644\) 10.0330 + 5.50067i 0.395354 + 0.216757i
\(645\) 0.00785754 + 0.00414775i 0.000309390 + 0.000163318i
\(646\) 23.6372 0.929995
\(647\) 39.9534 1.57073 0.785365 0.619033i \(-0.212475\pi\)
0.785365 + 0.619033i \(0.212475\pi\)
\(648\) 25.5347 + 9.96213i 1.00310 + 0.391350i
\(649\) 11.3120 + 6.53099i 0.444035 + 0.256364i
\(650\) 13.4006 13.4854i 0.525616 0.528943i
\(651\) 15.5644 31.1325i 0.610018 1.22018i
\(652\) 1.86738 3.23440i 0.0731323 0.126669i
\(653\) −13.7639 + 7.94656i −0.538621 + 0.310973i −0.744520 0.667600i \(-0.767322\pi\)
0.205899 + 0.978573i \(0.433988\pi\)
\(654\) −7.16852 11.3958i −0.280311 0.445613i
\(655\) −0.00600235 0.0103964i −0.000234531 0.000406220i
\(656\) 5.25633 0.205225
\(657\) 5.02942 + 2.41578i 0.196216 + 0.0942487i
\(658\) 8.76789 + 4.80709i 0.341808 + 0.187400i
\(659\) −43.5079 + 25.1193i −1.69483 + 0.978510i −0.744315 + 0.667829i \(0.767224\pi\)
−0.950514 + 0.310681i \(0.899443\pi\)
\(660\) −0.00740337 0.000280760i −0.000288176 1.09286e-5i
\(661\) 50.3595i 1.95876i −0.202032 0.979379i \(-0.564754\pi\)
0.202032 0.979379i \(-0.435246\pi\)
\(662\) −5.30506 + 3.06288i −0.206187 + 0.119042i
\(663\) 7.77669 + 24.8876i 0.302022 + 0.966556i
\(664\) 31.7000i 1.23020i
\(665\) −0.0234240 + 0.0142229i −0.000908343 + 0.000551539i
\(666\) 0.875949 + 11.5323i 0.0339423 + 0.446869i
\(667\) 42.5763 1.64856
\(668\) 6.43717 + 11.1495i 0.249062 + 0.431387i
\(669\) 6.90952 + 10.9841i 0.267137 + 0.424670i
\(670\) 0.0290027i 0.00112047i
\(671\) −18.9244 −0.730570
\(672\) −20.9355 + 1.25759i −0.807604 + 0.0485124i
\(673\) 18.1511 31.4387i 0.699674 1.21187i −0.268905 0.963167i \(-0.586662\pi\)
0.968579 0.248704i \(-0.0800048\pi\)
\(674\) 8.72657 5.03829i 0.336135 0.194068i
\(675\) 20.8806 15.4596i 0.803696 0.595039i
\(676\) 9.95958 5.83427i 0.383061 0.224395i
\(677\) 18.7369 32.4533i 0.720119 1.24728i −0.240833 0.970567i \(-0.577421\pi\)
0.960952 0.276716i \(-0.0892460\pi\)
\(678\) −0.697485 + 0.438750i −0.0267867 + 0.0168501i
\(679\) 0.139710 + 6.32287i 0.00536157 + 0.242650i
\(680\) −0.0212465 + 0.0122667i −0.000814765 + 0.000470405i
\(681\) −12.5225 + 7.87724i −0.479864 + 0.301857i
\(682\) 17.3202 + 9.99980i 0.663223 + 0.382912i
\(683\) −32.7411 18.9031i −1.25281 0.723307i −0.281140 0.959667i \(-0.590712\pi\)
−0.971666 + 0.236359i \(0.924046\pi\)
\(684\) −1.08302 14.2585i −0.0414103 0.545189i
\(685\) 0.0102865 0.00593893i 0.000393028 0.000226915i
\(686\) 16.2303 10.8642i 0.619676 0.414796i
\(687\) −9.49960 15.1016i −0.362432 0.576162i
\(688\) −1.90881 + 3.30615i −0.0727726 + 0.126046i
\(689\) −13.4899 49.7172i −0.513925 1.89407i
\(690\) 0.000650486 0.0171527i 2.47636e−5 0.000652991i
\(691\) 11.2268 6.48179i 0.427087 0.246579i −0.271018 0.962574i \(-0.587360\pi\)
0.698105 + 0.715995i \(0.254027\pi\)
\(692\) 6.96851 12.0698i 0.264903 0.458825i
\(693\) 1.93718 + 19.7235i 0.0735874 + 0.749235i
\(694\) −30.7066 −1.16561
\(695\) 0.0237639i 0.000901415i
\(696\) −39.0299 + 24.5516i −1.47942 + 0.930627i
\(697\) 7.64226 + 13.2368i 0.289471 + 0.501379i
\(698\) −33.0689 −1.25168
\(699\) −1.16821 1.85712i −0.0441858 0.0702425i
\(700\) −5.64672 + 10.2993i −0.213426 + 0.389279i
\(701\) 34.9085i 1.31848i −0.751934 0.659238i \(-0.770879\pi\)
0.751934 0.659238i \(-0.229121\pi\)
\(702\) −18.3576 + 7.30396i −0.692863 + 0.275670i
\(703\) 16.9960 9.81262i 0.641014 0.370090i
\(704\) 19.2215i 0.724438i
\(705\) −0.000453857 0.0119677i −1.70932e−5 0.000450731i
\(706\) 1.45710 0.841257i 0.0548387 0.0316611i
