Properties

Label 272.2.l.c.205.13
Level $272$
Weight $2$
Character 272.205
Analytic conductor $2.172$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [272,2,Mod(69,272)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(272, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("272.69"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 272.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17193093498\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 205.13
Character \(\chi\) \(=\) 272.205
Dual form 272.2.l.c.69.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.808880 - 1.16005i) q^{2} +(-0.0958959 - 0.0958959i) q^{3} +(-0.691426 - 1.87668i) q^{4} +(-0.447567 + 0.447567i) q^{5} +(-0.188812 + 0.0336756i) q^{6} -0.608862i q^{7} +(-2.73632 - 0.715922i) q^{8} -2.98161i q^{9} +(0.157171 + 0.881227i) q^{10} +(3.40456 - 3.40456i) q^{11} +(-0.113661 + 0.246271i) q^{12} +(-2.42497 - 2.42497i) q^{13} +(-0.706310 - 0.492497i) q^{14} +0.0858396 q^{15} +(-3.04386 + 2.59517i) q^{16} +1.00000 q^{17} +(-3.45881 - 2.41176i) q^{18} +(2.29923 + 2.29923i) q^{19} +(1.14940 + 0.530480i) q^{20} +(-0.0583874 + 0.0583874i) q^{21} +(-1.19558 - 6.70335i) q^{22} +8.44480i q^{23} +(0.193748 + 0.331056i) q^{24} +4.59937i q^{25} +(-4.77459 + 0.851573i) q^{26} +(-0.573612 + 0.573612i) q^{27} +(-1.14264 + 0.420983i) q^{28} +(-1.91539 - 1.91539i) q^{29} +(0.0694340 - 0.0995781i) q^{30} +8.60605 q^{31} +(0.548406 + 5.63021i) q^{32} -0.652968 q^{33} +(0.808880 - 1.16005i) q^{34} +(0.272506 + 0.272506i) q^{35} +(-5.59553 + 2.06156i) q^{36} +(2.39745 - 2.39745i) q^{37} +(4.52702 - 0.807417i) q^{38} +0.465089i q^{39} +(1.54511 - 0.904263i) q^{40} -4.54163i q^{41} +(0.0205038 + 0.114961i) q^{42} +(-2.24913 + 2.24913i) q^{43} +(-8.74329 - 4.03528i) q^{44} +(1.33447 + 1.33447i) q^{45} +(9.79638 + 6.83083i) q^{46} +5.03217 q^{47} +(0.540760 + 0.0430275i) q^{48} +6.62929 q^{49} +(5.33549 + 3.72034i) q^{50} +(-0.0958959 - 0.0958959i) q^{51} +(-2.87421 + 6.22758i) q^{52} +(-8.40199 + 8.40199i) q^{53} +(0.201434 + 1.12940i) q^{54} +3.04754i q^{55} +(-0.435898 + 1.66604i) q^{56} -0.440974i q^{57} +(-3.77126 + 0.672623i) q^{58} +(3.63251 - 3.63251i) q^{59} +(-0.0593517 - 0.161094i) q^{60} +(-4.10191 - 4.10191i) q^{61} +(6.96127 - 9.98344i) q^{62} -1.81539 q^{63} +(6.97491 + 3.91799i) q^{64} +2.17067 q^{65} +(-0.528173 + 0.757474i) q^{66} +(-6.40751 - 6.40751i) q^{67} +(-0.691426 - 1.87668i) q^{68} +(0.809822 - 0.809822i) q^{69} +(0.536546 - 0.0956957i) q^{70} +13.8271i q^{71} +(-2.13460 + 8.15864i) q^{72} -12.6966i q^{73} +(-0.841910 - 4.72042i) q^{74} +(0.441061 - 0.441061i) q^{75} +(2.72517 - 5.90467i) q^{76} +(-2.07291 - 2.07291i) q^{77} +(0.539526 + 0.376202i) q^{78} +2.82341 q^{79} +(0.200819 - 2.52384i) q^{80} -8.83481 q^{81} +(-5.26851 - 3.67364i) q^{82} +(10.0726 + 10.0726i) q^{83} +(0.149945 + 0.0692040i) q^{84} +(-0.447567 + 0.447567i) q^{85} +(0.789825 + 4.42839i) q^{86} +0.367355i q^{87} +(-11.7534 + 6.87858i) q^{88} +5.42631i q^{89} +(2.62747 - 0.468623i) q^{90} +(-1.47647 + 1.47647i) q^{91} +(15.8482 - 5.83895i) q^{92} +(-0.825286 - 0.825286i) q^{93} +(4.07042 - 5.83756i) q^{94} -2.05812 q^{95} +(0.487324 - 0.592504i) q^{96} +14.7965 q^{97} +(5.36230 - 7.69030i) q^{98} +(-10.1511 - 10.1511i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{4} - 16 q^{6} - 18 q^{8} - 6 q^{10} - 4 q^{11} + 2 q^{12} + 14 q^{14} + 24 q^{15} + 26 q^{16} + 32 q^{17} + 10 q^{18} - 14 q^{20} - 8 q^{22} - 50 q^{24} - 6 q^{26} + 12 q^{27} - 8 q^{29} + 36 q^{30}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.808880 1.16005i 0.571965 0.820278i
\(3\) −0.0958959 0.0958959i −0.0553655 0.0553655i 0.678882 0.734247i \(-0.262465\pi\)
−0.734247 + 0.678882i \(0.762465\pi\)
\(4\) −0.691426 1.87668i −0.345713 0.938340i
\(5\) −0.447567 + 0.447567i −0.200158 + 0.200158i −0.800068 0.599910i \(-0.795203\pi\)
0.599910 + 0.800068i \(0.295203\pi\)
\(6\) −0.188812 + 0.0336756i −0.0770823 + 0.0137480i
\(7\) 0.608862i 0.230128i −0.993358 0.115064i \(-0.963293\pi\)
0.993358 0.115064i \(-0.0367074\pi\)
\(8\) −2.73632 0.715922i −0.967436 0.253117i
\(9\) 2.98161i 0.993869i
\(10\) 0.157171 + 0.881227i 0.0497019 + 0.278668i
\(11\) 3.40456 3.40456i 1.02651 1.02651i 0.0268762 0.999639i \(-0.491444\pi\)
0.999639 0.0268762i \(-0.00855598\pi\)
