Properties

Label 273.2.bd.a.127.6
Level $273$
Weight $2$
Character 273.127
Analytic conductor $2.180$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [273,2,Mod(43,273)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(273, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("273.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.bd (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 22x^{14} + 187x^{12} + 774x^{10} + 1619x^{8} + 1618x^{6} + 690x^{4} + 96x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 127.6
Root \(-1.10207i\) of defining polynomial
Character \(\chi\) \(=\) 273.127
Dual form 273.2.bd.a.43.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.954423 - 0.551037i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.392717 + 0.680206i) q^{4} +3.28432i q^{5} +(-0.954423 - 0.551037i) q^{6} +(0.866025 + 0.500000i) q^{7} +3.06975i q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(0.954423 - 0.551037i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.392717 + 0.680206i) q^{4} +3.28432i q^{5} +(-0.954423 - 0.551037i) q^{6} +(0.866025 + 0.500000i) q^{7} +3.06975i q^{8} +(-0.500000 + 0.866025i) q^{9} +(1.80978 + 3.13463i) q^{10} +(-1.21979 + 0.704249i) q^{11} +0.785435 q^{12} +(3.42102 + 1.13870i) q^{13} +1.10207 q^{14} +(2.84430 - 1.64216i) q^{15} +(0.906111 + 1.56943i) q^{16} +(2.88992 - 5.00548i) q^{17} +1.10207i q^{18} +(-5.36590 - 3.09800i) q^{19} +(-2.23401 - 1.28981i) q^{20} -1.00000i q^{21} +(-0.776134 + 1.34430i) q^{22} +(1.70072 + 2.94574i) q^{23} +(2.65848 - 1.53488i) q^{24} -5.78675 q^{25} +(3.89256 - 0.798302i) q^{26} +1.00000 q^{27} +(-0.680206 + 0.392717i) q^{28} +(4.28846 + 7.42783i) q^{29} +(1.80978 - 3.13463i) q^{30} -7.64123i q^{31} +(-3.58734 - 2.07115i) q^{32} +(1.21979 + 0.704249i) q^{33} -6.36980i q^{34} +(-1.64216 + 2.84430i) q^{35} +(-0.392717 - 0.680206i) q^{36} +(4.84216 - 2.79562i) q^{37} -6.82845 q^{38} +(-0.724364 - 3.53204i) q^{39} -10.0820 q^{40} +(-0.999386 + 0.576996i) q^{41} +(-0.551037 - 0.954423i) q^{42} +(0.409497 - 0.709270i) q^{43} -1.10628i q^{44} +(-2.84430 - 1.64216i) q^{45} +(3.24642 + 1.87432i) q^{46} +3.35146i q^{47} +(0.906111 - 1.56943i) q^{48} +(0.500000 + 0.866025i) q^{49} +(-5.52300 + 3.18871i) q^{50} -5.77983 q^{51} +(-2.11805 + 1.87981i) q^{52} +5.54281 q^{53} +(0.954423 - 0.551037i) q^{54} +(-2.31298 - 4.00619i) q^{55} +(-1.53488 + 2.65848i) q^{56} +6.19600i q^{57} +(8.18602 + 4.72620i) q^{58} +(-4.23463 - 2.44486i) q^{59} +2.57962i q^{60} +(1.48876 - 2.57860i) q^{61} +(-4.21060 - 7.29297i) q^{62} +(-0.866025 + 0.500000i) q^{63} -8.18957 q^{64} +(-3.73986 + 11.2357i) q^{65} +1.55227 q^{66} +(0.232752 - 0.134379i) q^{67} +(2.26984 + 3.93148i) q^{68} +(1.70072 - 2.94574i) q^{69} +3.61956i q^{70} +(-8.03762 - 4.64052i) q^{71} +(-2.65848 - 1.53488i) q^{72} -12.1448i q^{73} +(3.08098 - 5.33641i) q^{74} +(2.89337 + 5.01147i) q^{75} +(4.21456 - 2.43328i) q^{76} -1.40850 q^{77} +(-2.63763 - 2.97191i) q^{78} +6.00232 q^{79} +(-5.15451 + 2.97596i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-0.635891 + 1.10140i) q^{82} +6.02174i q^{83} +(0.680206 + 0.392717i) q^{84} +(16.4396 + 9.49140i) q^{85} -0.902592i q^{86} +(4.28846 - 7.42783i) q^{87} +(-2.16187 - 3.74447i) q^{88} +(14.3573 - 8.28917i) q^{89} -3.61956 q^{90} +(2.39334 + 2.69665i) q^{91} -2.67162 q^{92} +(-6.61750 + 3.82061i) q^{93} +(1.84678 + 3.19871i) q^{94} +(10.1748 - 17.6233i) q^{95} +4.14230i q^{96} +(-16.2251 - 9.36758i) q^{97} +(0.954423 + 0.551037i) q^{98} -1.40850i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{3} + 6 q^{4} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 8 q^{3} + 6 q^{4} - 8 q^{9} - 4 q^{10} - 12 q^{11} - 12 q^{12} + 4 q^{13} + 4 q^{14} - 10 q^{16} + 10 q^{17} + 6 q^{20} - 2 q^{22} - 2 q^{23} + 12 q^{25} + 20 q^{26} + 16 q^{27} + 12 q^{29} - 4 q^{30} + 30 q^{32} + 12 q^{33} - 2 q^{35} + 6 q^{36} + 18 q^{37} - 32 q^{38} - 8 q^{39} - 60 q^{40} + 18 q^{41} - 2 q^{42} - 10 q^{43} + 30 q^{46} - 10 q^{48} + 8 q^{49} - 24 q^{50} - 20 q^{51} - 26 q^{52} + 12 q^{53} + 10 q^{55} + 12 q^{56} - 54 q^{58} - 60 q^{59} - 6 q^{61} + 16 q^{62} + 16 q^{64} - 20 q^{65} + 4 q^{66} - 18 q^{67} - 20 q^{68} - 2 q^{69} + 6 q^{71} + 18 q^{74} - 6 q^{75} + 72 q^{76} - 16 q^{77} + 14 q^{78} - 4 q^{79} + 30 q^{80} - 8 q^{81} - 18 q^{82} - 24 q^{85} + 12 q^{87} - 2 q^{88} + 78 q^{89} + 8 q^{90} - 8 q^{91} - 20 q^{92} + 6 q^{93} + 16 q^{94} - 4 q^{95} - 54 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/273\mathbb{Z}\right)^\times\).

