Properties

Label 273.1.x
Level $273$
Weight $1$
Character orbit 273.x
Rep. character $\chi_{273}(179,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $2$
Newform subspaces $1$
Sturm bound $37$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 273 = 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 273.x (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 273 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(37\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(273, [\chi])\).

Total New Old
Modular forms 10 10 0
Cusp forms 2 2 0
Eisenstein series 8 8 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q - 2 q^{3} + q^{4} - q^{7} + 2 q^{9} + O(q^{10}) \) \( 2 q - 2 q^{3} + q^{4} - q^{7} + 2 q^{9} - q^{12} + q^{13} - q^{16} + q^{21} + q^{25} - 2 q^{27} - 2 q^{28} + q^{36} - 3 q^{37} - q^{39} + q^{43} + q^{48} - q^{49} - q^{52} + 2 q^{61} - q^{63} - 2 q^{64} + 3 q^{73} - q^{75} + 3 q^{76} + 2 q^{79} + 2 q^{81} + 2 q^{84} - 2 q^{91} - 3 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(273, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
273.1.x.a 273.x 273.x $2$ $0.136$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-3}) \) None 273.1.x.a \(0\) \(-2\) \(0\) \(-1\) \(q-q^{3}-\zeta_{6}^{2}q^{4}-\zeta_{6}q^{7}+q^{9}+\zeta_{6}^{2}q^{12}+\cdots\)