\(12\) −0.113661 + 0.246271i −0.0328111 + 0.0710923i
\(13\) −2.42497 2.42497i −0.672566 0.672566i 0.285741 0.958307i \(-0.407760\pi\)
−0.958307 + 0.285741i \(0.907760\pi\)
\(14\) −0.706310 0.492497i −0.188769 0.131625i
\(15\) 0.0858396 0.0221637
\(16\) −3.04386 + 2.59517i −0.760965 + 0.648793i
\(17\) 1.00000 0.242536
\(18\) −3.45881 2.41176i −0.815249 0.568458i
\(19\) 2.29923 + 2.29923i 0.527480 + 0.527480i 0.919820 0.392340i \(-0.128334\pi\)
−0.392340 + 0.919820i \(0.628334\pi\)
\(20\) 1.14940 + 0.530480i 0.257013 + 0.118619i
\(21\) −0.0583874 + 0.0583874i −0.0127412 + 0.0127412i
\(22\) −1.19558 6.70335i −0.254898 1.42916i
\(23\) 8.44480i 1.76086i 0.474173 + 0.880432i \(0.342747\pi\)
−0.474173 + 0.880432i \(0.657253\pi\)
\(24\) 0.193748 + 0.331056i 0.0395487 + 0.0675766i
\(25\) 4.59937i 0.919874i
\(26\) −4.77459 + 0.851573i −0.936375 + 0.167007i
\(27\) −0.573612 + 0.573612i −0.110392 + 0.110392i
\(28\) −1.14264 + 0.420983i −0.215939 + 0.0795583i
\(29\) −1.91539 1.91539i −0.355678 0.355678i 0.506539 0.862217i \(-0.330925\pi\)
−0.862217 + 0.506539i \(0.830925\pi\)
\(30\) 0.0694340 0.0995781i 0.0126769 0.0181804i
\(31\) 8.60605 1.54569 0.772847 0.634593i \(-0.218832\pi\)
0.772847 + 0.634593i \(0.218832\pi\)
\(32\) 0.548406 + 5.63021i 0.0969454 + 0.995290i
\(33\) −0.652968 −0.113667
\(34\) 0.808880 1.16005i 0.138722 0.198947i
\(35\) 0.272506 + 0.272506i 0.0460620 + 0.0460620i
\(36\) −5.59553 + 2.06156i −0.932588 + 0.343593i
\(37\) 2.39745 2.39745i 0.394139 0.394139i −0.482021 0.876160i \(-0.660097\pi\)
0.876160 + 0.482021i \(0.160097\pi\)
\(38\) 4.52702 0.807417i 0.734380 0.130980i
\(39\) 0.465089i 0.0744739i
\(40\) 1.54511 0.904263i 0.244303 0.142977i
\(41\) 4.54163i 0.709284i −0.935002 0.354642i \(-0.884603\pi\)
0.935002 0.354642i \(-0.115397\pi\)
\(42\) 0.0205038 + 0.114961i 0.00316381 + 0.0177388i
\(43\) −2.24913 + 2.24913i −0.342990 + 0.342990i −0.857490 0.514500i \(-0.827977\pi\)
0.514500 + 0.857490i \(0.327977\pi\)
\(44\) −8.74329 4.03528i −1.31810 0.608341i
\(45\) 1.33447 + 1.33447i 0.198931 + 0.198931i
\(46\) 9.79638 + 6.83083i 1.44440 + 1.00715i
\(47\) 5.03217 0.734017 0.367008 0.930218i \(-0.380382\pi\)
0.367008 + 0.930218i \(0.380382\pi\)
\(48\) 0.540760 + 0.0430275i 0.0780520 + 0.00621049i
\(49\) 6.62929 0.947041
\(50\) 5.33549 + 3.72034i 0.754552 + 0.526135i
\(51\) −0.0958959 0.0958959i −0.0134281 0.0134281i
\(52\) −2.87421 + 6.22758i −0.398581 + 0.863610i
\(53\) −8.40199 + 8.40199i −1.15410 + 1.15410i −0.168380 + 0.985722i \(0.553854\pi\)
−0.985722 + 0.168380i \(0.946146\pi\)
\(54\) 0.201434 + 1.12940i 0.0274118 + 0.153692i
\(55\) 3.04754i 0.410930i
\(56\) −0.435898 + 1.66604i −0.0582493 + 0.222634i
\(57\) 0.440974i 0.0584084i
\(58\) −3.77126 + 0.672623i −0.495190 + 0.0883197i
\(59\) 3.63251 3.63251i 0.472912 0.472912i −0.429944 0.902856i \(-0.641467\pi\)
0.902856 + 0.429944i \(0.141467\pi\)
\(60\) −0.0593517 0.161094i −0.00766228 0.0207971i
\(61\) −4.10191 4.10191i −0.525196 0.525196i 0.393940 0.919136i \(-0.371112\pi\)
−0.919136 + 0.393940i \(0.871112\pi\)
\(62\) 6.96127 9.98344i 0.884082 1.26790i
\(63\) −1.81539 −0.228717
\(64\) 6.97491 + 3.91799i 0.871864 + 0.489748i
\(65\) 2.17067 0.269239
\(66\) −0.528173 + 0.757474i −0.0650136 + 0.0932387i
\(67\) −6.40751 6.40751i −0.782802 0.782802i 0.197501 0.980303i \(-0.436717\pi\)
−0.980303 + 0.197501i \(0.936717\pi\)
\(68\) −0.691426 1.87668i −0.0838477 0.227581i
\(69\) 0.809822 0.809822i 0.0974912 0.0974912i
\(70\) 0.536546 0.0956957i 0.0641295 0.0114378i
\(71\) 13.8271i 1.64098i 0.571660 + 0.820490i \(0.306299\pi\)
−0.571660 + 0.820490i \(0.693701\pi\)
\(72\) −2.13460 + 8.15864i −0.251565 + 0.961505i
\(73\) 12.6966i 1.48602i −0.669279 0.743011i \(-0.733397\pi\)
0.669279 0.743011i \(-0.266603\pi\)
\(74\) −0.841910 4.72042i −0.0978701 0.548737i
\(75\) 0.441061 0.441061i 0.0509293 0.0509293i
\(76\) 2.72517 5.90467i 0.312599 0.677312i
\(77\) −2.07291 2.07291i −0.236230 0.236230i
\(78\) 0.539526 + 0.376202i 0.0610893 + 0.0425964i
\(79\) 2.82341 0.317659 0.158829 0.987306i \(-0.449228\pi\)
0.158829 + 0.987306i \(0.449228\pi\)
\(80\) 0.200819 2.52384i 0.0224522 0.282174i
\(81\) −8.83481 −0.981646
\(82\) −5.26851 3.67364i −0.581810 0.405685i
\(83\) 10.0726 + 10.0726i 1.10561 + 1.10561i 0.993720 + 0.111893i \(0.0356915\pi\)
