# Properties

 Label 273.2.ba.a.38.1 Level $273$ Weight $2$ Character 273.38 Analytic conductor $2.180$ Analytic rank $0$ Dimension $2$ CM discriminant -3 Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$273 = 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 273.ba (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$2.17991597518$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

## Embedding invariants

 Embedding label 38.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 273.38 Dual form 273.2.ba.a.194.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(1.50000 + 0.866025i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-0.500000 + 2.59808i) q^{7} +(1.50000 + 2.59808i) q^{9} +O(q^{10})$$ $$q+(1.50000 + 0.866025i) q^{3} +(1.00000 - 1.73205i) q^{4} +(-0.500000 + 2.59808i) q^{7} +(1.50000 + 2.59808i) q^{9} +(3.00000 - 1.73205i) q^{12} +(3.50000 - 0.866025i) q^{13} +(-2.00000 - 3.46410i) q^{16} +(-3.50000 - 6.06218i) q^{19} +(-3.00000 + 3.46410i) q^{21} +(-2.50000 + 4.33013i) q^{25} +5.19615i q^{27} +(4.00000 + 3.46410i) q^{28} +(3.50000 - 6.06218i) q^{31} +6.00000 q^{36} +(-10.5000 + 6.06218i) q^{37} +(6.00000 + 1.73205i) q^{39} -5.00000 q^{43} -6.92820i q^{48} +(-6.50000 - 2.59808i) q^{49} +(2.00000 - 6.92820i) q^{52} -12.1244i q^{57} +(-6.00000 + 3.46410i) q^{61} +(-7.50000 + 2.59808i) q^{63} -8.00000 q^{64} +(10.5000 + 6.06218i) q^{67} +(3.50000 - 6.06218i) q^{73} +(-7.50000 + 4.33013i) q^{75} -14.0000 q^{76} +(-6.50000 - 11.2583i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(3.00000 + 8.66025i) q^{84} +(0.500000 + 9.52628i) q^{91} +(10.5000 - 6.06218i) q^{93} -14.0000 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + 3q^{3} + 2q^{4} - q^{7} + 3q^{9} + O(q^{10})$$ $$2q + 3q^{3} + 2q^{4} - q^{7} + 3q^{9} + 6q^{12} + 7q^{13} - 4q^{16} - 7q^{19} - 6q^{21} - 5q^{25} + 8q^{28} + 7q^{31} + 12q^{36} - 21q^{37} + 12q^{39} - 10q^{43} - 13q^{49} + 4q^{52} - 12q^{61} - 15q^{63} - 16q^{64} + 21q^{67} + 7q^{73} - 15q^{75} - 28q^{76} - 13q^{79} - 9q^{81} + 6q^{84} + q^{91} + 21q^{93} - 28q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/273\mathbb{Z}\right)^\times$$.

 $$n$$ $$92$$ $$106$$ $$157$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$3$$ 1.50000 + 0.866025i 0.866025 + 0.500000i
$$4$$ 1.00000 1.73205i 0.500000 0.866025i
$$5$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$6$$ 0 0
$$7$$ −0.500000 + 2.59808i −0.188982 + 0.981981i
$$8$$ 0 0
$$9$$ 1.50000 + 2.59808i 0.500000 + 0.866025i
$$10$$ 0 0
$$11$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$12$$ 3.00000 1.73205i 0.866025 0.500000i
$$13$$ 3.50000 0.866025i 0.970725 0.240192i
$$14$$ 0 0
$$15$$ 0 0
$$16$$ −2.00000 3.46410i −0.500000 0.866025i
$$17$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$18$$ 0 0
$$19$$ −3.50000 6.06218i −0.802955 1.39076i −0.917663 0.397360i $$-0.869927\pi$$
0.114708 0.993399i $$-0.463407\pi$$
$$20$$ 0 0
$$21$$ −3.00000 + 3.46410i −0.654654 + 0.755929i
$$22$$ 0 0
$$23$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$24$$ 0 0
$$25$$ −2.50000 + 4.33013i −0.500000 + 0.866025i
$$26$$ 0 0
$$27$$ 5.19615i 1.00000i
$$28$$ 4.00000 + 3.46410i 0.755929 + 0.654654i
$$29$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$30$$ 0 0
$$31$$ 3.50000 6.06218i 0.628619 1.08880i −0.359211 0.933257i $$-0.616954\pi$$
0.987829 0.155543i $$-0.0497126\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 6.00000 1.00000
$$37$$ −10.5000 + 6.06218i −1.72619 + 0.996616i −0.821995 + 0.569495i $$0.807139\pi$$