\(n\) \(92\) \(106\) \(157\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.954423 0.551037i 0.674879 0.389642i −0.123044 0.992401i \(-0.539266\pi\)
0.797923 + 0.602760i \(0.205932\pi\)
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) −0.392717 + 0.680206i −0.196359 + 0.340103i
\(5\) 3.28432i 1.46879i 0.678721 + 0.734396i \(0.262534\pi\)
−0.678721 + 0.734396i \(0.737466\pi\)
\(6\) −0.954423 0.551037i −0.389642 0.224960i
\(7\) 0.866025 + 0.500000i 0.327327 + 0.188982i
\(8\) 3.06975i 1.08532i
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 1.80978 + 3.13463i 0.572302 + 0.991257i
\(11\) −1.21979 + 0.704249i −0.367782 + 0.212339i −0.672489 0.740107i \(-0.734775\pi\)
0.304707 + 0.952446i \(0.401441\pi\)
\(12\) 0.785435 0.226735
\(13\) 3.42102 + 1.13870i 0.948819 + 0.315819i
\(14\) 1.10207 0.294541
\(15\) 2.84430 1.64216i 0.734396 0.424004i
\(16\) 0.906111 + 1.56943i 0.226528 + 0.392358i
\(17\) 2.88992 5.00548i 0.700907 1.21401i −0.267241 0.963630i \(-0.586112\pi\)
0.968148 0.250377i \(-0.0805547\pi\)
\(18\) 1.10207i 0.259761i
\(19\) −5.36590 3.09800i −1.23102 0.710730i −0.263778 0.964583i \(-0.584969\pi\)
−0.967243 + 0.253853i \(0.918302\pi\)
\(20\) −2.23401 1.28981i −0.499541 0.288410i
\(21\) 1.00000i 0.218218i
\(22\) −0.776134 + 1.34430i −0.165472 + 0.286606i
\(23\) 1.70072 + 2.94574i 0.354626 + 0.614230i 0.987054 0.160389i \(-0.0512750\pi\)
−0.632428 + 0.774619i \(0.717942\pi\)
\(24\) 2.65848 1.53488i 0.542661 0.313305i
\(25\) −5.78675 −1.15735
\(26\) 3.89256 0.798302i 0.763395 0.156560i
\(27\) 1.00000 0.192450
\(28\) −0.680206 + 0.392717i −0.128547 + 0.0742166i
\(29\) 4.28846 + 7.42783i 0.796347 + 1.37931i 0.921980 + 0.387237i \(0.126571\pi\)
−0.125633 + 0.992077i \(0.540096\pi\)
\(30\) 1.80978 3.13463i 0.330419 0.572302i
\(31\) 7.64123i 1.37240i −0.727411 0.686202i \(-0.759276\pi\)
0.727411 0.686202i \(-0.240724\pi\)
\(32\) −3.58734 2.07115i −0.634158 0.366131i
\(33\) 1.21979 + 0.704249i 0.212339 + 0.122594i
\(34\) 6.36980i 1.09241i
\(35\) −1.64216 + 2.84430i −0.277576 + 0.480775i
\(36\) −0.392717 0.680206i −0.0654529 0.113368i
\(37\) 4.84216 2.79562i 0.796046 0.459597i −0.0460407 0.998940i \(-0.514660\pi\)
0.842087 + 0.539342i \(0.181327\pi\)
\(38\) −6.82845 −1.10772
\(39\) −0.724364 3.53204i −0.115991 0.565579i
\(40\) −10.0820 −1.59411
\(41\) −0.999386 + 0.576996i −0.156078 + 0.0901116i −0.576005 0.817446i \(-0.695389\pi\)
0.419927 + 0.907558i \(0.362056\pi\)
\(42\) −0.551037 0.954423i −0.0850268 0.147271i
\(43\) 0.409497 0.709270i 0.0624477 0.108163i −0.833111 0.553105i \(-0.813443\pi\)
0.895559 + 0.444943i \(0.146776\pi\)
\(44\) 1.10628i 0.166778i
\(45\) −2.84430 1.64216i −0.424004 0.244799i
\(46\) 3.24642 + 1.87432i 0.478659 + 0.276354i
\(47\) 3.35146i 0.488861i 0.969667 + 0.244430i \(0.0786009\pi\)
−0.969667 + 0.244430i \(0.921399\pi\)
\(48\) 0.906111 1.56943i 0.130786 0.226528i
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) −5.52300 + 3.18871i −0.781071 + 0.450951i
\(51\) −5.77983 −0.809338
\(52\) −2.11805 + 1.87981i −0.293720 + 0.260683i
\(53\) 5.54281 0.761363 0.380682 0.924706i \(-0.375689\pi\)
0.380682 + 0.924706i \(0.375689\pi\)
\(54\) 0.954423 0.551037i 0.129881 0.0749866i
\(55\) −2.31298 4.00619i −0.311882 0.540195i
\(56\) −1.53488 + 2.65848i −0.205106 + 0.355255i
\(57\) 6.19600i 0.820681i
\(58\) 8.18602 + 4.72620i 1.07488 + 0.620580i
\(59\) −4.23463 2.44486i −0.551302 0.318294i 0.198345 0.980132i \(-0.436443\pi\)
−0.749647 + 0.661838i \(0.769777\pi\)
\(60\) 2.57962i 0.333027i
\(61\) 1.48876 2.57860i 0.190616 0.330156i −0.754839 0.655910i \(-0.772285\pi\)
0.945454 + 0.325754i \(0.105618\pi\)
\(62\) −4.21060 7.29297i −0.534746 0.926208i
\(63\) −0.866025 + 0.500000i −0.109109 + 0.0629941i
\(64\) −8.18957 −1.02370
\(65\) −3.73986 + 11.2357i −0.463872 + 1.39362i
\(66\) 1.55227 0.191071
\(67\) 0.232752 0.134379i 0.0284352 0.0164171i −0.485715 0.874117i \(-0.661441\pi\)
0.514150 + 0.857700i \(0.328107\pi\)
\(68\) 2.26984 + 3.93148i 0.275259 + 0.476762i
\(69\) 1.70072 2.94574i 0.204743 0.354626i
\(70\) 3.61956i 0.432620i
\(71\) −8.03762 4.64052i −0.953890 0.550728i −0.0596026 0.998222i \(-0.518983\pi\)
−0.894287 + 0.447494i \(0.852317\pi\)
\(72\) −2.65848 1.53488i −0.313305 0.180887i
\(73\) 12.1448i 1.42144i −0.703474 0.710721i \(-0.748369\pi\)
0.703474 0.710721i \(-0.251631\pi\)
\(74\) 3.08098 5.33641i 0.358157 0.620345i
\(75\) 2.89337 + 5.01147i 0.334098 + 0.578675i
\(76\) 4.21456 2.43328i 0.483443 0.279116i
\(77\) −1.40850 −0.160513
\(78\) −2.63763 2.97191i −0.298653 0.336502i
\(79\) 6.00232 0.675313 0.337657 0.941269i \(-0.390366\pi\)
0.337657 + 0.941269i \(0.390366\pi\)
\(80\) −5.15451 + 2.97596i −0.576292 + 0.332722i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −0.635891 + 1.10140i −0.0702225 + 0.121629i
\(83\) 6.02174i 0.660972i 0.943811 + 0.330486i \(0.107213\pi\)
−0.943811 + 0.330486i \(0.892787\pi\)
\(84\) 0.680206 + 0.392717i 0.0742166 + 0.0428490i
\(85\) 16.4396 + 9.49140i 1.78312 + 1.02949i
\(86\) 0.902592i 0.0973290i
\(87\) 4.28846 7.42783i 0.459771 0.796347i
\(88\) −2.16187 3.74447i −0.230456 0.399162i
\(89\) 14.3573 8.28917i 1.52187 0.878650i 0.522201 0.852823i \(-0.325111\pi\)
0.999666 0.0258279i \(-0.00822218\pi\)
\(90\) −3.61956 −0.381535
\(91\) 2.39334 + 2.69665i 0.250890 + 0.282686i
\(92\) −2.67162 −0.278535
\(93\) −6.61750 + 3.82061i −0.686202 + 0.396179i
\(94\) 1.84678 + 3.19871i 0.190481 + 0.329922i
\(95\) 10.1748 17.6233i 1.04391 1.80811i
\(96\) 4.14230i 0.422772i
\(97\) −16.2251 9.36758i −1.64741 0.951134i −0.978096 0.208156i \(-0.933254\pi\)
−0.669316 0.742977i \(-0.733413\pi\)
\(98\) 0.954423 + 0.551037i 0.0964113 + 0.0556631i
\(99\) 1.40850i 0.141559i
\(100\) 2.27256 3.93618i 0.227256 0.393618i
\(101\) 7.52581 + 13.0351i 0.748846 + 1.29704i 0.948376 + 0.317148i \(0.102725\pi\)
−0.199530 + 0.979892i \(0.563942\pi\)
\(102\) −5.51640 + 3.18490i −0.546205 + 0.315352i
\(103\) 14.0763 1.38698 0.693488 0.720468i \(-0.256073\pi\)
