Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [273,2,Mod(38,273)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(273, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 1, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("273.38");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.ba (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.17991597518\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
38.1 | −1.32290 | − | 2.29133i | −1.08139 | + | 1.35300i | −2.50014 | + | 4.33037i | −2.63347 | + | 1.52043i | 4.53074 | + | 0.687935i | 2.25766 | − | 1.37948i | 7.93816 | −0.661205 | − | 2.92623i | 6.96765 | + | 4.02277i | ||
38.2 | −1.32290 | − | 2.29133i | 0.631037 | − | 1.61301i | −2.50014 | + | 4.33037i | −2.63347 | + | 1.52043i | −4.53074 | + | 0.687935i | −2.25766 | + | 1.37948i | 7.93816 | −2.20359 | − | 2.03573i | 6.96765 | + | 4.02277i | ||
38.3 | −1.22551 | − | 2.12265i | 0.680272 | + | 1.59287i | −2.00377 | + | 3.47064i | 0.770070 | − | 0.444600i | 2.54743 | − | 3.39606i | −1.88453 | + | 1.85703i | 4.92055 | −2.07446 | + | 2.16717i | −1.88746 | − | 1.08973i | ||
38.4 | −1.22551 | − | 2.12265i | 1.71960 | − | 0.207302i | −2.00377 | + | 3.47064i | 0.770070 | − | 0.444600i | −2.54743 | − | 3.39606i | 1.88453 | − | 1.85703i | 4.92055 | 2.91405 | − | 0.712952i | −1.88746 | − | 1.08973i | ||
38.5 | −1.16062 | − | 2.01026i | −1.69161 | + | 0.372094i | −1.69410 | + | 2.93426i | 2.66615 | − | 1.53930i | 2.71133 | + | 2.96871i | 0.235284 | + | 2.63527i | 3.22233 | 2.72309 | − | 1.25888i | −6.18879 | − | 3.57310i | ||
38.6 | −1.16062 | − | 2.01026i | −0.523562 | − | 1.65102i | −1.69410 | + | 2.93426i | 2.66615 | − | 1.53930i | −2.71133 | + | 2.96871i | −0.235284 | − | 2.63527i | 3.22233 | −2.45177 | + | 1.72883i | −6.18879 | − | 3.57310i | ||
38.7 | −0.903010 | − | 1.56406i | −1.69189 | − | 0.370830i | −0.630855 | + | 1.09267i | −1.48165 | + | 0.855432i | 0.947792 | + | 2.98108i | −1.44874 | − | 2.21386i | −1.33337 | 2.72497 | + | 1.25481i | 2.67589 | + | 1.54493i | ||
38.8 | −0.903010 | − | 1.56406i | −1.16709 | − | 1.27980i | −0.630855 | + | 1.09267i | −1.48165 | + | 0.855432i | −0.947792 | + | 2.98108i | 1.44874 | + | 2.21386i | −1.33337 | −0.275792 | + | 2.98730i | 2.67589 | + | 1.54493i | ||
38.9 | −0.697858 | − | 1.20873i | −0.179489 | + | 1.72273i | 0.0259885 | − | 0.0450133i | −0.529415 | + | 0.305658i | 2.20756 | − | 0.985265i | −2.05092 | − | 1.67145i | −2.86398 | −2.93557 | − | 0.618419i | 0.738913 | + | 0.426611i | ||
38.10 | −0.697858 | − | 1.20873i | 1.40218 | − | 1.01680i | 0.0259885 | − | 0.0450133i | −0.529415 | + | 0.305658i | −2.20756 | − | 0.985265i | 2.05092 | + | 1.67145i | −2.86398 | 0.932217 | − | 2.85149i | 0.738913 | + | 0.426611i | ||
38.11 | −0.662291 | − | 1.14712i | 0.379710 | + | 1.68992i | 0.122740 | − | 0.212592i | 3.12151 | − | 1.80220i | 1.68706 | − | 1.55479i | 2.63492 | − | 0.239193i | −2.97432 | −2.71164 | + | 1.28336i | −4.13469 | − | 2.38717i | ||
38.12 | −0.662291 | − | 1.14712i | 1.65337 | − | 0.516120i | 0.122740 | − | 0.212592i | 3.12151 | − | 1.80220i | −1.68706 | − | 1.55479i | −2.63492 | + | 0.239193i | −2.97432 | 2.46724 | − | 1.70667i | −4.13469 | − | 2.38717i | ||
38.13 | −0.387119 | − | 0.670510i | −1.14149 | + | 1.30269i | 0.700278 | − | 1.21292i | −1.11726 | + | 0.645050i | 1.31536 | + | 0.261085i | −0.867295 | + | 2.49956i | −2.63284 | −0.393998 | − | 2.97402i | 0.865025 | + | 0.499422i | ||