0.111893 + 0.993720i \(0.464308\pi\)
\(84\) 0.149945 + 0.0692040i 0.0163604 + 0.00755077i
\(85\) −0.447567 + 0.447567i −0.0485454 + 0.0485454i
\(86\) 0.789825 + 4.42839i 0.0851690 + 0.477525i
\(87\) 0.367355i 0.0393846i
\(88\) −11.7534 + 6.87858i −1.25292 + 0.733259i
\(89\) 5.42631i 0.575188i 0.957752 + 0.287594i \(0.0928553\pi\)
−0.957752 + 0.287594i \(0.907145\pi\)
\(90\) 2.62747 0.468623i 0.276960 0.0493972i
\(91\) −1.47647 + 1.47647i −0.154776 + 0.154776i
\(92\) 15.8482 5.83895i 1.65229 0.608753i
\(93\) −0.825286 0.825286i −0.0855781 0.0855781i
\(94\) 4.07042 5.83756i 0.419832 0.602098i
\(95\) −2.05812 −0.211158
\(96\) 0.487324 0.592504i 0.0497373 0.0604722i
\(97\) 14.7965 1.50235 0.751177 0.660101i \(-0.229486\pi\)
0.751177 + 0.660101i \(0.229486\pi\)
\(98\) 5.36230 7.69030i 0.541674 0.776837i
\(99\) −10.1511 10.1511i −1.02022 1.02022i
\(100\) 8.63155 3.18012i 0.863155 0.318012i
\(101\) −9.93863 + 9.93863i −0.988931 + 0.988931i −0.999939 0.0110083i \(-0.996496\pi\)
0.0110083 + 0.999939i \(0.496496\pi\)
\(102\) −0.188812 + 0.0336756i −0.0186952 + 0.00333438i
\(103\) 3.07006i 0.302502i −0.988495 0.151251i \(-0.951670\pi\)
0.988495 0.151251i \(-0.0483302\pi\)
\(104\) 4.89941 + 8.37159i 0.480426 + 0.820902i
\(105\) 0.0522645i 0.00510049i
\(106\) 2.95052 + 16.5429i 0.286579 + 1.60679i
\(107\) 2.77668 2.77668i 0.268432 0.268432i −0.560036 0.828468i \(-0.689213\pi\)
0.828468 + 0.560036i \(0.189213\pi\)
\(108\) 1.47310 + 0.679876i 0.141749 + 0.0654211i
\(109\) −5.94317 5.94317i −0.569253 0.569253i 0.362666 0.931919i \(-0.381866\pi\)
−0.931919 + 0.362666i \(0.881866\pi\)
\(110\) 3.53529 + 2.46509i 0.337077 + 0.235037i
\(111\) −0.459812 −0.0436434
\(112\) 1.58010 + 1.85329i 0.149306 + 0.175120i
\(113\) −6.66004 −0.626524 −0.313262 0.949667i \(-0.601422\pi\)
−0.313262 + 0.949667i \(0.601422\pi\)
\(114\) −0.511551 0.356695i −0.0479111 0.0334075i
\(115\) −3.77961 3.77961i −0.352451 0.352451i
\(116\) −2.27022 + 4.91891i −0.210785 + 0.456710i
\(117\) −7.23031 + 7.23031i −0.668442 + 0.668442i
\(118\) −1.27562 7.15215i −0.117431 0.658409i
\(119\) 0.608862i 0.0558143i
\(120\) −0.234885 0.0614545i −0.0214420 0.00561000i
\(121\) 12.1821i 1.10747i
\(122\) −8.07638 + 1.44046i −0.731201 + 0.130413i
\(123\) −0.435524 + 0.435524i −0.0392699 + 0.0392699i
\(124\) −5.95045 16.1508i −0.534366 1.45039i
\(125\) −4.29636 4.29636i −0.384278 0.384278i
\(126\) −1.46843 + 2.10594i −0.130818 + 0.187612i
\(127\) −10.6582 −0.945760 −0.472880 0.881127i \(-0.656786\pi\)
−0.472880 + 0.881127i \(0.656786\pi\)
\(128\) 10.1869 4.92205i 0.900405 0.435052i
\(129\) 0.431366 0.0379796
\(130\) 1.75581 2.51808i 0.153995 0.220851i
\(131\) −5.48630 5.48630i −0.479340 0.479340i 0.425580 0.904921i \(-0.360070\pi\)
−0.904921 + 0.425580i \(0.860070\pi\)
\(132\) 0.451479 + 1.22541i 0.0392962 + 0.106658i
\(133\) 1.39992 1.39992i 0.121388 0.121388i
\(134\) −12.6159 + 2.25012i −1.08985 + 0.194380i
\(135\) 0.513459i 0.0441915i
\(136\) −2.73632 0.715922i −0.234638 0.0613898i
\(137\) 20.3339i 1.73724i 0.495476 + 0.868621i \(0.334993\pi\)
−0.495476 + 0.868621i \(0.665007\pi\)
\(138\) −0.284384 1.59448i −0.0242084 0.135731i
\(139\) 3.16393 3.16393i 0.268361 0.268361i −0.560078 0.828440i \(-0.689229\pi\)
0.828440 + 0.560078i \(0.189229\pi\)
\(140\) 0.322990 0.699825i 0.0272976 0.0591460i
\(141\) −0.482564 0.482564i −0.0406392 0.0406392i
\(142\) 16.0402 + 11.1845i 1.34606 + 0.938583i
\(143\) −16.5119 −1.38080
\(144\) 7.73778 + 9.07560i 0.644815 + 0.756300i
\(145\) 1.71452 0.142384
\(146\) −14.7286 10.2700i −1.21895 0.849952i
\(147\) −0.635722 0.635722i −0.0524334 0.0524334i
\(148\) −6.15692 2.84159i −0.506095 0.233578i
\(149\) 1.44394 1.44394i 0.118292 0.118292i −0.645483 0.763775i \(-0.723344\pi\)
0.763775 + 0.645483i \(0.223344\pi\)
\(150\) −0.154887 0.868417i −0.0126464 0.0709060i
\(151\) 2.89635i 0.235701i −0.993031 0.117851i \(-0.962400\pi\)
0.993031 0.117851i \(-0.0376004\pi\)
\(152\) −4.64536 7.93751i −0.376789 0.643817i
\(153\) 2.98161i 0.241049i
\(154\) −4.08141 + 0.727941i −0.328890 + 0.0586592i
\(155\) −3.85178 + 3.85178i −0.309383 + 0.309383i
\(156\) 0.872824 0.321575i 0.0698819 0.0257466i
\(157\) −0.649273 0.649273i −0.0518177 0.0518177i 0.680723 0.732541i \(-0.261666\pi\)
−0.732541 + 0.680723i \(0.761666\pi\)
