# Properties

 Label 273.2.bf.a Level $273$ Weight $2$ Character orbit 273.bf Analytic conductor $2.180$ Analytic rank $0$ Dimension $2$ CM discriminant -3 Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [273,2,Mod(152,273)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(273, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([3, 5, 4]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("273.152");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.bf (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{7}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - 2 \zeta_{6} + 1) q^{3} - 2 \zeta_{6} q^{4} + ( - \zeta_{6} - 2) q^{7} - 3 q^{9} +O(q^{10})$$ q + (-2*z + 1) * q^3 - 2*z * q^4 + (-z - 2) * q^7 - 3 * q^9 $$q + ( - 2 \zeta_{6} + 1) q^{3} - 2 \zeta_{6} q^{4} + ( - \zeta_{6} - 2) q^{7} - 3 q^{9} + (2 \zeta_{6} - 4) q^{12} + (4 \zeta_{6} - 1) q^{13} + (4 \zeta_{6} - 4) q^{16} + ( - 10 \zeta_{6} + 5) q^{19} + (5 \zeta_{6} - 4) q^{21} + ( - 5 \zeta_{6} + 5) q^{25} + (6 \zeta_{6} - 3) q^{27} + (6 \zeta_{6} - 2) q^{28} + ( - 5 \zeta_{6} - 5) q^{31} + 6 \zeta_{6} q^{36} + ( - 11 \zeta_{6} + 11) q^{37} + ( - 2 \zeta_{6} + 7) q^{39} + ( - 8 \zeta_{6} + 8) q^{43} + (4 \zeta_{6} + 4) q^{48} + (5 \zeta_{6} + 3) q^{49} + ( - 6 \zeta_{6} + 8) q^{52} - 15 q^{57} + (18 \zeta_{6} - 9) q^{61} + (3 \zeta_{6} + 6) q^{63} + 8 q^{64} + 11 q^{67} + ( - 8 \zeta_{6} - 8) q^{73} + ( - 5 \zeta_{6} - 5) q^{75} + (10 \zeta_{6} - 20) q^{76} + 13 \zeta_{6} q^{79} + 9 q^{81} + ( - 2 \zeta_{6} + 10) q^{84} + ( - 11 \zeta_{6} + 6) q^{91} + (15 \zeta_{6} - 15) q^{93} + (3 \zeta_{6} + 3) q^{97} +O(q^{100})$$ q + (-2*z + 1) * q^3 - 2*z * q^4 + (-z - 2) * q^7 - 3 * q^9 + (2*z - 4) * q^12 + (4*z - 1) * q^13 + (4*z - 4) * q^16 + (-10*z + 5) * q^19 + (5*z - 4) * q^21 + (-5*z + 5) * q^25 + (6*z - 3) * q^27 + (6*z - 2) * q^28 + (-5*z - 5) * q^31 + 6*z * q^36 + (-11*z + 11) * q^37 + (-2*z + 7) * q^39 + (-8*z + 8) * q^43 + (4*z + 4) * q^48 + (5*z + 3) * q^49 + (-6*z + 8) * q^52 - 15 * q^57 + (18*z - 9) * q^61 + (3*z + 6) * q^63 + 8 * q^64 + 11 * q^67 + (-8*z - 8) * q^73 + (-5*z - 5) * q^75 + (10*z - 20) * q^76 + 13*z * q^79 + 9 * q^81 + (-2*z + 10) * q^84 + (-11*z + 6) * q^91 + (15*z - 15) * q^93 + (3*z + 3) * q^97 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{4} - 5 q^{7} - 6 q^{9}+O(q^{10})$$ 2 * q - 2 * q^4 - 5 * q^7 - 6 * q^9 $$2 q - 2 q^{4} - 5 q^{7} - 6 q^{9} - 6 q^{12} + 2 q^{13} - 4 q^{16} - 3 q^{21} + 5 q^{25} + 2 q^{28} - 15 q^{31} + 6 q^{36} + 11 q^{37} + 12 q^{39} + 8 q^{43} + 12 q^{48} + 11 q^{49} + 10 q^{52} - 30 q^{57} + 15 q^{63} + 16 q^{64} + 22 q^{67} - 24 q^{73} - 15 q^{75} - 30 q^{76} + 13 q^{79} + 18 q^{81} + 18 q^{84} + q^{91} - 15 q^{93} + 9 q^{97}+O(q^{100})$$ 2 * q - 2 * q^4 - 5 * q^7 - 6 * q^9 - 6 * q^12 + 2 * q^13 - 4 * q^16 - 3 * q^21 + 5 * q^25 + 2 * q^28 - 15 * q^31 + 6 * q^36 + 11 * q^37 + 12 * q^39 + 8 * q^43 + 12 * q^48 + 11 * q^49 + 10 * q^52 - 30 * q^57 + 15 * q^63 + 16 * q^64 + 22 * q^67 - 24 * q^73 - 15 * q^75 - 30 * q^76 + 13 * q^79 + 18 * q^81 + 18 * q^84 + q^91 - 15 * q^93 + 9 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$-1$$ $$-1 + \zeta_{6}$$ $$\zeta_{6}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
152.1
 0.5 − 0.866025i 0.5 + 0.866025i
0 1.73205i −1.00000 + 1.73205i 0 0 −2.50000 + 0.866025i 0 −3.00000 0
185.1 0 1.73205i −1.00000 1.73205i 0 0 −2.50000 0.866025i 0 −3.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by $$\Q(\sqrt{-3})$$
91.m odd 6 1 inner
273.bf even 6 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 273.2.bf.a yes 2
3.b odd 2 1 CM 273.2.bf.a yes 2
7.d odd 6 1 273.2.r.a 2
13.c even 3 1 273.2.r.a 2
21.g even 6 1 273.2.r.a 2
39.i odd 6 1 273.2.r.a 2
91.m odd 6 1 inner 273.2.bf.a yes 2
273.bf even 6 1 inner 273.2.bf.a yes 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.r.a 2 7.d odd 6 1
273.2.r.a 2 13.c even 3 1
273.2.r.a 2 21.g even 6 1
273.2.r.a 2 39.i odd 6 1
273.2.bf.a yes 2 1.a even 1 1 trivial
273.2.bf.a yes 2 3.b odd 2 1 CM
273.2.bf.a yes 2 91.m odd 6 1 inner
273.2.bf.a yes 2 273.bf even 6 1 inner

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}$$ acting on $$S_{2}^{\mathrm{new}}(273, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} + 3$$
$5$ $$T^{2}$$
$7$ $$T^{2} + 5T + 7$$
$11$ $$T^{2}$$
$13$ $$T^{2} - 2T + 13$$
$17$ $$T^{2}$$
$19$ $$T^{2} + 75$$
$23$ $$T^{2}$$
$29$ $$T^{2}$$
$31$ $$T^{2} + 15T + 75$$
$37$ $$T^{2} - 11T + 121$$
$41$ $$T^{2}$$
$43$ $$T^{2} - 8T + 64$$
$47$ $$T^{2}$$
$53$ $$T^{2}$$
$59$ $$T^{2}$$
$61$ $$T^{2} + 243$$
$67$ $$(T - 11)^{2}$$
$71$ $$T^{2}$$
$73$ $$T^{2} + 24T + 192$$
$79$ $$T^{2} - 13T + 169$$
$83$ $$T^{2}$$
$89$ $$T^{2}$$
$97$ $$T^{2} - 9T + 27$$