0.693488 + 0.720468i \(0.256073\pi\)
\(104\) −3.49553 + 10.5017i −0.342765 + 1.02977i
\(105\) 3.28432 0.320517
\(106\) 5.29018 3.05429i 0.513828 0.296659i
\(107\) −3.67344 6.36259i −0.355125 0.615094i 0.632014 0.774957i \(-0.282228\pi\)
−0.987139 + 0.159862i \(0.948895\pi\)
\(108\) −0.392717 + 0.680206i −0.0377892 + 0.0654529i
\(109\) 4.65621i 0.445984i −0.974820 0.222992i \(-0.928418\pi\)
0.974820 0.222992i \(-0.0715824\pi\)
\(110\) −4.41512 2.54907i −0.420965 0.243044i
\(111\) −4.84216 2.79562i −0.459597 0.265349i
\(112\) 1.81222i 0.171239i
\(113\) −3.58572 + 6.21066i −0.337317 + 0.584250i −0.983927 0.178571i \(-0.942853\pi\)
0.646610 + 0.762820i \(0.276186\pi\)
\(114\) 3.41422 + 5.91361i 0.319771 + 0.553860i
\(115\) −9.67475 + 5.58572i −0.902175 + 0.520871i
\(116\) −6.73661 −0.625479
\(117\) −2.69665 + 2.39334i −0.249306 + 0.221264i
\(118\) −5.38884 −0.496083
\(119\) 5.00548 2.88992i 0.458852 0.264918i
\(120\) 5.04102 + 8.73131i 0.460180 + 0.797056i
\(121\) −4.50807 + 7.80820i −0.409824 + 0.709837i
\(122\) 3.28143i 0.297087i
\(123\) 0.999386 + 0.576996i 0.0901116 + 0.0520259i
\(124\) 5.19761 + 3.00084i 0.466759 + 0.269484i
\(125\) 2.58392i 0.231113i
\(126\) −0.551037 + 0.954423i −0.0490902 + 0.0850268i
\(127\) −5.82996 10.0978i −0.517326 0.896034i −0.999798 0.0201229i \(-0.993594\pi\)
0.482472 0.875912i \(-0.339739\pi\)
\(128\) −0.641633 + 0.370447i −0.0567129 + 0.0327432i
\(129\) −0.818994 −0.0721084
\(130\) 2.62188 + 12.7844i 0.229954 + 1.12127i
\(131\) 8.68221 0.758568 0.379284 0.925280i \(-0.376170\pi\)
0.379284 + 0.925280i \(0.376170\pi\)
\(132\) −0.958069 + 0.553141i −0.0833892 + 0.0481448i
\(133\) −3.09800 5.36590i −0.268631 0.465282i
\(134\) 0.148096 0.256510i 0.0127935 0.0221591i
\(135\) 3.28432i 0.282669i
\(136\) 15.3656 + 8.87133i 1.31759 + 0.760710i
\(137\) 10.8923 + 6.28868i 0.930593 + 0.537278i 0.886999 0.461771i \(-0.152786\pi\)
0.0435937 + 0.999049i \(0.486119\pi\)
\(138\) 3.74865i 0.319106i
\(139\) 5.36634 9.29478i 0.455167 0.788373i −0.543531 0.839389i \(-0.682913\pi\)
0.998698 + 0.0510166i \(0.0162461\pi\)
\(140\) −1.28981 2.23401i −0.109009 0.188809i
\(141\) 2.90245 1.67573i 0.244430 0.141122i
\(142\) −10.2284 −0.858347
\(143\) −4.97487 + 1.02027i −0.416019 + 0.0853189i
\(144\) −1.81222 −0.151019
\(145\) −24.3954 + 14.0847i −2.02593 + 1.16967i
\(146\) −6.69224 11.5913i −0.553853 0.959302i
\(147\) 0.500000 0.866025i 0.0412393 0.0714286i
\(148\) 4.39156i 0.360984i
\(149\) −9.93345 5.73508i −0.813780 0.469836i 0.0344866 0.999405i \(-0.489020\pi\)
−0.848267 + 0.529569i \(0.822354\pi\)
\(150\) 5.52300 + 3.18871i 0.450951 + 0.260357i
\(151\) 9.07431i 0.738457i 0.929339 + 0.369228i \(0.120378\pi\)
−0.929339 + 0.369228i \(0.879622\pi\)
\(152\) 9.51010 16.4720i 0.771371 1.33605i
\(153\) 2.88992 + 5.00548i 0.233636 + 0.404669i
\(154\) −1.34430 + 0.776134i −0.108327 + 0.0625426i
\(155\) 25.0962 2.01578
\(156\) 2.68699 + 0.894376i 0.215131 + 0.0716074i
\(157\) −16.8251 −1.34279 −0.671393 0.741101i \(-0.734304\pi\)
−0.671393 + 0.741101i \(0.734304\pi\)
\(158\) 5.72875 3.30750i 0.455755 0.263130i
\(159\) −2.77140 4.80021i −0.219787 0.380682i
\(160\) 6.80232 11.7820i 0.537771 0.931446i
\(161\) 3.40145i 0.268072i
\(162\) −0.954423 0.551037i −0.0749866 0.0432935i
\(163\) 18.0424 + 10.4168i 1.41319 + 0.815905i 0.995687 0.0927715i \(-0.0295726\pi\)
0.417501 + 0.908676i \(0.362906\pi\)
\(164\) 0.906385i 0.0707768i
\(165\) −2.31298 + 4.00619i −0.180065 + 0.311882i
\(166\) 3.31820 + 5.74729i 0.257542 + 0.446076i
\(167\) −5.37739 + 3.10464i −0.416115 + 0.240244i −0.693414 0.720540i \(-0.743894\pi\)
0.277299 + 0.960784i \(0.410561\pi\)
\(168\) 3.06975 0.236837
\(169\) 10.4067 + 7.79104i 0.800517 + 0.599310i
\(170\) 20.9204 1.60452
\(171\) 5.36590 3.09800i 0.410340 0.236910i
\(172\) 0.321633 + 0.557085i 0.0245243 + 0.0424774i
\(173\) −5.27490 + 9.13639i −0.401043 + 0.694627i −0.993852 0.110716i \(-0.964686\pi\)
0.592809 + 0.805343i \(0.298019\pi\)
\(174\) 9.45240i 0.716584i
\(175\) −5.01147 2.89337i −0.378831 0.218718i
\(176\) −2.21054 1.27626i −0.166626 0.0962014i
\(177\) 4.88973i 0.367534i
\(178\) 9.13527 15.8228i 0.684718 1.18597i
\(179\) −10.5029 18.1916i −0.785025 1.35970i −0.928984 0.370119i \(-0.879317\pi\)
0.143960 0.989584i \(-0.454016\pi\)
\(180\) 2.23401 1.28981i 0.166514 0.0961367i
\(181\) 14.6306 1.08748 0.543741 0.839253i \(-0.317007\pi\)
0.543741 + 0.839253i \(0.317007\pi\)
\(182\) 3.77021 + 1.25493i 0.279467 + 0.0930218i
\(183\) −2.97751 −0.220104
\(184\) −9.04270 + 5.22080i −0.666637 + 0.384883i
\(185\) 9.18171 + 15.9032i 0.675053 + 1.16923i
\(186\) −4.21060 + 7.29297i −0.308736 + 0.534746i
\(187\) 8.14088i 0.595320i
\(188\) −2.27968 1.31618i −0.166263 0.0959920i
\(189\) 0.866025 + 0.500000i 0.0629941 + 0.0363696i
\(190\) 22.4268i 1.62701i
\(191\) 2.61431 4.52813i 0.189165 0.327644i −0.755807 0.654794i \(-0.772755\pi\)
0.944972 + 0.327151i \(0.106089\pi\)
\(192\) 4.09478 + 7.09237i 0.295516 + 0.511848i
\(193\) −20.5269 + 11.8512i −1.47756 + 0.853069i −0.999678 0.0253561i \(-0.991928\pi\)
−0.477880 + 0.878425i \(0.658595\pi\)
\(194\) −20.6475 −1.48241
\(195\) 11.6003 2.37904i 0.830717 0.170367i
\(196\) −0.785435 −0.0561025
\(197\) −13.5273 + 7.80999i −0.963780 + 0.556439i −0.897334 0.441351i \(-0.854499\pi\)
−0.0664457 + 0.997790i \(0.521166\pi\)
\(198\) −0.776134 1.34430i −0.0551574 0.0955354i
\(199\) −10.4174 + 18.0434i −0.738468 + 1.27906i 0.214717 + 0.976676i \(0.431117\pi\)
−0.953185 + 0.302388i \(0.902216\pi\)
\(200\) 17.7639i 1.25610i
\(201\) −0.232752 0.134379i −0.0164171 0.00947839i
\(202\) 14.3656 + 8.29399i 1.01076 + 0.583563i
\(203\) 8.57692i 0.601982i
\(204\) 2.26984 3.93148i 0.158921 0.275259i
\(205\) −1.89504 3.28230i −0.132355 0.229246i
\(206\) 13.4347 7.75654i 0.936041 0.540424i
\(207\) −3.40145 −0.236417
\(208\) 1.31271 + 6.40084i 0.0910200 + 0.443818i
\(209\) 8.72705 0.603663
\(210\) 3.13463 1.80978i 0.216310 0.124887i
\(211\) 4.48177 + 7.76266i 0.308538 + 0.534403i 0.978043 0.208404i \(-0.0668270\pi\)