\(158\) 2.28380 3.27530i 0.181690 0.260569i
\(159\) 1.61143 0.127795
\(160\) −2.76534 2.27445i −0.218619 0.179811i
\(161\) 5.14172 0.405225
\(162\) −7.14630 + 10.2488i −0.561467 + 0.805222i
\(163\) 1.05218 + 1.05218i 0.0824134 + 0.0824134i 0.747112 0.664698i \(-0.231440\pi\)
−0.664698 + 0.747112i \(0.731440\pi\)
\(164\) −8.52319 + 3.14020i −0.665549 + 0.245209i
\(165\) 0.292247 0.292247i 0.0227514 0.0227514i
\(166\) 19.8323 3.53719i 1.53928 0.274539i
\(167\) 1.65720i 0.128238i −0.997942 0.0641188i \(-0.979576\pi\)
0.997942 0.0641188i \(-0.0204237\pi\)
\(168\) 0.201568 0.117966i 0.0155513 0.00910127i
\(169\) 1.23905i 0.0953112i
\(170\) 0.157171 + 0.881227i 0.0120545 + 0.0675870i
\(171\) 6.85540 6.85540i 0.524246 0.524246i
\(172\) 5.77602 + 2.66580i 0.440417 + 0.203265i
\(173\) 6.75435 + 6.75435i 0.513524 + 0.513524i 0.915604 0.402080i \(-0.131713\pi\)
−0.402080 + 0.915604i \(0.631713\pi\)
\(174\) 0.426150 + 0.297146i 0.0323064 + 0.0225266i
\(175\) 2.80038 0.211689
\(176\) −1.52759 + 19.1984i −0.115147 + 1.44714i
\(177\) −0.696686 −0.0523661
\(178\) 6.29478 + 4.38923i 0.471814 + 0.328987i
\(179\) −17.8532 17.8532i −1.33441 1.33441i −0.901375 0.433039i \(-0.857441\pi\)
−0.433039 0.901375i \(-0.642559\pi\)
\(180\) 1.58168 3.42706i 0.117892 0.255438i
\(181\) 8.39506 8.39506i 0.624000 0.624000i −0.322552 0.946552i \(-0.604541\pi\)
0.946552 + 0.322552i \(0.104541\pi\)
\(182\) 0.518491 + 2.90707i 0.0384331 + 0.215486i
\(183\) 0.786714i 0.0581556i
\(184\) 6.04582 23.1077i 0.445704 1.70352i
\(185\) 2.14604i 0.157780i
\(186\) −1.62493 + 0.289814i −0.119146 + 0.0212502i
\(187\) 3.40456 3.40456i 0.248966 0.248966i
\(188\) −3.47937 9.44377i −0.253759 0.688758i
\(189\) 0.349251 + 0.349251i 0.0254042 + 0.0254042i
\(190\) −1.66477 + 2.38752i −0.120775 + 0.173209i
\(191\) −10.9854 −0.794877 −0.397438 0.917629i \(-0.630101\pi\)
−0.397438 + 0.917629i \(0.630101\pi\)
\(192\) −0.293147 1.04458i −0.0211560 0.0753864i
\(193\) −15.6527 −1.12671 −0.563355 0.826215i \(-0.690490\pi\)
−0.563355 + 0.826215i \(0.690490\pi\)
\(194\) 11.9686 17.1646i 0.859293 1.23235i
\(195\) −0.208158 0.208158i −0.0149065 0.0149065i
\(196\) −4.58366 12.4411i −0.327404 0.888647i
\(197\) 7.10694 7.10694i 0.506349 0.506349i −0.407055 0.913404i \(-0.633444\pi\)
0.913404 + 0.407055i \(0.133444\pi\)
\(198\) −19.9867 + 3.56474i −1.42040 + 0.253335i
\(199\) 19.5859i 1.38841i 0.719778 + 0.694205i \(0.244244\pi\)
−0.719778 + 0.694205i \(0.755756\pi\)
\(200\) 3.29279 12.5854i 0.232835 0.889919i
\(201\) 1.22891i 0.0866805i
\(202\) 3.49014 + 19.5685i 0.245565 + 1.37683i
\(203\) −1.16621 + 1.16621i −0.0818516 + 0.0818516i
\(204\) −0.113661 + 0.246271i −0.00795787 + 0.0172424i
\(205\) 2.03268 + 2.03268i 0.141969 + 0.141969i
\(206\) −3.56142 2.48331i −0.248136 0.173020i
\(207\) 25.1791 1.75007
\(208\) 13.6745 + 1.08806i 0.948155 + 0.0754434i
\(209\) 15.6558 1.08293
\(210\) −0.0606294 0.0422757i −0.00418382 0.00291730i
\(211\) −0.654065 0.654065i −0.0450277 0.0450277i 0.684234 0.729262i \(-0.260137\pi\)
−0.729262 + 0.684234i \(0.760137\pi\)
\(212\) 21.5772 + 9.95850i 1.48193 + 0.683953i
\(213\) 1.32597 1.32597i 0.0908538 0.0908538i
\(214\) −0.975083 5.46709i −0.0666553 0.373722i
\(215\) 2.01327i 0.137304i
\(216\) 1.98025 1.15893i 0.134739 0.0788549i
\(217\) 5.23990i 0.355708i
\(218\) −11.7017 + 2.08706i −0.792538 + 0.141353i
\(219\) −1.21755 + 1.21755i −0.0822744 + 0.0822744i
\(220\) 5.71926 2.10715i 0.385592 0.142064i
\(221\) −2.42497 2.42497i −0.163121 0.163121i
\(222\) −0.371933 + 0.533404i −0.0249625 + 0.0357998i
\(223\) 11.0892 0.742591 0.371295 0.928515i \(-0.378914\pi\)
0.371295 + 0.928515i \(0.378914\pi\)
\(224\) 3.42802 0.333904i 0.229044 0.0223099i
\(225\) 13.7135 0.914234
\(226\) −5.38717 + 7.72597i −0.358349 + 0.513924i
\(227\) −2.69606 2.69606i −0.178944 0.178944i 0.611952 0.790895i \(-0.290385\pi\)
−0.790895 + 0.611952i \(0.790385\pi\)
\(228\) −0.827567 + 0.304901i −0.0548070 + 0.0201925i
\(229\) −2.65416 + 2.65416i −0.175392 + 0.175392i −0.789343 0.613952i \(-0.789579\pi\)
0.613952 + 0.789343i \(0.289579\pi\)
\(230\) −7.44179 + 1.32728i −0.490697 + 0.0875183i
\(231\) 0.397568i 0.0261580i
\(232\) 3.86984 + 6.61238i 0.254068 + 0.434124i
\(233\) 15.9083i 1.04219i 0.853499 + 0.521095i \(0.174476\pi\)
−0.853499 + 0.521095i \(0.825524\pi\)
