Properties

Label 273.2.a
Level $273$
Weight $2$
Character orbit 273.a
Rep. character $\chi_{273}(1,\cdot)$
Character field $\Q$
Dimension $11$
Newform subspaces $5$
Sturm bound $74$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 273.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(74\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(273))\).

Total New Old
Modular forms 40 11 29
Cusp forms 33 11 22
Eisenstein series 7 0 7

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)\(7\)\(13\)FrickeDim.
\(+\)\(+\)\(+\)\(+\)\(3\)
\(+\)\(-\)\(+\)\(-\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(4\)
Plus space\(+\)\(4\)
Minus space\(-\)\(7\)

Trace form

\( 11q + q^{2} - q^{3} + 17q^{4} - 6q^{5} + 5q^{6} + 3q^{7} - 3q^{8} + 11q^{9} + O(q^{10}) \) \( 11q + q^{2} - q^{3} + 17q^{4} - 6q^{5} + 5q^{6} + 3q^{7} - 3q^{8} + 11q^{9} - 2q^{10} - 4q^{11} + q^{12} - q^{13} + q^{14} + 2q^{15} + 25q^{16} - 10q^{17} + q^{18} + 4q^{19} - 42q^{20} + 3q^{21} - 12q^{22} - 4q^{23} + 9q^{24} - 7q^{25} - 3q^{26} - q^{27} + 5q^{28} - 2q^{29} - 2q^{30} - 8q^{31} - 35q^{32} - 4q^{33} - 38q^{34} - 2q^{35} + 17q^{36} + 10q^{37} + 12q^{38} + 7q^{39} + 14q^{40} - 18q^{41} - 3q^{42} + 20q^{44} - 6q^{45} + 16q^{46} - 15q^{48} + 11q^{49} + 23q^{50} + 6q^{51} + q^{52} - 10q^{53} + 5q^{54} - 8q^{55} + 21q^{56} + 12q^{57} - 2q^{58} - 36q^{59} - 18q^{60} + 18q^{61} - 8q^{62} + 3q^{63} + 33q^{64} - 2q^{65} - 12q^{66} - 4q^{67} - 14q^{68} + 16q^{69} - 2q^{70} + 24q^{71} - 3q^{72} - 2q^{73} - 26q^{74} + 17q^{75} - 60q^{76} + 4q^{77} + q^{78} - 4q^{79} - 50q^{80} + 11q^{81} + 42q^{82} - 4q^{83} + 5q^{84} + 28q^{85} + 44q^{86} - 6q^{87} - 108q^{88} - 26q^{89} - 2q^{90} + 7q^{91} + 8q^{92} + 32q^{93} + 48q^{94} - 4q^{95} + 33q^{96} - 26q^{97} + q^{98} - 4q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(273))\) into newform subspaces

Label Dim. \(A\) Field CM Traces A-L signs $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\) 3 7 13
273.2.a.a \(1\) \(2.180\) \(\Q\) None \(-2\) \(-1\) \(-1\) \(1\) \(+\) \(-\) \(-\) \(q-2q^{2}-q^{3}+2q^{4}-q^{5}+2q^{6}+q^{7}+\cdots\)
273.2.a.b \(1\) \(2.180\) \(\Q\) None \(2\) \(1\) \(1\) \(-1\) \(-\) \(+\) \(+\) \(q+2q^{2}+q^{3}+2q^{4}+q^{5}+2q^{6}-q^{7}+\cdots\)
273.2.a.c \(2\) \(2.180\) \(\Q(\sqrt{2}) \) None \(2\) \(-2\) \(0\) \(2\) \(+\) \(-\) \(+\) \(q+(1+\beta )q^{2}-q^{3}+(1+2\beta )q^{4}+(-1+\cdots)q^{6}+\cdots\)
273.2.a.d \(3\) \(2.180\) 3.3.316.1 None \(-2\) \(-3\) \(-3\) \(-3\) \(+\) \(+\) \(+\) \(q+(-1+\beta _{1})q^{2}-q^{3}+(2-2\beta _{1}+\beta _{2})q^{4}+\cdots\)
273.2.a.e \(4\) \(2.180\) 4.4.17428.1 None \(1\) \(4\) \(-3\) \(4\) \(-\) \(-\) \(-\) \(q+\beta _{1}q^{2}+q^{3}+(2+\beta _{2})q^{4}+(-1-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(273))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(273)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)