−0.904194 + 0.427121i $$0.859528\pi$$
$$38$$ 0 0
$$39$$ 6.00000 + 1.73205i 0.960769 + 0.277350i
$$40$$ 0 0
$$41$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$42$$ 0 0
$$43$$ −5.00000 −0.762493 −0.381246 0.924473i $$-0.624505\pi$$
−0.381246 + 0.924473i $$0.624505\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$48$$ 6.92820i 1.00000i
$$49$$ −6.50000 2.59808i −0.928571 0.371154i
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 2.00000 6.92820i 0.277350 0.960769i
$$53$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 12.1244i 1.60591i
$$58$$ 0 0
$$59$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$60$$ 0 0
$$61$$ −6.00000 + 3.46410i −0.768221 + 0.443533i −0.832240 0.554416i $$-0.812942\pi$$
0.0640184 + 0.997949i $$0.479608\pi$$
$$62$$ 0 0
$$63$$ −7.50000 + 2.59808i −0.944911 + 0.327327i
$$64$$ −8.00000 −1.00000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 10.5000 + 6.06218i 1.28278 + 0.740613i 0.977356 0.211604i $$-0.0678686\pi$$
0.305424 + 0.952217i $$0.401202\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 0 0
$$73$$ 3.50000 6.06218i 0.409644 0.709524i −0.585206 0.810885i $$-0.698986\pi$$
0.994850 + 0.101361i $$0.0323196\pi$$
$$74$$ 0 0
$$75$$ −7.50000 + 4.33013i −0.866025 + 0.500000i
$$76$$ −14.0000 −1.60591
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −6.50000 11.2583i −0.731307 1.26666i −0.956325 0.292306i $$-0.905577\pi$$
0.225018 0.974355i $$-0.427756\pi$$
$$80$$ 0 0
$$81$$ −4.50000 + 7.79423i −0.500000 + 0.866025i
$$82$$ 0 0
$$83$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$84$$ 3.00000 + 8.66025i 0.327327 + 0.944911i
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$90$$ 0 0
$$91$$ 0.500000 + 9.52628i 0.0524142 + 0.998625i
$$92$$ 0 0
$$93$$ 10.5000 6.06218i 1.08880 0.628619i
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −14.0000 −1.42148 −0.710742 0.703452i $$-0.751641\pi$$
−0.710742 + 0.703452i $$0.751641\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 5.00000 + 8.66025i 0.500000 + 0.866025i
$$101$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$102$$ 0 0
$$103$$ 16.5000 9.52628i 1.62579 0.938652i 0.640464 0.767988i $$-0.278742\pi$$
0.985329 0.170664i $$-0.0545913\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$108$$ 9.00000 + 5.19615i 0.866025 + 0.500000i
$$109$$ 10.5000 + 6.06218i 1.00572 + 0.580651i 0.909935 0.414751i $$-0.136131\pi$$
0.0957826 + 0.995402i $$0.469465\pi$$
$$110$$ 0 0
$$111$$ −21.0000 −1.99323
$$112$$ 10.0000 3.46410i 0.944911 0.327327i
$$113$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 7.50000 + 7.79423i 0.693375 + 0.720577i
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 5.50000 + 9.52628i 0.500000 + 0.866025i
$$122$$ 0 0
$$123$$ 0 0
$$124$$ −7.00000 12.1244i −0.628619 1.08880i
$$125$$ 0 0
$$126$$ 0 0
$$127$$ 19.0000 1.68598 0.842989 0.537931i $$-0.180794\pi$$
0.842989 + 0.537931i $$0.180794\pi$$
$$128$$ 0 0
$$129$$ −7.50000 4.33013i −0.660338 0.381246i
$$130$$ 0 0
$$131$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$132$$ 0 0
$$133$$ 17.5000 6.06218i 1.51744 0.525657i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$138$$ 0 0
$$139$$ 22.5167i 1.90984i −0.296866 0.954919i $$-0.595942\pi$$
0.296866 0.954919i $$-0.404058\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 6.00000 10.3923i 0.500000 0.866025i
$$145$$ 0 0
$$146$$ 0 0
$$147$$ −7.50000 9.52628i −0.618590 0.785714i
$$148$$ 24.2487i 1.99323i
$$149$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$150$$ 0 0
