Defining parameters
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.bd (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(74\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(273, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 84 | 32 | 52 |
Cusp forms | 68 | 32 | 36 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(273, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
273.2.bd.a | $16$ | $2.180$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(-8\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}+(-1+\beta _{12})q^{3}+(1+\beta _{3}+\cdots)q^{4}+\cdots\) |
273.2.bd.b | $16$ | $2.180$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(8\) | \(0\) | \(0\) | \(q-\beta _{14}q^{2}-\beta _{5}q^{3}+(2+2\beta _{5}+\beta _{7}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(273, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(273, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 2}\)