−0.669505 + 0.742808i \(0.733494\pi\)
\(212\) −2.17676 + 3.77025i −0.149500 + 0.258942i
\(213\) 9.28104i 0.635926i
\(214\) −7.01203 4.04840i −0.479333 0.276743i
\(215\) 2.32947 + 1.34492i 0.158868 + 0.0917227i
\(216\) 3.06975i 0.208870i
\(217\) 3.82061 6.61750i 0.259360 0.449225i
\(218\) −2.56574 4.44400i −0.173774 0.300986i
\(219\) −10.5177 + 6.07241i −0.710721 + 0.410335i
\(220\) 3.63339 0.244963
\(221\) 15.5862 13.8331i 1.04844 0.930514i
\(222\) −6.16196 −0.413564
\(223\) 2.96755 1.71332i 0.198722 0.114732i −0.397337 0.917673i \(-0.630066\pi\)
0.596059 + 0.802940i \(0.296732\pi\)
\(224\) −2.07115 3.58734i −0.138385 0.239689i
\(225\) 2.89337 5.01147i 0.192892 0.334098i
\(226\) 7.90346i 0.525730i
\(227\) −19.5826 11.3060i −1.29974 0.750408i −0.319385 0.947625i \(-0.603476\pi\)
−0.980360 + 0.197217i \(0.936810\pi\)
\(228\) −4.21456 2.43328i −0.279116 0.161148i
\(229\) 14.0168i 0.926253i 0.886292 + 0.463126i \(0.153272\pi\)
−0.886292 + 0.463126i \(0.846728\pi\)
\(230\) −6.15587 + 10.6623i −0.405906 + 0.703050i
\(231\) 0.704249 + 1.21979i 0.0463362 + 0.0802566i
\(232\) −22.8016 + 13.1645i −1.49700 + 0.864293i
\(233\) −12.1663 −0.797043 −0.398522 0.917159i \(-0.630477\pi\)
−0.398522 + 0.917159i \(0.630477\pi\)
\(234\) −1.25493 + 3.77021i −0.0820375 + 0.246466i
\(235\) −11.0073 −0.718034
\(236\) 3.32602 1.92028i 0.216506 0.125000i
\(237\) −3.00116 5.19816i −0.194946 0.337657i
\(238\) 3.18490 5.51640i 0.206446 0.357575i
\(239\) 9.34457i 0.604450i −0.953237 0.302225i \(-0.902271\pi\)
0.953237 0.302225i \(-0.0977294\pi\)
\(240\) 5.15451 + 2.97596i 0.332722 + 0.192097i
\(241\) −18.4239 10.6370i −1.18678 0.685190i −0.229210 0.973377i \(-0.573614\pi\)
−0.957574 + 0.288186i \(0.906948\pi\)
\(242\) 9.93644i 0.638739i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 1.16932 + 2.02532i 0.0748580 + 0.129658i
\(245\) −2.84430 + 1.64216i −0.181716 + 0.104914i
\(246\) 1.27178 0.0810859
\(247\) −14.8291 16.7085i −0.943554 1.06313i
\(248\) 23.4567 1.48950
\(249\) 5.21498 3.01087i 0.330486 0.190806i
\(250\) −1.42384 2.46616i −0.0900513 0.155973i
\(251\) 0.345368 0.598194i 0.0217994 0.0377577i −0.854920 0.518760i \(-0.826394\pi\)
0.876719 + 0.481002i \(0.159727\pi\)
\(252\) 0.785435i 0.0494777i
\(253\) −4.14907 2.39547i −0.260850 0.150602i
\(254\) −11.1285 6.42505i −0.698265 0.403143i
\(255\) 18.9828i 1.18875i
\(256\) 7.78131 13.4776i 0.486332 0.842351i
\(257\) −11.6700 20.2129i −0.727952 1.26085i −0.957748 0.287610i \(-0.907139\pi\)
0.229796 0.973239i \(-0.426194\pi\)
\(258\) −0.781667 + 0.451296i −0.0486645 + 0.0280965i
\(259\) 5.59124 0.347423
\(260\) −6.17389 6.95633i −0.382889 0.431414i
\(261\) −8.57692 −0.530898
\(262\) 8.28651 4.78422i 0.511942 0.295570i
\(263\) 4.55501 + 7.88952i 0.280874 + 0.486488i 0.971600 0.236628i \(-0.0760423\pi\)
−0.690726 + 0.723117i \(0.742709\pi\)
\(264\) −2.16187 + 3.74447i −0.133054 + 0.230456i
\(265\) 18.2043i 1.11828i
\(266\) −5.91361 3.41422i −0.362587 0.209340i
\(267\) −14.3573 8.28917i −0.878650 0.507289i
\(268\) 0.211092i 0.0128945i
\(269\) −2.20377 + 3.81704i −0.134366 + 0.232729i −0.925355 0.379101i \(-0.876233\pi\)
0.790989 + 0.611831i \(0.209567\pi\)
\(270\) 1.80978 + 3.13463i 0.110140 + 0.190767i
\(271\) 11.5954 6.69462i 0.704372 0.406669i −0.104602 0.994514i \(-0.533357\pi\)
0.808974 + 0.587845i \(0.200023\pi\)
\(272\) 10.4743 0.635100
\(273\) 1.13870 3.42102i 0.0689174 0.207049i
\(274\) 13.8612 0.837383
\(275\) 7.05864 4.07531i 0.425652 0.245750i
\(276\) 1.33581 + 2.31369i 0.0804062 + 0.139268i
\(277\) 4.34484 7.52548i 0.261056 0.452163i −0.705467 0.708743i \(-0.749263\pi\)
0.966523 + 0.256581i \(0.0825959\pi\)
\(278\) 11.8282i 0.709409i
\(279\) 6.61750 + 3.82061i 0.396179 + 0.228734i
\(280\) −8.73131 5.04102i −0.521795 0.301259i
\(281\) 21.7228i 1.29587i −0.761695 0.647936i \(-0.775632\pi\)
0.761695 0.647936i \(-0.224368\pi\)
\(282\) 1.84678 3.19871i 0.109974 0.190481i
\(283\) 12.6879 + 21.9760i 0.754215 + 1.30634i 0.945764 + 0.324855i \(0.105316\pi\)
−0.191549 + 0.981483i \(0.561351\pi\)
\(284\) 6.31302 3.64483i 0.374609 0.216281i
\(285\) −20.3496 −1.20541
\(286\) −4.18593 + 3.71510i −0.247519 + 0.219678i
\(287\) −1.15399 −0.0681179
\(288\) 3.58734 2.07115i 0.211386 0.122044i
\(289\) −8.20322 14.2084i −0.482542 0.835788i
\(290\) −15.5223 + 26.8855i −0.911503 + 1.57877i
\(291\) 18.7352i 1.09827i
\(292\) 8.26098 + 4.76948i 0.483437 + 0.279113i
\(293\) −22.9886 13.2725i −1.34301 0.775387i −0.355762 0.934577i \(-0.615779\pi\)
−0.987248 + 0.159190i \(0.949112\pi\)
\(294\) 1.10207i 0.0642742i
\(295\) 8.02971 13.9079i 0.467508 0.809747i
\(296\) 8.58187 + 14.8642i 0.498811 + 0.863966i
\(297\) −1.21979 + 0.704249i −0.0707797 + 0.0408647i
\(298\) −12.6410 −0.732271
\(299\) 2.46389 + 12.0141i 0.142490 + 0.694791i
\(300\) −4.54511 −0.262412
\(301\) 0.709270 0.409497i 0.0408816 0.0236030i
\(302\) 5.00028 + 8.66073i 0.287733 + 0.498369i
\(303\) 7.52581 13.0351i 0.432346 0.748846i
\(304\) 11.2285i 0.644001i
\(305\) 8.46894 + 4.88955i 0.484930 + 0.279975i
\(306\) 5.51640 + 3.18490i 0.315352 + 0.182068i
\(307\) 4.33093i 0.247179i 0.992333 + 0.123590i \(0.0394406\pi\)
−0.992333 + 0.123590i \(0.960559\pi\)
\(308\) 0.553141 0.958069i 0.0315182 0.0545911i
\(309\) −7.03813 12.1904i −0.400385 0.693488i
\(310\) 23.9524 13.8289i 1.36041 0.785431i
\(311\) −14.9481 −0.847629 −0.423815 0.905749i \(-0.639309\pi\)
−0.423815 + 0.905749i \(0.639309\pi\)
\(312\) 10.8425 2.22362i 0.613835 0.125888i
\(313\) −8.75971 −0.495128 −0.247564 0.968871i \(-0.579630\pi\)
−0.247564 + 0.968871i \(0.579630\pi\)
\(314\) −16.0582 + 9.27122i −0.906218 + 0.523205i
\(315\) −1.64216 2.84430i −0.0925252 0.160258i
\(316\) −2.35721 + 4.08281i −0.132604 + 0.229676i
\(317\) 5.46319i 0.306843i −0.988161 0.153422i \(-0.950971\pi\)
0.988161 0.153422i \(-0.0490293\pi\)
\(318\) −5.29018 3.05429i −0.296659 0.171276i
\(319\) −10.4621 6.04029i −0.585764 0.338191i
\(320\) 26.8971i 1.50360i