$$151$$ 21.0000 + 12.1244i 1.70896 + 0.986666i 0.935857 + 0.352381i $$0.114628\pi$$
0.773099 + 0.634285i $$0.218706\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ 9.00000 8.66025i 0.720577 0.693375i
$$157$$ 18.0000 + 10.3923i 1.43656 + 0.829396i 0.997609 0.0691164i $$-0.0220180\pi$$
0.438948 + 0.898513i $$0.355351\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −21.0000 + 12.1244i −1.64485 + 0.949653i −0.665771 + 0.746156i $$0.731897\pi$$
−0.979076 + 0.203497i $$0.934769\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$168$$ 0 0
$$169$$ 11.5000 6.06218i 0.884615 0.466321i
$$170$$ 0 0
$$171$$ 10.5000 18.1865i 0.802955 1.39076i
$$172$$ −5.00000 + 8.66025i −0.381246 + 0.660338i
$$173$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$174$$ 0 0
$$175$$ −10.0000 8.66025i −0.755929 0.654654i
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$180$$ 0 0
$$181$$ 25.9808i 1.93113i 0.260153 + 0.965567i $$0.416227\pi$$
−0.260153 + 0.965567i $$0.583773\pi$$
$$182$$ 0 0
$$183$$ −12.0000 −0.887066
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ −13.5000 2.59808i −0.981981 0.188982i
$$190$$ 0 0
$$191$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$192$$ −12.0000 6.92820i −0.866025 0.500000i
$$193$$ −10.5000 6.06218i −0.755807 0.436365i 0.0719816 0.997406i $$-0.477068\pi$$
−0.827788 + 0.561041i $$0.810401\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ −11.0000 + 8.66025i −0.785714 + 0.618590i
$$197$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$198$$ 0 0
$$199$$ 3.00000 + 1.73205i 0.212664 + 0.122782i 0.602549 0.798082i $$-0.294152\pi$$
−0.389885 + 0.920864i $$0.627485\pi$$
$$200$$ 0 0
$$201$$ 10.5000 + 18.1865i 0.740613 + 1.28278i
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ −10.0000 10.3923i −0.693375 0.720577i
$$209$$ 0 0
$$210$$ 0 0
$$211$$ −16.0000 −1.10149 −0.550743 0.834675i $$-0.685655\pi$$
−0.550743 + 0.834675i $$0.685655\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ 14.0000 + 12.1244i 0.950382 + 0.823055i
$$218$$ 0 0
$$219$$ 10.5000 6.06218i 0.709524 0.409644i
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 28.0000 1.87502 0.937509 0.347960i $$-0.113126\pi$$
0.937509 + 0.347960i $$0.113126\pi$$
$$224$$ 0 0
$$225$$ −15.0000 −1.00000
$$226$$ 0 0
$$227$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$228$$ −21.0000 12.1244i −1.39076 0.802955i
$$229$$ 3.50000 + 6.06218i 0.231287 + 0.400600i 0.958187 0.286143i $$-0.0923732\pi$$
−0.726900 + 0.686743i $$0.759040\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 22.5167i 1.46261i
$$238$$ 0 0
$$239$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$240$$ 0 0
$$241$$ −7.00000 + 12.1244i −0.450910 + 0.780998i −0.998443 0.0557856i $$-0.982234\pi$$
0.547533 + 0.836784i $$0.315567\pi$$
$$242$$ 0 0
$$243$$ −13.5000 + 7.79423i −0.866025 + 0.500000i
$$244$$ 13.8564i 0.887066i
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −17.5000 18.1865i −1.11350 1.15718i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$252$$ −3.00000 + 15.5885i −0.188982 + 0.981981i
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ −8.00000 + 13.8564i −0.500000 + 0.866025i
$$257$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$258$$ 0 0
$$259$$ −10.5000 30.3109i −0.652438 1.88343i
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 21.0000 12.1244i 1.28278 0.740613i
$$269$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$270$$ 0 0
$$271$$ −14.0000 24.2487i −0.850439 1.47300i −0.880812 0.473466i $$-0.843003\pi$$