38.14 | −0.387119 | − | 0.670510i | 0.557417 | − | 1.63990i | 0.700278 | − | 1.21292i | −1.11726 | + | 0.645050i | −1.31536 | + | 0.261085i | 0.867295 | − | 2.49956i | −2.63284 | −2.37857 | − | 1.82822i | 0.865025 | + | 0.499422i | ||
38.15 | −0.100354 | − | 0.173818i | −1.73110 | + | 0.0572655i | 0.979858 | − | 1.69716i | 2.67317 | − | 1.54335i | 0.183677 | + | 0.295150i | −2.55853 | − | 0.673741i | −0.794745 | 2.99344 | − | 0.198265i | −0.536525 | − | 0.309763i | ||
38.16 | −0.100354 | − | 0.173818i | −0.815959 | − | 1.52781i | 0.979858 | − | 1.69716i | 2.67317 | − | 1.54335i | −0.183677 | + | 0.295150i | 2.55853 | + | 0.673741i | −0.794745 | −1.66842 | + | 2.49326i | −0.536525 | − | 0.309763i | ||
38.17 | 0.100354 | + | 0.173818i | −1.73110 | + | 0.0572655i | 0.979858 | − | 1.69716i | −2.67317 | + | 1.54335i | −0.183677 | − | 0.295150i | 2.55853 | + | 0.673741i | 0.794745 | 2.99344 | − | 0.198265i | −0.536525 | − | 0.309763i | ||
38.18 | 0.100354 | + | 0.173818i | −0.815959 | − | 1.52781i | 0.979858 | − | 1.69716i | −2.67317 | + | 1.54335i | 0.183677 | − | 0.295150i | −2.55853 | − | 0.673741i | 0.794745 | −1.66842 | + | 2.49326i | −0.536525 | − | 0.309763i | ||
38.19 | 0.387119 | + | 0.670510i | −1.14149 | + | 1.30269i | 0.700278 | − | 1.21292i | 1.11726 | − | 0.645050i | −1.31536 | − | 0.261085i | 0.867295 | − | 2.49956i | 2.63284 | −0.393998 | − | 2.97402i | 0.865025 | + | 0.499422i | ||
38.20 | 0.387119 | + | 0.670510i | 0.557417 | − | 1.63990i | 0.700278 | − | 1.21292i | 1.11726 | − | 0.645050i | 1.31536 | − | 0.261085i | −0.867295 | + | 2.49956i | 2.63284 | −2.37857 | − | 1.82822i | 0.865025 | + | 0.499422i | ||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
13.b | even | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
39.d | odd | 2 | 1 | inner |
91.s | odd | 6 | 1 | inner |
273.ba | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 273.2.ba.c | ✓ | 64 |
3.b | odd | 2 | 1 | inner | 273.2.ba.c | ✓ | 64 |
7.d | odd | 6 | 1 | inner | 273.2.ba.c | ✓ | 64 |
13.b | even | 2 | 1 | inner | 273.2.ba.c | ✓ | 64 |
21.g | even | 6 | 1 | inner | 273.2.ba.c | ✓ | 64 |
39.d | odd | 2 | 1 | inner | 273.2.ba.c | ✓ | 64 |
91.s | odd | 6 | 1 | inner | 273.2.ba.c | ✓ | 64 |
273.ba | even | 6 | 1 | inner | 273.2.ba.c | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
273.2.ba.c | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
273.2.ba.c | ✓ | 64 | 3.b | odd | 2 | 1 | inner |
273.2.ba.c | ✓ | 64 | 7.d | odd | 6 | 1 | inner |
273.2.ba.c | ✓ | 64 | 13.b | even | 2 | 1 | inner |
273.2.ba.c | ✓ | 64 | 21.g | even | 6 | 1 | inner |
273.2.ba.c | ✓ | 64 | 39.d | odd | 2 | 1 | inner |
273.2.ba.c | ✓ | 64 | 91.s | odd | 6 | 1 | inner |
273.2.ba.c | ✓ | 64 | 273.ba | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(273, [\chi])\):
\( T_{2}^{32} + 26 T_{2}^{30} + 404 T_{2}^{28} + 4136 T_{2}^{26} + 31455 T_{2}^{24} + 179569 T_{2}^{22} + 796976 T_{2}^{20} + 2718281 T_{2}^{18} + 7227508 T_{2}^{16} + 14586711 T_{2}^{14} + 22453924 T_{2}^{12} + \cdots + 3721 \)
|
\( T_{19}^{32} + 100 T_{19}^{30} + 6474 T_{19}^{28} + 248412 T_{19}^{26} + 6930322 T_{19}^{24} + 125670468 T_{19}^{22} + 1623897188 T_{19}^{20} + 11228945442 T_{19}^{18} + 54238711263 T_{19}^{16} + \cdots + 15752961 \)
|