\(321\) −3.67344 + 6.36259i −0.205031 + 0.355125i
\(322\) 1.87432 + 3.24642i 0.104452 + 0.180916i
\(323\) −31.0140 + 17.9059i −1.72566 + 0.996312i
\(324\) 0.785435 0.0436353
\(325\) −19.7966 6.58938i −1.09812 0.365513i
\(326\) 22.9601 1.27164
\(327\) −4.03240 + 2.32811i −0.222992 + 0.128745i
\(328\) −1.77123 3.06787i −0.0978000 0.169395i
\(329\) −1.67573 + 2.90245i −0.0923860 + 0.160017i
\(330\) 5.09814i 0.280643i
\(331\) −7.46366 4.30914i −0.410240 0.236852i 0.280653 0.959809i \(-0.409449\pi\)
−0.690893 + 0.722957i \(0.742782\pi\)
\(332\) −4.09603 2.36484i −0.224799 0.129788i
\(333\) 5.59124i 0.306398i
\(334\) −3.42154 + 5.92627i −0.187218 + 0.324271i
\(335\) 0.441345 + 0.764431i 0.0241132 + 0.0417653i
\(336\) 1.56943 0.906111i 0.0856195 0.0494324i
\(337\) 13.6769 0.745029 0.372515 0.928026i \(-0.378496\pi\)
0.372515 + 0.928026i \(0.378496\pi\)
\(338\) 14.2256 + 1.70146i 0.773768 + 0.0925474i
\(339\) 7.17145 0.389500
\(340\) −12.9122 + 7.45488i −0.700264 + 0.404297i
\(341\) 5.38132 + 9.32073i 0.291415 + 0.504746i
\(342\) 3.41422 5.91361i 0.184620 0.319771i
\(343\) 1.00000i 0.0539949i
\(344\) 2.17728 + 1.25706i 0.117391 + 0.0677759i
\(345\) 9.67475 + 5.58572i 0.520871 + 0.300725i
\(346\) 11.6266i 0.625053i
\(347\) 1.89779 3.28707i 0.101879 0.176459i −0.810580 0.585628i \(-0.800848\pi\)
0.912459 + 0.409169i \(0.134181\pi\)
\(348\) 3.36831 + 5.83408i 0.180560 + 0.312739i
\(349\) −9.84891 + 5.68627i −0.527200 + 0.304379i −0.739876 0.672744i \(-0.765116\pi\)
0.212675 + 0.977123i \(0.431782\pi\)
\(350\) −6.37742 −0.340887
\(351\) 3.42102 + 1.13870i 0.182600 + 0.0607794i
\(352\) 5.83442 0.310976
\(353\) −15.2156 + 8.78471i −0.809842 + 0.467563i −0.846901 0.531750i \(-0.821534\pi\)
0.0370587 + 0.999313i \(0.488201\pi\)
\(354\) 2.69442 + 4.66687i 0.143207 + 0.248041i
\(355\) 15.2409 26.3981i 0.808905 1.40107i
\(356\) 13.0212i 0.690123i
\(357\) −5.00548 2.88992i −0.264918 0.152951i
\(358\) −20.0485 11.5750i −1.05959 0.611757i
\(359\) 5.89389i 0.311068i −0.987831 0.155534i \(-0.950290\pi\)
0.987831 0.155534i \(-0.0497098\pi\)
\(360\) 5.04102 8.73131i 0.265685 0.460180i
\(361\) 9.69523 + 16.7926i 0.510275 + 0.883822i
\(362\) 13.9638 8.06198i 0.733919 0.423728i
\(363\) 9.01613 0.473224
\(364\) −2.77419 + 0.568941i −0.145407 + 0.0298206i
\(365\) 39.8874 2.08780
\(366\) −2.84181 + 1.64072i −0.148544 + 0.0857617i
\(367\) −8.09246 14.0166i −0.422423 0.731658i 0.573753 0.819029i \(-0.305487\pi\)
−0.996176 + 0.0873701i \(0.972154\pi\)
\(368\) −3.08209 + 5.33834i −0.160665 + 0.278280i
\(369\) 1.15399i 0.0600744i
\(370\) 17.5265 + 10.1189i 0.911158 + 0.526057i
\(371\) 4.80021 + 2.77140i 0.249215 + 0.143884i
\(372\) 6.00169i 0.311173i
\(373\) 10.1223 17.5323i 0.524113 0.907790i −0.475493 0.879719i \(-0.657730\pi\)
0.999606 0.0280705i \(-0.00893630\pi\)
\(374\) 4.48592 + 7.76984i 0.231961 + 0.401769i
\(375\) −2.23774 + 1.29196i −0.115556 + 0.0667166i
\(376\) −10.2882 −0.530571
\(377\) 6.21282 + 30.2940i 0.319976 + 1.56022i
\(378\) 1.10207 0.0566845
\(379\) 14.1896 8.19239i 0.728872 0.420815i −0.0891371 0.996019i \(-0.528411\pi\)
0.818010 + 0.575205i \(0.195078\pi\)
\(380\) 7.99166 + 13.8420i 0.409963 + 0.710078i
\(381\) −5.82996 + 10.0978i −0.298678 + 0.517326i
\(382\) 5.76233i 0.294827i
\(383\) 11.5151 + 6.64823i 0.588392 + 0.339708i 0.764462 0.644669i \(-0.223005\pi\)
−0.176069 + 0.984378i \(0.556338\pi\)
\(384\) 0.641633 + 0.370447i 0.0327432 + 0.0189043i
\(385\) 4.62595i 0.235760i
\(386\) −13.0609 + 22.6221i −0.664782 + 1.15144i
\(387\) 0.409497 + 0.709270i 0.0208159 + 0.0360542i
\(388\) 12.7438 7.35762i 0.646967 0.373527i
\(389\) 30.4724 1.54501 0.772506 0.635007i \(-0.219003\pi\)
0.772506 + 0.635007i \(0.219003\pi\)
\(390\) 9.76069 8.66282i 0.494252 0.438659i
\(391\) 19.6598 0.994239
\(392\) −2.65848 + 1.53488i −0.134274 + 0.0775230i
\(393\) −4.34111 7.51902i −0.218980 0.379284i
\(394\) −8.60718 + 14.9081i −0.433623 + 0.751058i
\(395\) 19.7135i 0.991894i
\(396\) 0.958069 + 0.553141i 0.0481448 + 0.0277964i
\(397\) 9.34001 + 5.39246i 0.468762 + 0.270640i 0.715721 0.698386i \(-0.246098\pi\)
−0.246959 + 0.969026i \(0.579431\pi\)
\(398\) 22.9614i 1.15095i
\(399\) −3.09800 + 5.36590i −0.155094 + 0.268631i
\(400\) −5.24344 9.08190i −0.262172 0.454095i
\(401\) 14.2073 8.20259i 0.709479 0.409618i −0.101389 0.994847i \(-0.532329\pi\)
0.810868 + 0.585229i \(0.198995\pi\)
\(402\) −0.296192 −0.0147727
\(403\) 8.70108 26.1408i 0.433432 1.30216i
\(404\) −11.8221 −0.588170
\(405\) 2.84430 1.64216i 0.141335 0.0815995i
\(406\) 4.72620 + 8.18602i 0.234557 + 0.406265i
\(407\) −3.93763 + 6.82017i −0.195181 + 0.338063i
\(408\) 17.7427i 0.878392i
\(409\) 20.6891 + 11.9449i 1.02301 + 0.590636i 0.914975 0.403511i \(-0.132210\pi\)
0.108037 + 0.994147i \(0.465544\pi\)
\(410\) −3.61734 2.08847i −0.178647 0.103142i
\(411\) 12.5774i 0.620395i
\(412\) −5.52799 + 9.57477i −0.272345 + 0.471715i
\(413\) −2.44486 4.23463i −0.120304 0.208372i
\(414\) −3.24642 + 1.87432i −0.159553 + 0.0921180i
\(415\) −19.7773 −0.970830
\(416\) −9.91393 11.1704i −0.486070 0.547672i
\(417\) −10.7327 −0.525582
\(418\) 8.32930 4.80893i 0.407400 0.235212i
\(419\) 14.4158 + 24.9688i 0.704256 + 1.21981i 0.966959 + 0.254930i \(0.0820525\pi\)
−0.262704 + 0.964877i \(0.584614\pi\)
\(420\) −1.28981 + 2.23401i −0.0629362 + 0.109009i
\(421\) 13.5391i 0.659857i 0.944006 + 0.329929i \(0.107025\pi\)
−0.944006 + 0.329929i \(0.892975\pi\)
\(422\) 8.55502 + 4.93924i 0.416452 + 0.240439i
\(423\) −2.90245 1.67573i −0.141122 0.0814768i
\(424\) 17.0150i 0.826324i
\(425\) −16.7232 + 28.9654i −0.811194 + 1.40503i
\(426\) 5.11419 + 8.85804i 0.247783 + 0.429174i
\(427\) 2.57860 1.48876i 0.124787 0.0720459i
\(428\) 5.77050 0.278927
\(429\) 3.37101 + 3.79823i 0.162754 + 0.183380i
\(430\) 2.96440 0.142956
\(431\) −19.3204 + 11.1546i −0.930629 + 0.537299i −0.887011 0.461749i \(-0.847222\pi\)
−0.0436188 + 0.999048i \(0.513889\pi\)
\(432\) 0.906111 + 1.56943i 0.0435953 + 0.0755093i