\(234\) 2.53906 + 14.2360i 0.165983 + 0.930634i
\(235\) −2.25223 + 2.25223i −0.146919 + 0.146919i
\(236\) −9.32867 4.30545i −0.607245 0.280261i
\(237\) −0.270754 0.270754i −0.0175874 0.0175874i
\(238\) −0.706310 0.492497i −0.0457833 0.0319238i
\(239\) 8.12977 0.525871 0.262936 0.964813i \(-0.415309\pi\)
0.262936 + 0.964813i \(0.415309\pi\)
\(240\) −0.261284 + 0.222768i −0.0168658 + 0.0143796i
\(241\) 20.7325 1.33550 0.667748 0.744387i \(-0.267258\pi\)
0.667748 + 0.744387i \(0.267258\pi\)
\(242\) −14.1319 9.85388i −0.908430 0.633431i
\(243\) 2.56806 + 2.56806i 0.164741 + 0.164741i
\(244\) −4.86181 + 10.5342i −0.311246 + 0.674380i
\(245\) −2.96705 + 2.96705i −0.189558 + 0.189558i
\(246\) 0.152942 + 0.857516i 0.00975125 + 0.0546732i
\(247\) 11.1511i 0.709529i
\(248\) −23.5489 6.16127i −1.49536 0.391241i
\(249\) 1.93185i 0.122426i
\(250\) −8.45922 + 1.50874i −0.535008 + 0.0954214i
\(251\) −7.90356 + 7.90356i −0.498868 + 0.498868i −0.911085 0.412217i \(-0.864754\pi\)
0.412217 + 0.911085i \(0.364754\pi\)
\(252\) 1.25521 + 3.40690i 0.0790706 + 0.214615i
\(253\) 28.7509 + 28.7509i 1.80755 + 1.80755i
\(254\) −8.62118 + 12.3640i −0.540941 + 0.775786i
\(255\) 0.0858396 0.00537549
\(256\) 2.53018 15.7987i 0.158136 0.987417i
\(257\) −1.95377 −0.121873 −0.0609364 0.998142i \(-0.519409\pi\)
−0.0609364 + 0.998142i \(0.519409\pi\)
\(258\) 0.348923 0.500405i 0.0217230 0.0311539i
\(259\) −1.45972 1.45972i −0.0907025 0.0907025i
\(260\) −1.50086 4.07366i −0.0930792 0.252637i
\(261\) −5.71093 + 5.71093i −0.353498 + 0.353498i
\(262\) −10.8021 + 1.92662i −0.667358 + 0.119027i
\(263\) 1.40161i 0.0864269i −0.999066 0.0432134i \(-0.986240\pi\)
0.999066 0.0432134i \(-0.0137595\pi\)
\(264\) 1.78673 + 0.467474i 0.109966 + 0.0287710i
\(265\) 7.52090i 0.462005i
\(266\) −0.491606 2.75633i −0.0301423 0.169002i
\(267\) 0.520361 0.520361i 0.0318456 0.0318456i
\(268\) −7.59453 + 16.4552i −0.463910 + 1.00516i
\(269\) 17.5625 + 17.5625i 1.07080 + 1.07080i 0.997295 + 0.0735097i \(0.0234200\pi\)
0.0735097 + 0.997295i \(0.476580\pi\)
\(270\) −0.595637 0.415327i −0.0362493 0.0252760i
\(271\) −26.3658 −1.60161 −0.800805 0.598925i \(-0.795595\pi\)
−0.800805 + 0.598925i \(0.795595\pi\)
\(272\) −3.04386 + 2.59517i −0.184561 + 0.157355i
\(273\) 0.283175 0.0171386
\(274\) 23.5883 + 16.4477i 1.42502 + 0.993641i
\(275\) 15.6588 + 15.6588i 0.944264 + 0.944264i
\(276\) −2.07971 0.959846i −0.125184 0.0577759i
\(277\) −5.33899 + 5.33899i −0.320789 + 0.320789i −0.849070 0.528281i \(-0.822837\pi\)
0.528281 + 0.849070i \(0.322837\pi\)
\(278\) −1.11107 6.22956i −0.0666378 0.373624i
\(279\) 25.6599i 1.53622i
\(280\) −0.550572 0.940759i −0.0329030 0.0562211i
\(281\) 10.8569i 0.647670i 0.946114 + 0.323835i \(0.104972\pi\)
−0.946114 + 0.323835i \(0.895028\pi\)
\(282\) −0.950135 + 0.169461i −0.0565797 + 0.0100913i
\(283\) −9.41355 + 9.41355i −0.559577 + 0.559577i −0.929187 0.369610i \(-0.879491\pi\)
0.369610 + 0.929187i \(0.379491\pi\)
\(284\) 25.9491 9.56045i 1.53980 0.567308i
\(285\) 0.197365 + 0.197365i 0.0116909 + 0.0116909i
\(286\) −13.3562 + 19.1546i −0.789767 + 1.13264i
\(287\) −2.76523 −0.163226
\(288\) 16.7871 1.63513i 0.989188 0.0963510i
\(289\) 1.00000 0.0588235
\(290\) 1.38685 1.98893i 0.0814384 0.116794i
\(291\) −1.41892 1.41892i −0.0831786 0.0831786i
\(292\) −23.8274 + 8.77874i −1.39439 + 0.513737i
\(293\) −16.3133 + 16.3133i −0.953035 + 0.953035i −0.998946 0.0459108i \(-0.985381\pi\)
0.0459108 + 0.998946i \(0.485381\pi\)
\(294\) −1.25169 + 0.223245i −0.0730001 + 0.0130199i
\(295\) 3.25158i 0.189314i
\(296\) −8.27659 + 4.84381i −0.481067 + 0.281541i
\(297\) 3.90580i 0.226637i
\(298\) −0.507068 2.84302i −0.0293736 0.164692i
\(299\) 20.4784 20.4784i 1.18430 1.18430i
\(300\) −1.13269 0.522769i −0.0653959 0.0301821i
\(301\) 1.36941 + 1.36941i 0.0789317 + 0.0789317i
\(302\) −3.35990 2.34280i −0.193341 0.134813i
\(303\) 1.90615 0.109505
\(304\) −12.9654 1.03164i −0.743619 0.0591687i
\(305\) 3.67176 0.210244
\(306\) −3.45881 2.41176i −0.197727 0.137871i
\(307\) 18.3821 + 18.3821i 1.04912 + 1.04912i 0.998730 + 0.0503912i \(0.0160468\pi\)
0.0503912 + 0.998730i \(0.483953\pi\)
\(308\) −2.45693 + 5.32346i −0.139996 + 0.303332i
\(309\) −0.294406 + 0.294406i −0.0167482 + 0.0167482i
\(310\) 1.35262 + 7.58389i 0.0768239 + 0.430736i