0.0303728 0.999539i $$-0.490331\pi$$
$$272$$ 0 0
$$273$$ −7.50000 + 14.7224i −0.453921 + 0.891042i
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 15.5000 26.8468i 0.931305 1.61307i 0.150210 0.988654i $$-0.452005\pi$$
0.781094 0.624413i $$-0.214662\pi$$
$$278$$ 0 0
$$279$$ 21.0000 1.25724
$$280$$ 0 0
$$281$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$282$$ 0 0
$$283$$ −28.5000 16.4545i −1.69415 0.978117i −0.951101 0.308879i $$-0.900046\pi$$
−0.743048 0.669238i $$-0.766621\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 8.50000 + 14.7224i 0.500000 + 0.866025i
$$290$$ 0 0
$$291$$ −21.0000 12.1244i −1.23104 0.710742i
$$292$$ −7.00000 12.1244i −0.409644 0.709524i
$$293$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 17.3205i 1.00000i
$$301$$ 2.50000 12.9904i 0.144098 0.748753i
$$302$$ 0 0
$$303$$ 0 0
$$304$$ −14.0000 + 24.2487i −0.802955 + 1.39076i
$$305$$ 0 0
$$306$$ 0 0
$$307$$ 35.0000 1.99756 0.998778 0.0494267i $$-0.0157394\pi$$
0.998778 + 0.0494267i $$0.0157394\pi$$
$$308$$ 0 0
$$309$$ 33.0000 1.87730
$$310$$ 0 0
$$311$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$312$$ 0 0
$$313$$ 4.50000 2.59808i 0.254355 0.146852i −0.367402 0.930062i $$-0.619753\pi$$
0.621757 + 0.783210i $$0.286419\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ −26.0000 −1.46261
$$317$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 9.00000 + 15.5885i 0.500000 + 0.866025i
$$325$$ −5.00000 + 17.3205i −0.277350 + 0.960769i
$$326$$ 0 0
$$327$$ 10.5000 + 18.1865i 0.580651 + 1.00572i
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −31.5000 + 18.1865i −1.73140 + 0.999622i −0.851957 + 0.523612i $$0.824584\pi$$
−0.879440 + 0.476011i $$0.842082\pi$$
$$332$$ 0 0
$$333$$ −31.5000 18.1865i −1.72619 0.996616i
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 18.0000 + 3.46410i 0.981981 + 0.188982i
$$337$$ 5.00000 0.272367 0.136184 0.990684i $$-0.456516\pi$$
0.136184 + 0.990684i $$0.456516\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 10.0000 15.5885i 0.539949 0.841698i
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$348$$ 0 0
$$349$$ 14.0000 0.749403 0.374701 0.927146i $$-0.377745\pi$$
0.374701 + 0.927146i $$0.377745\pi$$
$$350$$ 0 0
$$351$$ 4.50000 + 18.1865i 0.240192 + 0.970725i
$$352$$ 0 0
$$353$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$360$$ 0 0
$$361$$ −15.0000 + 25.9808i −0.789474 + 1.36741i
$$362$$ 0 0
$$363$$ 19.0526i 1.00000i
$$364$$ 17.0000 + 8.66025i 0.891042 + 0.453921i
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −13.5000 7.79423i −0.704694 0.406855i 0.104399 0.994535i $$-0.466708\pi$$
−0.809093 + 0.587680i $$0.800041\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 24.2487i 1.25724i
$$373$$ −6.50000 11.2583i −0.336557 0.582934i 0.647225 0.762299i $$-0.275929\pi$$
−0.983783 + 0.179364i $$0.942596\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ 12.1244i 0.622786i −0.950281 0.311393i $$-0.899204\pi$$
0.950281 0.311393i $$-0.100796\pi$$
$$380$$ 0 0
$$381$$ 28.5000 + 16.4545i 1.46010 + 0.842989i
$$382$$ 0 0
$$383$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −7.50000 12.9904i −0.381246 0.660338i
$$388$$ −14.0000 + 24.2487i −0.710742 + 1.23104i
$$389$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 17.5000 + 30.3109i 0.878300 + 1.52126i 0.853206 + 0.521575i $$0.174655\pi$$
0.0250943 + 0.999685i $$0.492011\pi$$
$$398$$ 0 0
$$399$$ 31.5000 + 6.06218i 1.57697 + 0.303488i
$$400$$ 20.0000 1.00000