\(433\) −5.07297 + 8.78663i −0.243791 + 0.422259i −0.961791 0.273785i \(-0.911724\pi\)
0.718000 + 0.696043i \(0.245058\pi\)
\(434\) 8.42119i 0.404230i
\(435\) 24.3954 + 14.0847i 1.16967 + 0.675308i
\(436\) 3.16719 + 1.82858i 0.151681 + 0.0875729i
\(437\) 21.0754i 1.00817i
\(438\) −6.69224 + 11.5913i −0.319767 + 0.553853i
\(439\) −17.7570 30.7560i −0.847494 1.46790i −0.883437 0.468549i \(-0.844777\pi\)
0.0359431 0.999354i \(-0.488556\pi\)
\(440\) 12.2980 7.10027i 0.586285 0.338492i
\(441\) −1.00000 −0.0476190
\(442\) 7.25330 21.7912i 0.345004 1.03650i
\(443\) −25.6235 −1.21741 −0.608705 0.793396i \(-0.708311\pi\)
−0.608705 + 0.793396i \(0.708311\pi\)
\(444\) 3.80320 2.19578i 0.180492 0.104207i
\(445\) 27.2243 + 47.1538i 1.29055 + 2.23531i
\(446\) 1.88820 3.27046i 0.0894089 0.154861i
\(447\) 11.4702i 0.542520i
\(448\) −7.09237 4.09478i −0.335083 0.193460i
\(449\) −1.19456 0.689681i −0.0563749 0.0325481i 0.471548 0.881841i \(-0.343696\pi\)
−0.527923 + 0.849293i \(0.677029\pi\)
\(450\) 6.37742i 0.300634i
\(451\) 0.812697 1.40763i 0.0382684 0.0662828i
\(452\) −2.81635 4.87807i −0.132470 0.229445i
\(453\) 7.85858 4.53715i 0.369228 0.213174i
\(454\) −24.9202 −1.16956
\(455\) −8.85667 + 7.86048i −0.415207 + 0.368505i
\(456\) −19.0202 −0.890702
\(457\) 11.0804 6.39726i 0.518318 0.299251i −0.217928 0.975965i \(-0.569930\pi\)
0.736246 + 0.676714i \(0.236596\pi\)
\(458\) 7.72374 + 13.3779i 0.360907 + 0.625109i
\(459\) 2.88992 5.00548i 0.134890 0.233636i
\(460\) 8.77444i 0.409110i
\(461\) −3.69799 2.13504i −0.172233 0.0994386i 0.411405 0.911452i \(-0.365038\pi\)
−0.583638 + 0.812014i \(0.698371\pi\)
\(462\) 1.34430 + 0.776134i 0.0625426 + 0.0361090i
\(463\) 0.637577i 0.0296307i −0.999890 0.0148154i \(-0.995284\pi\)
0.999890 0.0148154i \(-0.00471605\pi\)
\(464\) −7.77165 + 13.4609i −0.360790 + 0.624906i
\(465\) −12.5481 21.7340i −0.581905 1.00789i
\(466\) −11.6118 + 6.70410i −0.537908 + 0.310561i
\(467\) −10.3676 −0.479754 −0.239877 0.970803i \(-0.577107\pi\)
−0.239877 + 0.970803i \(0.577107\pi\)
\(468\) −0.568941 2.77419i −0.0262993 0.128237i
\(469\) 0.268759 0.0124101
\(470\) −10.5056 + 6.06540i −0.484587 + 0.279776i
\(471\) 8.41253 + 14.5709i 0.387629 + 0.671393i
\(472\) 7.50513 12.9993i 0.345452 0.598340i
\(473\) 1.15355i 0.0530404i
\(474\) −5.72875 3.30750i −0.263130 0.151918i
\(475\) 31.0511 + 17.9273i 1.42472 + 0.822563i
\(476\) 4.53968i 0.208076i
\(477\) −2.77140 + 4.80021i −0.126894 + 0.219787i
\(478\) −5.14920 8.91868i −0.235519 0.407931i
\(479\) −22.1213 + 12.7717i −1.01075 + 0.583555i −0.911410 0.411498i \(-0.865006\pi\)
−0.0993372 + 0.995054i \(0.531672\pi\)
\(480\) −13.6046 −0.620964
\(481\) 19.7485 4.05010i 0.900454 0.184668i
\(482\) −23.4455 −1.06792
\(483\) 2.94574 1.70072i 0.134036 0.0773857i
\(484\) −3.54079 6.13283i −0.160945 0.278765i
\(485\) 30.7661 53.2885i 1.39702 2.41971i
\(486\) 1.10207i 0.0499911i
\(487\) 11.0861 + 6.40055i 0.502358 + 0.290037i 0.729687 0.683781i \(-0.239666\pi\)
−0.227329 + 0.973818i \(0.572999\pi\)
\(488\) 7.91566 + 4.57011i 0.358325 + 0.206879i
\(489\) 20.8336i 0.942126i
\(490\) −1.80978 + 3.13463i −0.0817575 + 0.141608i
\(491\) −3.41663 5.91777i −0.154190 0.267065i 0.778574 0.627553i \(-0.215944\pi\)
−0.932764 + 0.360488i \(0.882610\pi\)
\(492\) −0.784952 + 0.453192i −0.0353884 + 0.0204315i
\(493\) 49.5732 2.23266
\(494\) −23.3602 7.77556i −1.05103 0.349839i
\(495\) 4.62595 0.207921
\(496\) 11.9924 6.92380i 0.538474 0.310888i
\(497\) −4.64052 8.03762i −0.208156 0.360536i
\(498\) 3.31820 5.74729i 0.148692 0.257542i
\(499\) 29.8319i 1.33546i 0.744405 + 0.667729i \(0.232733\pi\)
−0.744405 + 0.667729i \(0.767267\pi\)
\(500\) 1.75760 + 1.01475i 0.0786023 + 0.0453810i
\(501\) 5.37739 + 3.10464i 0.240244 + 0.138705i
\(502\) 0.761241i 0.0339758i
\(503\) −9.77147 + 16.9247i −0.435688 + 0.754634i −0.997352 0.0727318i \(-0.976828\pi\)
0.561663 + 0.827366i \(0.310162\pi\)
\(504\) −1.53488 2.65848i −0.0683688 0.118418i
\(505\) −42.8114 + 24.7172i −1.90508 + 1.09990i
\(506\) −5.27996 −0.234723
\(507\) 1.54388 12.9080i 0.0685659 0.573264i
\(508\) 9.15811 0.406326
\(509\) −2.03965 + 1.17759i −0.0904058 + 0.0521958i −0.544521 0.838747i \(-0.683289\pi\)
0.454116 + 0.890943i \(0.349955\pi\)
\(510\) −10.4602 18.1176i −0.463186 0.802262i
\(511\) 6.07241 10.5177i 0.268627 0.465276i
\(512\) 18.6329i 0.823467i
\(513\) −5.36590 3.09800i −0.236910 0.136780i
\(514\) −22.2761 12.8611i −0.982559 0.567281i
\(515\) 46.2309i 2.03718i
\(516\) 0.321633 0.557085i 0.0141591 0.0245243i
\(517\) −2.36026 4.08809i −0.103804 0.179794i
\(518\) 5.33641 3.08098i 0.234469 0.135370i
\(519\) 10.5498 0.463085
\(520\) −34.4908 11.4804i −1.51252 0.503451i
\(521\) 27.5527 1.20711 0.603553 0.797323i \(-0.293751\pi\)
0.603553 + 0.797323i \(0.293751\pi\)
\(522\) −8.18602 + 4.72620i −0.358292 + 0.206860i
\(523\) −13.0383 22.5831i −0.570127 0.987489i −0.996552 0.0829661i \(-0.973561\pi\)
0.426425 0.904523i \(-0.359773\pi\)
\(524\) −3.40966 + 5.90570i −0.148952 + 0.257992i
\(525\) 5.78675i 0.252554i
\(526\) 8.69482 + 5.01996i 0.379112 + 0.218881i
\(527\) −38.2480 22.0825i −1.66611 0.961929i
\(528\) 2.55251i 0.111084i
\(529\) 5.71507 9.89879i 0.248481 0.430382i
\(530\) 10.0313 + 17.3746i 0.435730 + 0.754707i
\(531\) 4.23463 2.44486i 0.183767 0.106098i
\(532\) 4.86656 0.210992
\(533\) −4.07594 + 0.835910i −0.176549 + 0.0362073i
\(534\) −18.2705 −0.790644
\(535\) 20.8968 12.0647i 0.903445 0.521604i
\(536\) 0.412511 + 0.714491i 0.0178178 + 0.0308613i
\(537\) −10.5029 + 18.1916i −0.453234 + 0.785025i
\(538\) 4.85744i 0.209419i
\(539\) −1.21979 0.704249i −0.0525403 0.0303341i
\(540\) −2.23401 1.28981i −0.0961367 0.0555045i
\(541\) 8.83112i 0.379679i 0.981815 + 0.189840i \(0.0607968\pi\)
−0.981815 + 0.189840i \(0.939203\pi\)
\(542\) 7.37796 12.7790i 0.316911 0.548905i
\(543\) −7.31529 12.6704i −0.313929 0.543741i
\(544\) −20.7342 + 11.9709i −0.888972 + 0.513248i
\(545\) 15.2925 0.655058
\(546\) −0.798302 3.89256i −0.0341642 0.166586i