\(311\) 15.2732i 0.866063i −0.901379 0.433032i \(-0.857444\pi\)
0.901379 0.433032i \(-0.142556\pi\)
\(312\) 0.332968 1.27263i 0.0188506 0.0720487i
\(313\) 16.6333i 0.940172i 0.882621 + 0.470086i \(0.155777\pi\)
−0.882621 + 0.470086i \(0.844223\pi\)
\(314\) −1.27837 + 0.228004i −0.0721428 + 0.0128670i
\(315\) 0.812507 0.812507i 0.0457796 0.0457796i
\(316\) −1.95218 5.29865i −0.109819 0.298072i
\(317\) −15.2096 15.2096i −0.854257 0.854257i 0.136397 0.990654i \(-0.456448\pi\)
−0.990654 + 0.136397i \(0.956448\pi\)
\(318\) 1.30346 1.86934i 0.0730942 0.104827i
\(319\) −13.0421 −0.730218
\(320\) −4.87530 + 1.36818i −0.272537 + 0.0764834i
\(321\) −0.532545 −0.0297238
\(322\) 4.15904 5.96465i 0.231774 0.332397i
\(323\) 2.29923 + 2.29923i 0.127933 + 0.127933i
\(324\) 6.10862 + 16.5801i 0.339368 + 0.921118i
\(325\) 11.1533 11.1533i 0.618675 0.618675i
\(326\) 2.07167 0.369494i 0.114739 0.0204644i
\(327\) 1.13985i 0.0630340i
\(328\) −3.25146 + 12.4274i −0.179532 + 0.686186i
\(329\) 3.06390i 0.168918i
\(330\) −0.102628 0.575413i −0.00564947 0.0316754i
\(331\) −2.34497 + 2.34497i −0.128891 + 0.128891i −0.768609 0.639718i \(-0.779051\pi\)
0.639718 + 0.768609i \(0.279051\pi\)
\(332\) 11.9386 25.8676i 0.655217 1.41967i
\(333\) −7.14827 7.14827i −0.391723 0.391723i
\(334\) −1.92243 1.34047i −0.105191 0.0733474i
\(335\) 5.73557 0.313368
\(336\) 0.0261979 0.329249i 0.00142921 0.0179620i
\(337\) 10.6127 0.578110 0.289055 0.957312i \(-0.406659\pi\)
0.289055 + 0.957312i \(0.406659\pi\)
\(338\) −1.43735 1.00224i −0.0781817 0.0545146i
\(339\) 0.638671 + 0.638671i 0.0346878 + 0.0346878i
\(340\) 1.14940 + 0.530480i 0.0623349 + 0.0287693i
\(341\) 29.2999 29.2999i 1.58668 1.58668i
\(342\) −2.40740 13.4978i −0.130177 0.729878i
\(343\) 8.29836i 0.448069i
\(344\) 7.76456 4.54415i 0.418637 0.245004i
\(345\) 0.724899i 0.0390272i
\(346\) 13.2988 2.37192i 0.714950 0.127515i
\(347\) −4.33651 + 4.33651i −0.232796 + 0.232796i −0.813859 0.581063i \(-0.802637\pi\)
0.581063 + 0.813859i \(0.302637\pi\)
\(348\) 0.689409 0.253999i 0.0369562 0.0136158i
\(349\) 17.9297 + 17.9297i 0.959754 + 0.959754i 0.999221 0.0394669i \(-0.0125660\pi\)
−0.0394669 + 0.999221i \(0.512566\pi\)
\(350\) 2.26517 3.24858i 0.121079 0.173644i
\(351\) 2.78198 0.148491
\(352\) 21.0355 + 17.3013i 1.12120 + 0.922164i
\(353\) −29.3573 −1.56253 −0.781265 0.624199i \(-0.785425\pi\)
−0.781265 + 0.624199i \(0.785425\pi\)
\(354\) −0.563535 + 0.808189i −0.0299516 + 0.0429548i
\(355\) −6.18857 6.18857i −0.328455 0.328455i
\(356\) 10.1835 3.75189i 0.539722 0.198850i
\(357\) −0.0583874 + 0.0583874i −0.00309019 + 0.00309019i
\(358\) −35.1518 + 6.26950i −1.85783 + 0.331353i
\(359\) 10.3083i 0.544049i 0.962290 + 0.272025i \(0.0876932\pi\)
−0.962290 + 0.272025i \(0.912307\pi\)
\(360\) −2.69616 4.60691i −0.142100 0.242805i
\(361\) 8.42708i 0.443530i
\(362\) −2.94808 16.5293i −0.154948 0.868760i
\(363\) −1.16822 + 1.16822i −0.0613154 + 0.0613154i
\(364\) 3.79174 + 1.75000i 0.198741 + 0.0917247i
\(365\) 5.68256 + 5.68256i 0.297439 + 0.297439i
\(366\) 0.912626 + 0.636357i 0.0477037 + 0.0332629i
\(367\) 3.75481 0.196000 0.0979998 0.995186i \(-0.468756\pi\)
0.0979998 + 0.995186i \(0.468756\pi\)
\(368\) −21.9157 25.7048i −1.14244 1.33996i
\(369\) −13.5414 −0.704935
\(370\) 2.48951 + 1.73589i 0.129424 + 0.0902446i
\(371\) 5.11566 + 5.11566i 0.265592 + 0.265592i
\(372\) −0.978174 + 2.11942i −0.0507160 + 0.109887i
\(373\) 20.3092 20.3092i 1.05157 1.05157i 0.0529738 0.998596i \(-0.483130\pi\)
0.998596 0.0529738i \(-0.0168700\pi\)
\(374\) −1.19558 6.70335i −0.0618218 0.346622i
\(375\) 0.824006i 0.0425515i
\(376\) −13.7696 3.60264i −0.710114 0.185792i
\(377\) 9.28950i 0.478434i
\(378\) 0.687650 0.122646i 0.0353689 0.00630822i
\(379\) −2.21342 + 2.21342i −0.113696 + 0.113696i −0.761666 0.647970i \(-0.775618\pi\)
0.647970 + 0.761666i \(0.275618\pi\)
\(380\) 1.42304 + 3.86243i 0.0730002 + 0.198138i
\(381\) 1.02208 + 1.02208i 0.0523625 + 0.0523625i
\(382\) −8.88589 + 12.7436i −0.454642 + 0.652020i
\(383\) −19.5256 −0.997713 −0.498857 0.866685i \(-0.666247\pi\)
−0.498857 + 0.866685i \(0.666247\pi\)
\(384\) −1.44889 0.504879i −0.0739383 0.0257645i
\(385\) 1.85553 0.0945666
\(386\) −12.6612 + 18.1580i −0.644438 + 0.924215i
\(387\) 6.70604 + 6.70604i 0.340887 + 0.340887i
\(388\) −10.2307 27.7683i −0.519383 1.40972i
