Properties

Label 273.2.ba.c
Level $273$
Weight $2$
Character orbit 273.ba
Analytic conductor $2.180$
Analytic rank $0$
Dimension $64$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.17991597518\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 64q - 12q^{3} - 40q^{4} - 12q^{9} + O(q^{10}) \)
\(\operatorname{Tr}(f)(q) = \) \( 64q - 12q^{3} - 40q^{4} - 12q^{9} - 12q^{10} - 6q^{12} - 32q^{16} - 24q^{22} + 28q^{25} - 22q^{30} + 44q^{36} + 6q^{39} - 108q^{40} + 24q^{42} + 20q^{49} + 28q^{51} + 36q^{52} + 48q^{61} + 32q^{64} + 90q^{66} - 60q^{75} - 68q^{78} + 16q^{79} + 60q^{81} + 120q^{82} + 60q^{87} + 12q^{88} - 32q^{91} + 168q^{94} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
38.1 −1.32290 2.29133i −1.08139 + 1.35300i −2.50014 + 4.33037i −2.63347 + 1.52043i 4.53074 + 0.687935i 2.25766 1.37948i 7.93816 −0.661205 2.92623i 6.96765 + 4.02277i
38.2 −1.32290 2.29133i 0.631037 1.61301i −2.50014 + 4.33037i −2.63347 + 1.52043i −4.53074 + 0.687935i −2.25766 + 1.37948i 7.93816 −2.20359 2.03573i 6.96765 + 4.02277i
38.3 −1.22551 2.12265i 0.680272 + 1.59287i −2.00377 + 3.47064i 0.770070 0.444600i 2.54743 3.39606i −1.88453 + 1.85703i 4.92055 −2.07446 + 2.16717i −1.88746 1.08973i
38.4 −1.22551 2.12265i 1.71960 0.207302i −2.00377 + 3.47064i 0.770070 0.444600i −2.54743 3.39606i 1.88453 1.85703i 4.92055 2.91405 0.712952i −1.88746 1.08973i
38.5 −1.16062 2.01026i −1.69161 + 0.372094i −1.69410 + 2.93426i 2.66615 1.53930i 2.71133 + 2.96871i 0.235284 + 2.63527i 3.22233 2.72309 1.25888i −6.18879 3.57310i
38.6 −1.16062 2.01026i −0.523562 1.65102i −1.69410 + 2.93426i 2.66615 1.53930i −2.71133 + 2.96871i −0.235284 2.63527i 3.22233 −2.45177 + 1.72883i −6.18879 3.57310i
38.7 −0.903010 1.56406i −1.69189 0.370830i −0.630855 + 1.09267i −1.48165 + 0.855432i 0.947792 + 2.98108i −1.44874 2.21386i −1.33337 2.72497 + 1.25481i 2.67589 + 1.54493i
38.8 −0.903010 1.56406i −1.16709 1.27980i −0.630855 + 1.09267i −1.48165 + 0.855432i −0.947792 + 2.98108i 1.44874 + 2.21386i −1.33337 −0.275792 + 2.98730i 2.67589 + 1.54493i
38.9 −0.697858 1.20873i −0.179489 + 1.72273i 0.0259885 0.0450133i −0.529415 + 0.305658i 2.20756 0.985265i −2.05092 1.67145i −2.86398 −2.93557 0.618419i 0.738913 + 0.426611i
38.10 −0.697858 1.20873i 1.40218 1.01680i 0.0259885 0.0450133i −0.529415 + 0.305658i −2.20756 0.985265i 2.05092 + 1.67145i −2.86398 0.932217 2.85149i 0.738913 + 0.426611i
38.11 −0.662291 1.14712i 0.379710 + 1.68992i 0.122740 0.212592i 3.12151 1.80220i 1.68706 1.55479i 2.63492 0.239193i −2.97432 −2.71164 + 1.28336i −4.13469 2.38717i
38.12 −0.662291 1.14712i 1.65337 0.516120i 0.122740 0.212592i 3.12151 1.80220i −1.68706 1.55479i −2.63492 + 0.239193i −2.97432 2.46724 1.70667i −4.13469 2.38717i
38.13 −0.387119 0.670510i −1.14149 + 1.30269i 0.700278 1.21292i −1.11726 + 0.645050i 1.31536 + 0.261085i −0.867295 + 2.49956i −2.63284 −0.393998 2.97402i 0.865025 + 0.499422i
38.14 −0.387119 0.670510i 0.557417 1.63990i 0.700278 1.21292i −1.11726 + 0.645050i −1.31536 + 0.261085i 0.867295 2.49956i −2.63284 −2.37857 1.82822i 0.865025 + 0.499422i
38.15 −0.100354 0.173818i −1.73110 + 0.0572655i 0.979858 1.69716i 2.67317 1.54335i 0.183677 + 0.295150i −2.55853 0.673741i −0.794745 2.99344 0.198265i −0.536525 0.309763i
38.16 −0.100354 0.173818i −0.815959 1.52781i 0.979858 1.69716i 2.67317 1.54335i −0.183677 + 0.295150i 2.55853 + 0.673741i −0.794745 −1.66842 + 2.49326i −0.536525 0.309763i
38.17 0.100354 + 0.173818i −1.73110 + 0.0572655i 0.979858 1.69716i −2.67317 + 1.54335i −0.183677 0.295150i 2.55853 + 0.673741i 0.794745 2.99344 0.198265i −0.536525 0.309763i
38.18 0.100354 + 0.173818i −0.815959 1.52781i 0.979858 1.69716i −2.67317 + 1.54335i 0.183677 0.295150i −2.55853 0.673741i 0.794745 −1.66842 + 2.49326i −0.536525 0.309763i
38.19 0.387119 + 0.670510i −1.14149 + 1.30269i 0.700278 1.21292i 1.11726 0.645050i −1.31536 0.261085i 0.867295 2.49956i 2.63284 −0.393998 2.97402i 0.865025 + 0.499422i
38.20 0.387119 + 0.670510i 0.557417 1.63990i 0.700278 1.21292i 1.11726 0.645050i 1.31536 0.261085i −0.867295 + 2.49956i 2.63284 −2.37857 1.82822i 0.865025 + 0.499422i
See all 64 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 194.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.d odd 6 1 inner
13.b even 2 1 inner
21.g even 6 1 inner
39.d odd 2 1 inner
91.s odd 6 1 inner
273.ba even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 273.2.ba.c 64
3.b odd 2 1 inner 273.2.ba.c 64
7.d odd 6 1 inner 273.2.ba.c 64
13.b even 2 1 inner 273.2.ba.c 64
21.g even 6 1 inner 273.2.ba.c 64
39.d odd 2 1 inner 273.2.ba.c 64
91.s odd 6 1 inner 273.2.ba.c 64
273.ba even 6 1 inner 273.2.ba.c 64
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.ba.c 64 1.a even 1 1 trivial
273.2.ba.c 64 3.b odd 2 1 inner
273.2.ba.c 64 7.d odd 6 1 inner
273.2.ba.c 64 13.b even 2 1 inner
273.2.ba.c 64 21.g even 6 1 inner
273.2.ba.c 64 39.d odd 2 1 inner
273.2.ba.c 64 91.s odd 6 1 inner
273.2.ba.c 64 273.ba even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(273, [\chi])\):

\(T_{2}^{32} + \cdots\)
\(T_{19}^{32} + \cdots\)