\(547\) 9.61127 0.410948 0.205474 0.978663i \(-0.434126\pi\)
0.205474 + 0.978663i \(0.434126\pi\)
\(548\) −8.55520 + 4.93935i −0.365460 + 0.210998i
\(549\) 1.48876 + 2.57860i 0.0635385 + 0.110052i
\(550\) 4.49129 7.77914i 0.191509 0.331704i
\(551\) 53.1426i 2.26395i
\(552\) 9.04270 + 5.22080i 0.384883 + 0.222212i
\(553\) 5.19816 + 3.00116i 0.221048 + 0.127622i
\(554\) 9.57666i 0.406873i
\(555\) 9.18171 15.9032i 0.389742 0.675053i
\(556\) 4.21491 + 7.30044i 0.178752 + 0.309608i
\(557\) 25.3355 14.6275i 1.07350 0.619786i 0.144364 0.989525i \(-0.453886\pi\)
0.929136 + 0.369739i \(0.120553\pi\)
\(558\) 8.42119 0.356497
\(559\) 2.20854 1.96013i 0.0934114 0.0829046i
\(560\) −5.95192 −0.251514
\(561\) 7.05021 4.07044i 0.297660 0.171854i
\(562\) −11.9700 20.7327i −0.504926 0.874557i
\(563\) −2.28958 + 3.96567i −0.0964943 + 0.167133i −0.910231 0.414100i \(-0.864096\pi\)
0.813737 + 0.581233i \(0.197430\pi\)
\(564\) 2.63235i 0.110842i
\(565\) −20.3978 11.7767i −0.858141 0.495448i
\(566\) 24.2192 + 13.9829i 1.01801 + 0.587747i
\(567\) 1.00000i 0.0419961i
\(568\) 14.2453 24.6735i 0.597717 1.03528i
\(569\) −20.4112 35.3532i −0.855681 1.48208i −0.876012 0.482289i \(-0.839806\pi\)
0.0203317 0.999793i \(-0.493528\pi\)
\(570\) −19.4222 + 11.2134i −0.813505 + 0.469678i
\(571\) −19.6348 −0.821692 −0.410846 0.911705i \(-0.634767\pi\)
−0.410846 + 0.911705i \(0.634767\pi\)
\(572\) 1.25973 3.78461i 0.0526718 0.158243i
\(573\) −5.22863 −0.218429
\(574\) −1.10140 + 0.635891i −0.0459714 + 0.0265416i
\(575\) −9.84166 17.0463i −0.410426 0.710878i
\(576\) 4.09478 7.09237i 0.170616 0.295516i
\(577\) 35.5481i 1.47989i −0.672669 0.739944i \(-0.734852\pi\)
0.672669 0.739944i \(-0.265148\pi\)
\(578\) −15.6587 9.04055i −0.651316 0.376037i
\(579\) 20.5269 + 11.8512i 0.853069 + 0.492520i
\(580\) 22.1252i 0.918698i
\(581\) −3.01087 + 5.21498i −0.124912 + 0.216354i
\(582\) 10.3238 + 17.8813i 0.427934 + 0.741203i
\(583\) −6.76109 + 3.90352i −0.280016 + 0.161667i
\(584\) 37.2816 1.54272
\(585\) −7.86048 8.85667i −0.324991 0.366178i
\(586\) −29.2545 −1.20849
\(587\) 32.9428 19.0195i 1.35969 0.785020i 0.370112 0.928987i \(-0.379319\pi\)
0.989582 + 0.143967i \(0.0459859\pi\)
\(588\) 0.392717 + 0.680206i 0.0161954 + 0.0280512i
\(589\) −23.6725 + 41.0020i −0.975410 + 1.68946i
\(590\) 17.6987i 0.728642i
\(591\) 13.5273 + 7.80999i 0.556439 + 0.321260i
\(592\) 8.77507 + 5.06629i 0.360653 + 0.208223i
\(593\) 26.2586i 1.07831i 0.842207 + 0.539155i \(0.181256\pi\)
−0.842207 + 0.539155i \(0.818744\pi\)
\(594\) −0.776134 + 1.34430i −0.0318451 + 0.0551574i
\(595\) 9.49140 + 16.4396i 0.389109 + 0.673957i
\(596\) 7.80208 4.50453i 0.319586 0.184513i
\(597\) 20.8348 0.852710
\(598\) 8.97177 + 10.1088i 0.366883 + 0.413380i
\(599\) −12.4404 −0.508299 −0.254150 0.967165i \(-0.581796\pi\)
−0.254150 + 0.967165i \(0.581796\pi\)
\(600\) −15.3840 + 8.88194i −0.628048 + 0.362604i
\(601\) −9.98707 17.2981i −0.407381 0.705605i 0.587214 0.809432i \(-0.300225\pi\)
−0.994595 + 0.103827i \(0.966891\pi\)
\(602\) 0.451296 0.781667i 0.0183934 0.0318584i
\(603\) 0.268759i 0.0109447i
\(604\) −6.17240 3.56364i −0.251151 0.145002i
\(605\) −25.6446 14.8059i −1.04260 0.601947i
\(606\) 16.5880i 0.673841i
\(607\) −13.6931 + 23.7171i −0.555785 + 0.962648i 0.442057 + 0.896987i \(0.354249\pi\)
−0.997842 + 0.0656610i \(0.979084\pi\)
\(608\) 12.8329 + 22.2272i 0.520441 + 0.901431i
\(609\) 7.42783 4.28846i 0.300991 0.173777i
\(610\) 10.7773 0.436359
\(611\) −3.81631 + 11.4654i −0.154391 + 0.463841i
\(612\) −4.53968 −0.183506
\(613\) −2.49146 + 1.43845i −0.100629 + 0.0580983i −0.549470 0.835513i \(-0.685170\pi\)
0.448841 + 0.893612i \(0.351837\pi\)
\(614\) 2.38650 + 4.13354i 0.0963113 + 0.166816i
\(615\) −1.89504 + 3.28230i −0.0764153 + 0.132355i
\(616\) 4.32374i 0.174208i
\(617\) 25.9156 + 14.9624i 1.04332 + 0.602364i 0.920773 0.390098i \(-0.127559\pi\)
0.122552 + 0.992462i \(0.460892\pi\)
\(618\) −13.4347 7.75654i −0.540424 0.312014i
\(619\) 33.5695i 1.34927i 0.738150 + 0.674637i \(0.235700\pi\)
−0.738150 + 0.674637i \(0.764300\pi\)
\(620\) −9.85572 + 17.0706i −0.395815 + 0.685572i
\(621\) 1.70072 + 2.94574i 0.0682477 + 0.118209i
\(622\) −14.2668 + 8.23695i −0.572047 + 0.330272i
\(623\) 16.5783 0.664197
\(624\) 4.88694 4.33726i 0.195634 0.173629i
\(625\) −20.4473 −0.817892
\(626\) −8.36048 + 4.82692i −0.334152 + 0.192923i
\(627\) −4.36353 7.55785i −0.174262 0.301831i
\(628\) 6.60749 11.4445i 0.263668 0.456686i
\(629\) 32.3164i 1.28854i
\(630\) −3.13463 1.80978i −0.124887 0.0721033i
\(631\) −22.8988 13.2207i −0.911588 0.526306i −0.0306465 0.999530i \(-0.509757\pi\)
−0.880942 + 0.473225i \(0.843090\pi\)
\(632\) 18.4256i 0.732932i
\(633\) 4.48177 7.76266i 0.178134 0.308538i
\(634\) −3.01042 5.21420i −0.119559 0.207082i
\(635\) 33.1644 19.1475i 1.31609 0.759844i
\(636\) 4.35351 0.172628
\(637\) 0.724364 + 3.53204i 0.0287004 + 0.139944i
\(638\) −13.3137 −0.527094
\(639\) 8.03762 4.64052i 0.317963 0.183576i
\(640\) −1.21667 2.10733i −0.0480929 0.0832994i
\(641\) −12.4445 + 21.5546i −0.491530 + 0.851354i −0.999952 0.00975315i \(-0.996895\pi\)
0.508423 + 0.861108i \(0.330229\pi\)
\(642\) 8.09680i 0.319555i
\(643\) −34.0297 19.6471i −1.34200 0.774804i −0.354899 0.934904i \(-0.615485\pi\)
−0.987101 + 0.160100i \(0.948818\pi\)
\(644\) −2.31369 1.33581i −0.0911721 0.0526382i
\(645\) 2.68984i 0.105912i
\(646\) −19.7336 + 34.1797i −0.776410 + 1.34478i
\(647\) −14.5885 25.2681i −0.573534 0.993390i −0.996199 0.0871044i \(-0.972239\pi\)
0.422665 0.906286i \(-0.361095\pi\)
\(648\) 2.65848 1.53488i 0.104435 0.0602956i
\(649\) 6.88717 0.270345
\(650\) −22.5253 + 4.61957i −0.883514 + 0.181195i
\(651\) −7.64123 −0.299483
\(652\) −14.1711 + 8.18170i −0.554984 + 0.320420i
\(653\) 4.03331 + 6.98589i 0.157835 + 0.273379i 0.934088 0.357043i \(-0.116215\pi\)
−0.776252 + 0.630422i \(0.782882\pi\)
\(654\) −2.56574 + 4.44400i −0.100329 + 0.173774i
\(655\) 28.5151i 1.11418i
\(656\) −1.81111 1.04564i −0.0707119 0.0408256i