\(389\) 19.1361 19.1361i 0.970237 0.970237i −0.0293325 0.999570i \(-0.509338\pi\)
0.999570 + 0.0293325i \(0.00933818\pi\)
\(390\) −0.409849 + 0.0730987i −0.0207535 + 0.00370150i
\(391\) 8.44480i 0.427072i
\(392\) −18.1399 4.74605i −0.916201 0.239712i
\(393\) 1.05223i 0.0530779i
\(394\) −2.49573 13.9931i −0.125733 0.704960i
\(395\) −1.26367 + 1.26367i −0.0635819 + 0.0635819i
\(396\) −12.0316 + 26.0690i −0.604611 + 1.31002i
\(397\) −26.8450 26.8450i −1.34731 1.34731i −0.888570 0.458740i \(-0.848301\pi\)
−0.458740 0.888570i \(-0.651699\pi\)
\(398\) 22.7206 + 15.8427i 1.13888 + 0.794121i
\(399\) −0.268492 −0.0134414
\(400\) −11.9361 13.9998i −0.596807 0.699992i
\(401\) −10.9982 −0.549222 −0.274611 0.961555i \(-0.588549\pi\)
−0.274611 + 0.961555i \(0.588549\pi\)
\(402\) 1.42559 + 0.994039i 0.0711021 + 0.0495782i
\(403\) −20.8694 20.8694i −1.03958 1.03958i
\(404\) 25.5235 + 11.7798i 1.26984 + 0.586068i
\(405\) 3.95417 3.95417i 0.196484 0.196484i
\(406\) 0.409535 + 2.29618i 0.0203249 + 0.113957i
\(407\) 16.3246i 0.809179i
\(408\) 0.193748 + 0.331056i 0.00959196 + 0.0163897i
\(409\) 19.2606i 0.952373i −0.879344 0.476187i \(-0.842019\pi\)
0.879344 0.476187i \(-0.157981\pi\)
\(410\) 4.00221 0.713814i 0.197655 0.0352528i
\(411\) 1.94994 1.94994i 0.0961834 0.0961834i
\(412\) −5.76152 + 2.12272i −0.283850 + 0.104579i
\(413\) −2.21170 2.21170i −0.108831 0.108831i
\(414\) 20.3669 29.2090i 1.00098 1.43554i
\(415\) −9.01634 −0.442594
\(416\) 12.3232 14.9830i 0.604195 0.734600i
\(417\) −0.606817 −0.0297160
\(418\) 12.6636 18.1614i 0.619399 0.888305i
\(419\) 22.4250 + 22.4250i 1.09553 + 1.09553i 0.994926 + 0.100605i \(0.0320777\pi\)
0.100605 + 0.994926i \(0.467922\pi\)
\(420\) −0.0980838 + 0.0361370i −0.00478600 + 0.00176331i
\(421\) −0.813332 + 0.813332i −0.0396394 + 0.0396394i −0.726649 0.687009i \(-0.758923\pi\)
0.687009 + 0.726649i \(0.258923\pi\)
\(422\) −1.28781 + 0.229687i −0.0626895 + 0.0111810i
\(423\) 15.0039i 0.729517i
\(424\) 29.0057 16.9754i 1.40864 0.824397i
\(425\) 4.59937i 0.223102i
\(426\) −0.465638 2.61074i −0.0225602 0.126491i
\(427\) −2.49750 + 2.49750i −0.120863 + 0.120863i
\(428\) −7.13081 3.29108i −0.344681 0.159080i
\(429\) 1.58343 + 1.58343i 0.0764486 + 0.0764486i
\(430\) −2.33550 1.62850i −0.112628 0.0785331i
\(431\) 11.3460 0.546518 0.273259 0.961941i \(-0.411898\pi\)
0.273259 + 0.961941i \(0.411898\pi\)
\(432\) 0.257374 3.23462i 0.0123829 0.155626i
\(433\) −24.1903 −1.16251 −0.581256 0.813720i \(-0.697439\pi\)
−0.581256 + 0.813720i \(0.697439\pi\)
\(434\) −6.07854 4.23845i −0.291779 0.203452i
\(435\) −0.164416 0.164416i −0.00788314 0.00788314i
\(436\) −7.04418 + 15.2627i −0.337355 + 0.730951i
\(437\) −19.4166 + 19.4166i −0.928820 + 0.928820i
\(438\) 0.427565 + 2.39727i 0.0204299 + 0.114546i
\(439\) 24.3351i 1.16145i −0.814099 0.580726i \(-0.802769\pi\)
0.814099 0.580726i \(-0.197231\pi\)
\(440\) 2.18180 8.33905i 0.104013 0.397548i
\(441\) 19.7659i 0.941235i
\(442\) −4.77459 + 0.851573i −0.227104 + 0.0405052i
\(443\) −16.7909 + 16.7909i −0.797761 + 0.797761i −0.982742 0.184981i \(-0.940778\pi\)
0.184981 + 0.982742i \(0.440778\pi\)
\(444\) 0.317926 + 0.862920i 0.0150881 + 0.0409524i
\(445\) −2.42863 2.42863i −0.115128 0.115128i
\(446\) 8.96987 12.8641i 0.424736 0.609131i
\(447\) −0.276937 −0.0130987
\(448\) 2.38551 4.24676i 0.112705 0.200641i
\(449\) −36.7989 −1.73665 −0.868324 0.495997i \(-0.834803\pi\)
−0.868324 + 0.495997i \(0.834803\pi\)
\(450\) 11.0926 15.9083i 0.522910 0.749926i
\(451\) −15.4623 15.4623i −0.728090 0.728090i
\(452\) 4.60492 + 12.4988i 0.216597 + 0.587892i
\(453\) −0.277748 + 0.277748i −0.0130497 + 0.0130497i
\(454\) −5.30834 + 0.946770i −0.249133 + 0.0444341i
\(455\) 1.32164i 0.0619594i
\(456\) −0.315703 + 1.20665i −0.0147841 + 0.0565064i
\(457\) 8.70262i 0.407092i 0.979065 + 0.203546i \(0.0652466\pi\)
−0.979065 + 0.203546i \(0.934753\pi\)
\(458\) 0.932056 + 5.22585i 0.0435521 + 0.244188i
\(459\) −0.573612 + 0.573612i −0.0267739 + 0.0267739i
\(460\) −4.47980 + 9.70645i −0.208872 + 0.452565i
\(461\) −9.82718 9.82718i −0.457697 0.457697i 0.440202 0.897899i \(-0.354907\pi\)
−0.897899 + 0.440202i \(0.854907\pi\)
\(462\) 0.461198 + 0.321584i 0.0214569 + 0.0149615i
\(463\) 23.8196 1.10699 0.553495 0.832852i \(-0.313294\pi\)