$$401$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$402$$ 0 0
$$403$$ 7.00000 24.2487i 0.348695 1.20791i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ −3.50000 + 6.06218i −0.173064 + 0.299755i −0.939490 0.342578i $$-0.888700\pi$$
0.766426 + 0.642333i $$0.222033\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 38.1051i 1.87730i
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 19.5000 33.7750i 0.954919 1.65397i
$$418$$ 0 0
$$419$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$420$$ 0 0
$$421$$ 36.3731i 1.77271i −0.463002 0.886357i $$-0.653228\pi$$
0.463002 0.886357i $$-0.346772\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ −6.00000 17.3205i −0.290360 0.838198i
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$432$$ 18.0000 10.3923i 0.866025 0.500000i
$$433$$ 22.5167i 1.08208i 0.840996 + 0.541041i $$0.181970\pi$$
−0.840996 + 0.541041i $$0.818030\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 21.0000 12.1244i 1.00572 0.580651i
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 27.0000 15.5885i 1.28864 0.743996i 0.310228 0.950662i $$-0.399595\pi$$
0.978412 + 0.206666i $$0.0662612\pi$$
$$440$$ 0 0
$$441$$ −3.00000 20.7846i −0.142857 0.989743i
$$442$$ 0 0
$$443$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$444$$ −21.0000 + 36.3731i −0.996616 + 1.72619i
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 4.00000 20.7846i 0.188982 0.981981i
$$449$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 21.0000 + 36.3731i 0.986666 + 1.70896i
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −10.5000 + 6.06218i −0.491169 + 0.283577i −0.725059 0.688686i $$-0.758188\pi$$
0.233890 + 0.972263i $$0.424854\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$462$$ 0 0
$$463$$ 36.3731i 1.69040i 0.534450 + 0.845200i $$0.320519\pi$$
−0.534450 + 0.845200i $$0.679481\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$468$$ 21.0000 5.19615i 0.970725 0.240192i
$$469$$ −21.0000 + 24.2487i −0.969690 + 1.11970i
$$470$$ 0 0
$$471$$ 18.0000 + 31.1769i 0.829396 + 1.43656i
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 35.0000 1.60591
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$480$$ 0 0
$$481$$ −31.5000 + 30.3109i −1.43628 + 1.38206i
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 22.0000 1.00000
$$485$$ 0 0
$$486$$ 0 0
$$487$$ −31.5000 18.1865i −1.42740 0.824110i −0.430486 0.902597i $$-0.641658\pi$$
−0.996915 + 0.0784867i $$0.974991\pi$$
$$488$$ 0 0
$$489$$ −42.0000 −1.89931
$$490$$ 0 0
$$491$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ −28.0000 −1.25724
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 10.5000 6.06218i 0.470045 0.271380i −0.246214 0.969216i $$-0.579187\pi$$
0.716258 + 0.697835i $$0.245853\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 22.5000 + 0.866025i 0.999260 + 0.0384615i
$$508$$ 19.0000 32.9090i 0.842989 1.46010i
$$509$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$510$$ 0 0
$$511$$ 14.0000 + 12.1244i 0.619324 + 0.536350i
$$512$$ 0 0
$$513$$ 31.5000 18.1865i 1.39076 0.802955i
$$514$$ 0 0
$$515$$ 0 0
$$516$$ −15.0000 + 8.66025i −0.660338 + 0.381246i
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$522$$ 0 0
$$523$$ −25.5000 + 14.7224i −1.11504 + 0.643767i −0.940129 0.340818i $$-0.889296\pi$$
−0.174908 + 0.984585i $$0.555963\pi$$
$$524$$ 0 0
$$525$$ −7.50000 21.6506i −0.327327 0.944911i
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ −11.5000 + 19.9186i −0.500000 + 0.866025i
