Defining parameters
Level: | \( N \) | \(=\) | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 273.x (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 273 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(37\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(273, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 10 | 10 | 0 |
Cusp forms | 2 | 2 | 0 |
Eisenstein series | 8 | 8 | 0 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(273, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
273.1.x.a | $2$ | $0.136$ | \(\Q(\sqrt{-3}) \) | $D_{6}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(-2\) | \(0\) | \(-1\) | \(q-q^{3}-\zeta_{6}^{2}q^{4}-\zeta_{6}q^{7}+q^{9}+\zeta_{6}^{2}q^{12}+\cdots\) |