Properties

Label 273.2.a.d
Level $273$
Weight $2$
Character orbit 273.a
Self dual yes
Analytic conductor $2.180$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [273,2,Mod(1,273)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("273.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(273, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.17991597518\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} - q^{3} + (\beta_{2} - 2 \beta_1 + 2) q^{4} + ( - \beta_{2} - 1) q^{5} + ( - \beta_1 + 1) q^{6} - q^{7} + ( - 2 \beta_{2} + 3 \beta_1 - 5) q^{8} + q^{9} - 2 \beta_1 q^{10} + (2 \beta_{2} - 2 \beta_1) q^{11}+ \cdots + (2 \beta_{2} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} - 3 q^{3} + 4 q^{4} - 3 q^{5} + 2 q^{6} - 3 q^{7} - 12 q^{8} + 3 q^{9} - 2 q^{10} - 2 q^{11} - 4 q^{12} - 3 q^{13} + 2 q^{14} + 3 q^{15} + 18 q^{16} - 8 q^{17} - 2 q^{18} - 7 q^{19} - 10 q^{20}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.81361
0.470683
2.34292
−2.81361 −1.00000 5.91638 −1.28917 2.81361 −1.00000 −11.0192 1.00000 3.62721
1.2 −0.529317 −1.00000 −1.71982 1.77846 0.529317 −1.00000 1.96896 1.00000 −0.941367
1.3 1.34292 −1.00000 −0.196558 −3.48929 −1.34292 −1.00000 −2.94981 1.00000 −4.68585
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 273.2.a.d 3
3.b odd 2 1 819.2.a.j 3
4.b odd 2 1 4368.2.a.bq 3
5.b even 2 1 6825.2.a.bd 3
7.b odd 2 1 1911.2.a.n 3
13.b even 2 1 3549.2.a.t 3
21.c even 2 1 5733.2.a.bc 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
273.2.a.d 3 1.a even 1 1 trivial
819.2.a.j 3 3.b odd 2 1
1911.2.a.n 3 7.b odd 2 1
3549.2.a.t 3 13.b even 2 1
4368.2.a.bq 3 4.b odd 2 1
5733.2.a.bc 3 21.c even 2 1
6825.2.a.bd 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} + 2T_{2}^{2} - 3T_{2} - 2 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(273))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( (T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} + 3 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$7$ \( (T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$13$ \( (T + 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 8 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$19$ \( T^{3} + 7 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$23$ \( T^{3} + 9 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$29$ \( T^{3} + T^{2} + \cdots - 76 \) Copy content Toggle raw display
$31$ \( T^{3} + 7 T^{2} + \cdots - 272 \) Copy content Toggle raw display
$37$ \( T^{3} - 12 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$41$ \( T^{3} + 10 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$43$ \( T^{3} + T^{2} + \cdots + 16 \) Copy content Toggle raw display
$47$ \( T^{3} + 17 T^{2} + \cdots + 68 \) Copy content Toggle raw display
$53$ \( T^{3} + 5 T^{2} + \cdots + 148 \) Copy content Toggle raw display
$59$ \( T^{3} + 12 T^{2} + \cdots - 64 \) Copy content Toggle raw display
$61$ \( T^{3} - 10 T^{2} + \cdots + 232 \) Copy content Toggle raw display
$67$ \( T^{3} - 2 T^{2} + \cdots + 608 \) Copy content Toggle raw display
$71$ \( T^{3} + 4 T^{2} + \cdots - 496 \) Copy content Toggle raw display
$73$ \( T^{3} + 5 T^{2} + \cdots + 436 \) Copy content Toggle raw display
$79$ \( T^{3} + 13 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$83$ \( T^{3} + T^{2} + \cdots - 76 \) Copy content Toggle raw display
$89$ \( T^{3} + 13 T^{2} + \cdots - 344 \) Copy content Toggle raw display
$97$ \( T^{3} + 9 T^{2} + \cdots - 524 \) Copy content Toggle raw display
show more
show less