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 7.00000 36.3731i 0.303488 1.57697i
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −31.5000 + 18.1865i −1.35429 + 0.781900i −0.988847 0.148933i $$-0.952416\pi$$
−0.365444 + 0.930834i $$0.619083\pi$$
$$542$$ 0 0
$$543$$ −22.5000 + 38.9711i −0.965567 + 1.67241i
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ −40.0000 −1.71028 −0.855138 0.518400i $$-0.826528\pi$$
−0.855138 + 0.518400i $$0.826528\pi$$
$$548$$ 0 0
$$549$$ −18.0000 10.3923i −0.768221 0.443533i
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ 32.5000 11.2583i 1.38204 0.478753i
$$554$$ 0 0
$$555$$ 0 0
$$556$$ −39.0000 22.5167i −1.65397 0.954919i
$$557$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$558$$ 0 0
$$559$$ −17.5000 + 4.33013i −0.740171 + 0.183145i
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −18.0000 15.5885i −0.755929 0.654654i
$$568$$ 0 0
$$569$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$570$$ 0 0
$$571$$ −15.5000 + 26.8468i −0.648655 + 1.12350i 0.334790 + 0.942293i $$0.391335\pi$$
−0.983444 + 0.181210i $$0.941999\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ −12.0000 20.7846i −0.500000 0.866025i
$$577$$ 17.5000 30.3109i 0.728535 1.26186i −0.228968 0.973434i $$-0.573535\pi$$
0.957503 0.288425i $$-0.0931316\pi$$
$$578$$ 0 0
$$579$$ −10.5000 18.1865i −0.436365 0.755807i
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$588$$ −24.0000 + 3.46410i −0.989743 + 0.142857i
$$589$$ −49.0000 −2.01901
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 42.0000 + 24.2487i 1.72619 + 0.996616i
$$593$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 3.00000 + 5.19615i 0.122782 + 0.212664i
$$598$$ 0 0
$$599$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$600$$ 0 0
$$601$$ 1.73205i 0.0706518i −0.999376 0.0353259i $$-0.988753\pi$$
0.999376 0.0353259i $$-0.0112469\pi$$
$$602$$ 0 0
$$603$$ 36.3731i 1.48123i
$$604$$ 42.0000 24.2487i 1.70896 0.986666i
$$605$$ 0 0
$$606$$ 0 0
$$607$$ −4.50000 + 2.59808i −0.182649 + 0.105453i −0.588537 0.808470i $$-0.700296\pi$$
0.405887 + 0.913923i $$0.366962\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ −42.0000 24.2487i −1.69636 0.979396i −0.949156 0.314806i $$-0.898061\pi$$
−0.747208 0.664590i $$-0.768606\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$618$$ 0 0
$$619$$ −24.5000 + 42.4352i −0.984738 + 1.70562i −0.341644 + 0.939829i $$0.610984\pi$$
−0.643094 + 0.765787i $$0.722350\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ −6.00000 24.2487i −0.240192 0.970725i
$$625$$ −12.5000 21.6506i −0.500000 0.866025i
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 36.0000 20.7846i 1.43656 0.829396i
$$629$$ 0 0
$$630$$ 0 0
$$631$$ 24.2487i 0.965326i 0.875806 + 0.482663i $$0.160330\pi$$
−0.875806 + 0.482663i $$0.839670\pi$$
$$632$$ 0 0
$$633$$ −24.0000 13.8564i −0.953914 0.550743i
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ −25.0000 3.46410i −0.990536 0.137253i
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$642$$ 0 0
$$643$$ −7.00000 −0.276053 −0.138027 0.990429i $$-0.544076\pi$$
−0.138027 + 0.990429i $$0.544076\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 10.5000 + 30.3109i 0.411527 + 1.18798i
$$652$$ 48.4974i 1.89931i
$$653$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 21.0000 0.819288
$$658$$ 0 0
$$659$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$660$$ 0 0
$$661$$ 24.5000 42.4352i 0.952940 1.65054i 0.213925 0.976850i $$-0.431375\pi$$
