Defining parameters
Level: | \( N \) | = | \( 273 = 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | = | \( 1 \) |
Nonzero newspaces: | \( 7 \) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(5376\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(273))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 318 | 140 | 178 |
Cusp forms | 30 | 28 | 2 |
Eisenstein series | 288 | 112 | 176 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 20 | 8 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(273))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(273))\) into lower level spaces
\( S_{1}^{\mathrm{old}}(\Gamma_1(273)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(91))\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(273))\)\(^{\oplus 1}\)