\(657\) 10.5177 + 6.07241i 0.410335 + 0.236907i
\(658\) 3.69355i 0.143990i
\(659\) 19.5939 33.9377i 0.763271 1.32202i −0.177884 0.984051i \(-0.556925\pi\)
0.941156 0.337973i \(-0.109741\pi\)
\(660\) −1.81669 3.14660i −0.0707147 0.122481i
\(661\) −21.4769 + 12.3997i −0.835353 + 0.482291i −0.855682 0.517502i \(-0.826862\pi\)
0.0203288 + 0.999793i \(0.493529\pi\)
\(662\) −9.49798 −0.369150
\(663\) −19.7729 6.58150i −0.767916 0.255604i
\(664\) −18.4853 −0.717367
\(665\) 17.6233 10.1748i 0.683403 0.394563i
\(666\) 3.08098 + 5.33641i 0.119386 + 0.206782i
\(667\) −14.5870 + 25.2654i −0.564810 + 0.978280i
\(668\) 4.87698i 0.188696i
\(669\) −2.96755 1.71332i −0.114732 0.0662407i
\(670\) 0.842459 + 0.486394i 0.0325470 + 0.0187910i
\(671\) 4.19382i 0.161900i
\(672\) −2.07115 + 3.58734i −0.0798964 + 0.138385i
\(673\) −14.0271 24.2957i −0.540706 0.936530i −0.998864 0.0476590i \(-0.984824\pi\)
0.458158 0.888871i \(-0.348509\pi\)
\(674\) 13.0536 7.53648i 0.502805 0.290294i
\(675\) −5.78675 −0.222732
\(676\) −9.38641 + 4.01904i −0.361016 + 0.154579i
\(677\) −17.7868 −0.683602 −0.341801 0.939772i \(-0.611037\pi\)
−0.341801 + 0.939772i \(0.611037\pi\)
\(678\) 6.84460 3.95173i 0.262865 0.151765i
\(679\) −9.36758 16.2251i −0.359495 0.622663i
\(680\) −29.1363 + 50.4655i −1.11732 + 1.93526i
\(681\) 22.6121i 0.866497i
\(682\) 10.2721 + 5.93061i 0.393340 + 0.227095i
\(683\) 6.52540 + 3.76744i 0.249687 + 0.144157i 0.619621 0.784901i \(-0.287286\pi\)
−0.369934 + 0.929058i \(0.620620\pi\)
\(684\) 4.86656i 0.186077i
\(685\) −20.6540 + 35.7738i −0.789149 + 1.36685i
\(686\) 0.551037 + 0.954423i 0.0210387 + 0.0364401i
\(687\) 12.1389 7.00838i 0.463126 0.267386i
\(688\) 1.48420 0.0565846
\(689\) 18.9620 + 6.31160i 0.722396 + 0.240453i
\(690\) 12.3117 0.468700
\(691\) 40.9443 23.6392i 1.55760 0.899278i 0.560109 0.828419i \(-0.310759\pi\)
0.997486 0.0708592i \(-0.0225741\pi\)
\(692\) −4.14309 7.17604i −0.157497 0.272792i
\(693\) 0.704249 1.21979i 0.0267522 0.0463362i
\(694\) 4.18301i 0.158785i
\(695\) 30.5270 + 17.6248i 1.15796 + 0.668546i
\(696\) 22.8016 + 13.1645i 0.864293 + 0.499000i
\(697\) 6.66987i 0.252639i
\(698\) −6.26669 + 10.8542i −0.237198 + 0.410838i
\(699\) 6.08317 + 10.5364i 0.230087 + 0.398522i
\(700\) 3.93618 2.27256i 0.148774 0.0858945i
\(701\) 5.95873 0.225058 0.112529 0.993648i \(-0.464105\pi\)
0.112529 + 0.993648i \(0.464105\pi\)
\(702\) 3.89256 0.798302i 0.146915 0.0301300i
\(703\) −34.6434 −1.30660
\(704\) 9.98959 5.76749i 0.376497 0.217371i
\(705\) 5.50363 + 9.53257i 0.207279 + 0.359017i
\(706\) −9.68139 + 16.7687i −0.364364 + 0.631097i
\(707\) 15.0516i 0.566074i
\(708\) −3.32602 1.92028i −0.125000 0.0721686i
\(709\) 40.1988 + 23.2088i 1.50970 + 0.871623i 0.999936 + 0.0113067i \(0.00359911\pi\)
0.509760 + 0.860317i \(0.329734\pi\)
\(710\) 33.5933i 1.26073i
\(711\) −3.00116 + 5.19816i −0.112552 + 0.194946i
\(712\) 25.4457 + 44.0733i 0.953618 + 1.65172i
\(713\) 22.5091 12.9956i 0.842972 0.486690i
\(714\) −6.36980 −0.238384
\(715\) −3.35087 16.3390i −0.125316 0.611046i
\(716\) 16.4987 0.616586
\(717\) −8.09264 + 4.67229i −0.302225 + 0.174490i
\(718\) −3.24775 5.62527i −0.121205 0.209933i
\(719\) 7.07044 12.2464i 0.263683 0.456712i −0.703535 0.710661i \(-0.748396\pi\)
0.967218 + 0.253949i \(0.0817294\pi\)
\(720\) 5.95192i 0.221815i
\(721\) 12.1904 + 7.03813i 0.453994 + 0.262114i
\(722\) 18.5067 + 10.6848i 0.688748 + 0.397649i
\(723\) 21.2740i 0.791190i
\(724\) −5.74568 + 9.95181i −0.213537 + 0.369856i
\(725\) −24.8162 42.9830i −0.921652 1.59635i
\(726\) 8.60521 4.96822i 0.319369 0.184388i
\(727\) −25.8145 −0.957405 −0.478703 0.877977i \(-0.658893\pi\)
−0.478703 + 0.877977i \(0.658893\pi\)
\(728\) −8.27806 + 7.34695i −0.306805 + 0.272296i
\(729\) 1.00000 0.0370370
\(730\) 38.0695 21.9794i 1.40901 0.813495i
\(731\) −2.36682 4.09946i −0.0875402 0.151624i
\(732\) 1.16932 2.02532i 0.0432193 0.0748580i
\(733\) 35.3926i 1.30725i −0.756817 0.653627i \(-0.773247\pi\)
0.756817 0.653627i \(-0.226753\pi\)
\(734\) −15.4473 8.91849i −0.570169 0.329187i
\(735\) 2.84430 + 1.64216i 0.104914 + 0.0605719i
\(736\) 14.0898i 0.519358i
\(737\) −0.189273 + 0.327830i −0.00697196 + 0.0120758i
\(738\) −0.635891 1.10140i −0.0234075 0.0405430i
\(739\) 39.7811 22.9676i 1.46337 0.844877i 0.464204 0.885728i \(-0.346340\pi\)
0.999165 + 0.0408513i \(0.0130070\pi\)
\(740\) −14.4233 −0.530210
\(741\) −7.05540 + 21.1966i −0.259187 + 0.778678i
\(742\) 6.10858 0.224253
\(743\) −25.8736 + 14.9381i −0.949210 + 0.548027i −0.892835 0.450383i \(-0.851287\pi\)
−0.0563746 + 0.998410i \(0.517954\pi\)
\(744\) −11.7283 20.3141i −0.429982 0.744750i
\(745\) 18.8358 32.6246i 0.690092 1.19527i
\(746\) 22.3110i 0.816865i
\(747\) −5.21498 3.01087i −0.190806 0.110162i
\(748\) −5.53748 3.19706i −0.202470 0.116896i
\(749\) 7.34688i 0.268449i
\(750\) −1.42384 + 2.46616i −0.0519911 + 0.0900513i
\(751\) 17.9113 + 31.0232i 0.653591 + 1.13205i 0.982245 + 0.187603i \(0.0600717\pi\)
−0.328654 + 0.944450i \(0.606595\pi\)
\(752\) −5.25988 + 3.03680i −0.191808 + 0.110741i
\(753\) −0.690735 −0.0251718
\(754\) 22.6228 + 25.4898i 0.823873 + 0.928285i
\(755\) −29.8029 −1.08464
\(756\) −0.680206 + 0.392717i −0.0247389 + 0.0142830i
\(757\) 15.3033 + 26.5061i 0.556208 + 0.963381i 0.997808 + 0.0661693i \(0.0210777\pi\)
−0.441600 + 0.897212i \(0.645589\pi\)
\(758\) 9.02861 15.6380i 0.327934 0.567998i
\(759\) 4.79093i 0.173900i
\(760\) 54.0992 + 31.2342i 1.96238 + 1.13298i
\(761\) −7.56846 4.36965i −0.274356 0.158400i 0.356509 0.934292i \(-0.383967\pi\)
−0.630866 + 0.775892i \(0.717300\pi\)
\(762\) 12.8501i 0.465510i
\(763\) 2.32811 4.03240i 0.0842831 0.145983i
\(764\) 2.05337 + 3.55655i 0.0742885 + 0.128671i
\(765\) −16.4396 + 9.49140i −0.594375 + 0.343162i
\(766\) 14.6537 0.529458
\(767\) −11.7028 13.1859i −0.422562 0.476115i
\(768\) −15.5626 −0.561567
\(769\) 23.7655 13.7210i 0.857005 0.494792i −0.00600304 0.999982i \(-0.501911\pi\)
0.863008 + 0.505190i \(0.168578\pi\)
\(770\) −2.54907 4.4151