0.739014 0.673690i $$-0.235292\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 42.0000 + 24.2487i 1.62381 + 0.937509i
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 37.0000 1.42625 0.713123 0.701039i $$-0.247280\pi$$
0.713123 + 0.701039i $$0.247280\pi$$
$$674$$ 0 0
$$675$$ −22.5000 12.9904i −0.866025 0.500000i
$$676$$ 1.00000 25.9808i 0.0384615 0.999260i
$$677$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$678$$ 0 0
$$679$$ 7.00000 36.3731i 0.268635 1.39587i
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$684$$ −21.0000 36.3731i −0.802955 1.39076i
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 12.1244i 0.462573i
$$688$$ 10.0000 + 17.3205i 0.381246 + 0.660338i
$$689$$ 0 0
$$690$$ 0 0
$$691$$ −24.5000 42.4352i −0.932024 1.61431i −0.779857 0.625958i $$-0.784708\pi$$
−0.152167 0.988355i $$-0.548625\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ −25.0000 + 8.66025i −0.944911 + 0.327327i
$$701$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$702$$ 0 0
$$703$$ 73.5000 + 42.4352i 2.77211 + 1.60048i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 42.0000 24.2487i 1.57734 0.910679i 0.582115 0.813107i $$-0.302225\pi$$
0.995228 0.0975728i $$-0.0311079\pi$$
$$710$$ 0 0
$$711$$ 19.5000 33.7750i 0.731307 1.26666i
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$720$$ 0 0
$$721$$ 16.5000 + 47.6314i 0.614492 + 1.77389i
$$722$$ 0 0
$$723$$ −21.0000 + 12.1244i −0.780998 + 0.450910i
$$724$$ 45.0000 + 25.9808i 1.67241 + 0.965567i
$$725$$ 0 0
$$726$$ 0 0
$$727$$ 22.5167i 0.835097i 0.908655 + 0.417548i $$0.137111\pi$$
−0.908655 + 0.417548i $$0.862889\pi$$
$$728$$ 0 0
$$729$$ −27.0000 −1.00000
$$730$$ 0 0
$$731$$ 0 0
$$732$$ −12.0000 + 20.7846i −0.443533 + 0.768221i
$$733$$ 3.50000 + 6.06218i 0.129275 + 0.223912i 0.923396 0.383849i $$-0.125402\pi$$
−0.794121 + 0.607760i $$0.792068\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ 10.5000 + 6.06218i 0.386249 + 0.223001i 0.680534 0.732717i $$-0.261748\pi$$
−0.294285 + 0.955718i $$0.595081\pi$$
$$740$$ 0 0
$$741$$ −10.5000 42.4352i −0.385727 1.55890i
$$742$$ 0 0
$$743$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 20.5000 + 35.5070i 0.748056 + 1.29567i 0.948753 + 0.316017i $$0.102346\pi$$
−0.200698 + 0.979653i $$0.564321\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ −18.0000 + 20.7846i −0.654654 + 0.755929i
$$757$$ 26.0000 0.944986 0.472493 0.881334i $$-0.343354\pi$$
0.472493 + 0.881334i $$0.343354\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$762$$ 0 0
$$763$$ −21.0000 + 24.2487i −0.760251 + 0.877862i
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ −24.0000 + 13.8564i −0.866025 + 0.500000i
$$769$$ −49.0000 −1.76699 −0.883493 0.468445i $$-0.844814\pi$$
−0.883493 + 0.468445i $$0.844814\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ −21.0000 + 12.1244i −0.755807 + 0.436365i
$$773$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$774$$ 0 0
$$775$$ 17.5000 + 30.3109i 0.628619 + 1.08880i
$$776$$ 0 0
$$777$$ 10.5000 54.5596i 0.376685 1.95731i
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 4.00000 + 27.7128i 0.142857 + 0.989743i
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 28.0000 48.4974i 0.998092 1.72875i 0.445577 0.895244i $$-0.352999\pi$$
0.552515 0.833503i $$-0.313668\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −18.0000 + 17.3205i −0.639199 + 0.615069i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 6.00000 3.46410i 0.212664 0.122782i
$$797$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 0 0
$$804$$ 42.0000 1.48123