\(707\) −22.9711 + 41.8981i −0.863915 + 1.57574i
\(708\) −0.304877 8.03931i −0.0114580 0.302136i
\(709\) 36.5640 1.37319 0.686595 0.727040i \(-0.259105\pi\)
0.686595 + 0.727040i \(0.259105\pi\)
\(710\) 0.00145724 + 0.00252402i 5.46893e−5 + 9.47247e-5i
\(711\) 21.8061 1.65630i 0.817794 0.0621162i
\(712\) 14.2523 8.22855i 0.534126 0.308378i
\(713\) −18.4973 + 32.0382i −0.692729 + 1.19984i
\(714\) 11.1183 + 16.8377i 0.416092 + 0.630136i
\(715\) 0.0122434 0.0123209i 0.000457877 0.000460776i
\(716\) −4.97089 2.86994i −0.185771 0.107255i
\(717\) −15.2331 + 28.8578i −0.568892 + 1.07771i
\(718\) −13.6052 −0.507743
\(719\) 39.6806 1.47984 0.739919 0.672696i \(-0.234864\pi\)
0.739919 + 0.672696i \(0.234864\pi\)
\(720\) −0.00468869 0.00686214i −0.000174737 0.000255737i
\(721\) −22.0698 + 13.4006i −0.821921 + 0.499064i
\(722\) 8.96785 5.17759i 0.333749 0.192690i
\(723\) 1.12821 + 1.79352i 0.0419584 + 0.0667017i
\(724\) 0.722316 + 0.417030i 0.0268447 + 0.0154988i
\(725\) 43.7067i 1.62323i
\(726\) 8.69830 0.329868i 0.322824 0.0122426i
\(727\) 15.6289i 0.579644i −0.957081 0.289822i \(-0.906404\pi\)
0.957081 0.289822i \(-0.0935961\pi\)
\(728\) 20.0177 21.0549i 0.741905 0.780345i
\(729\) −26.3047 + 6.08783i −0.974249 + 0.225475i
\(730\) −0.00189208 0.00327718i −7.00291e−5 0.000121294i
\(731\) −11.1010 −0.410585
\(732\) 6.20629 + 9.86618i 0.229391 + 0.364665i
\(733\) −25.0179 14.4441i −0.924055 0.533504i −0.0391289 0.999234i \(-0.512458\pi\)
−0.884927 + 0.465730i \(0.845792\pi\)
\(734\) 6.90732 + 11.9638i 0.254954 + 0.441593i
\(735\) −0.0211495 0.00999578i −0.000780110 0.000368700i
\(736\) 22.2918 0.821686
\(737\) 35.5913i 1.31102i
\(738\) −9.56250 + 6.53376i −0.352000 + 0.240511i
\(739\) 15.1318 0.556634 0.278317 0.960489i \(-0.410223\pi\)
0.278317 + 0.960489i \(0.410223\pi\)
\(740\) −0.00313130 + 0.00542356i −0.000115109 + 0.000199374i
\(741\) 24.6592 + 22.7130i 0.905878 + 0.834383i
\(742\) −20.6899 34.0746i −0.759549 1.25092i
\(743\) −30.5018 17.6102i −1.11900 0.646056i −0.177856 0.984057i \(-0.556916\pi\)
−0.941146 + 0.338001i \(0.890249\pi\)
\(744\) −1.51830 40.0361i −0.0556636 1.46779i
\(745\) −0.0119665 0.00690888i −0.000438420 0.000253122i
\(746\) −5.60517 + 3.23614i −0.205220 + 0.118484i
\(747\) 17.6167 + 25.7829i 0.644561 + 0.943348i
\(748\) 8.01626 4.62819i 0.293103 0.169223i
\(749\) 0.319275 + 14.4495i 0.0116660 + 0.527973i
\(750\) −0.0352162 + 0.00133551i −0.00128591 + 4.87661e-5i
\(751\) −0.826755 1.43198i −0.0301687 0.0522538i 0.850547 0.525899i \(-0.176271\pi\)
−0.880716 + 0.473646i \(0.842938\pi\)
\(752\) 5.14582 0.187649
\(753\) −0.580604 15.3100i −0.0211584 0.557926i
\(754\) 8.50107 32.1316i 0.309591 1.17016i
\(755\) 0.0314445 0.00114438
\(756\) 9.64749 7.47830i 0.350876 0.271983i
\(757\) −7.44232 + 12.8905i −0.270496 + 0.468513i −0.968989 0.247104i \(-0.920521\pi\)
0.698493 + 0.715617i \(0.253854\pi\)
\(758\) 13.6061i 0.494194i
\(759\) −0.798257 21.0493i −0.0289749 0.764040i
\(760\) −0.0157720 + 0.0273180i −0.000572112 + 0.000990926i
\(761\) −8.40012 −0.304504 −0.152252 0.988342i \(-0.548653\pi\)
−0.152252 + 0.988342i \(0.548653\pi\)
\(762\) −8.04799 + 15.2462i −0.291548 + 0.552311i
\(763\) −19.4963 + 0.430789i −0.705813 + 0.0155956i
\(764\) −4.13646 2.38818i −0.149652 0.0864015i
\(765\) 0.0104637 0.0217843i 0.000378315 0.000787614i
\(766\) −8.43849 + 4.87196i −0.304895 + 0.176031i
\(767\) 13.3793 + 13.2951i 0.483097 + 0.480058i
\(768\) −24.1732 + 15.2061i −0.872277 + 0.548703i
\(769\) 40.4429 + 23.3497i 1.45841 + 0.842013i