0.553495 + 0.832852i \(0.313294\pi\)
\(464\) 10.8009 + 0.859414i 0.501420 + 0.0398973i
\(465\) 0.738741 0.0342583
\(466\) 18.4544 + 12.8679i 0.854885 + 0.596095i
\(467\) 7.59613 + 7.59613i 0.351507 + 0.351507i 0.860670 0.509163i \(-0.170045\pi\)
−0.509163 + 0.860670i \(0.670045\pi\)
\(468\) 18.5682 + 8.56976i 0.858315 + 0.396137i
\(469\) −3.90129 + 3.90129i −0.180145 + 0.180145i
\(470\) 0.790912 + 4.43448i 0.0364820 + 0.204547i
\(471\) 0.124525i 0.00573783i
\(472\) −12.5403 + 7.33912i −0.577214 + 0.337810i
\(473\) 15.3146i 0.704168i
\(474\) −0.533095 + 0.0950802i −0.0244859 + 0.00436718i
\(475\) −10.5750 + 10.5750i −0.485215 + 0.485215i
\(476\) −1.14264 + 0.420983i −0.0523728 + 0.0192957i
\(477\) 25.0514 + 25.0514i 1.14703 + 1.14703i
\(478\) 6.57601 9.43093i 0.300780 0.431361i
\(479\) 6.12832 0.280010 0.140005 0.990151i \(-0.455288\pi\)
0.140005 + 0.990151i \(0.455288\pi\)
\(480\) 0.0470749 + 0.483295i 0.00214867 + 0.0220593i
\(481\) −11.6275 −0.530169
\(482\) 16.7701 24.0507i 0.763857 1.09548i
\(483\) −0.493070 0.493070i −0.0224355 0.0224355i
\(484\) −22.8620 + 8.42303i −1.03918 + 0.382865i
\(485\) −6.62241 + 6.62241i −0.300708 + 0.300708i
\(486\) 5.05632 0.901821i 0.229359 0.0409074i
\(487\) 5.14859i 0.233305i 0.993173 + 0.116652i \(0.0372164\pi\)
−0.993173 + 0.116652i \(0.962784\pi\)
\(488\) 8.28751 + 14.1608i 0.375158 + 0.641030i
\(489\) 0.201800i 0.00912572i
\(490\) 1.04193 + 5.84190i 0.0470698 + 0.263910i
\(491\) 0.0848303 0.0848303i 0.00382834 0.00382834i −0.705190 0.709018i \(-0.749138\pi\)
0.709018 + 0.705190i \(0.249138\pi\)
\(492\) 1.11847 + 0.516207i 0.0504246 + 0.0232724i
\(493\) −1.91539 1.91539i −0.0862646 0.0862646i
\(494\) −12.9359 9.01993i −0.582012 0.405826i
\(495\) 9.08657 0.408411
\(496\) −26.1956 + 22.3342i −1.17622 + 1.00283i
\(497\) 8.41883 0.377636
\(498\) −2.24104 1.56263i −0.100423 0.0700232i
\(499\) 21.1562 + 21.1562i 0.947080 + 0.947080i 0.998668 0.0515880i \(-0.0164283\pi\)
−0.0515880 + 0.998668i \(0.516428\pi\)
\(500\) −5.09228 + 11.0335i −0.227734 + 0.493433i
\(501\) −0.158918 + 0.158918i −0.00709995 + 0.00709995i
\(502\) 2.77548 + 15.5615i 0.123876 + 0.694545i
\(503\) 4.93831i 0.220188i −0.993921 0.110094i \(-0.964885\pi\)
0.993921 0.110094i \(-0.0351153\pi\)
\(504\) 4.96749 + 1.29968i 0.221269 + 0.0578922i
\(505\) 8.89640i 0.395885i
\(506\) 56.6084 10.0964i 2.51655 0.448840i
\(507\) −0.118819 + 0.118819i −0.00527696 + 0.00527696i
\(508\) 7.36933 + 20.0020i 0.326961 + 0.887444i
\(509\) −18.6934 18.6934i −0.828573 0.828573i 0.158747 0.987319i \(-0.449255\pi\)
−0.987319 + 0.158747i \(0.949255\pi\)
\(510\) 0.0694340 0.0995781i 0.00307459 0.00440939i
\(511\) −7.73047 −0.341976
\(512\) −16.2806 15.7144i −0.719509 0.694483i
\(513\) −2.63773 −0.116459
\(514\) −1.58037 + 2.26647i −0.0697070 + 0.0999697i
\(515\) 1.37406 + 1.37406i 0.0605481 + 0.0605481i
\(516\) −0.298257 0.809536i −0.0131300 0.0356378i
\(517\) 17.1323 17.1323i 0.753479 0.753479i
\(518\) −2.87408 + 0.512607i −0.126280 + 0.0225227i
\(519\) 1.29543i 0.0568631i
\(520\) −5.93965 1.55403i −0.260471 0.0681488i
\(521\) 17.7856i 0.779200i −0.920984 0.389600i \(-0.872613\pi\)
0.920984 0.389600i \(-0.127387\pi\)
\(522\) 2.00550 + 11.2444i 0.0877783 + 0.492155i
\(523\) −22.9804 + 22.9804i −1.00486 + 1.00486i −0.00487572 + 0.999988i \(0.501552\pi\)
−0.999988 + 0.00487572i \(0.998448\pi\)
\(524\) −6.50266 + 14.0894i −0.284070 + 0.615498i
\(525\) −0.268545 0.268545i −0.0117203 0.0117203i
\(526\) −1.62593 1.13373i −0.0708941 0.0494331i
\(527\) 8.60605 0.374886
\(528\) 1.98754 1.69456i 0.0864967 0.0737464i
\(529\) −48.3147 −2.10064
\(530\) −8.72461 6.08351i −0.378973 0.264251i
\(531\) −10.8307 10.8307i −0.470013 0.470013i
\(532\) −3.59513 1.65926i −0.155869 0.0719379i
\(533\) −11.0133 + 11.0133i −0.477040 + 0.477040i
\(534\) −0.182734 1.02455i −0.00790769 0.0443368i
\(535\) 2.48550i 0.107458i
\(536\) 12.9457 + 22.1203i 0.559170 + 0.955451i
\(537\) 3.42411i 0.147761i
\(538\) 34.5793 6.16739i 1.49082 0.265895i
\(539\) 22.5698 22.5698i 0.972152 0.972152i
\(540\) −0.963599 + 0.355019i −0.0414667 + 0.0152776i
\(541\) 8.43580 + 8.43580i 0.362683 + 0.362683i 0.864800 0.502117i \(-0.167445\pi\)
−0.502117 + 0.864800i \(0.667445\pi\)
\(542\) −21.3268 + 30.5857i −0.916065 + 1.31377i
\(543\) −1.61010 −0.0690962
\(544\) 0.548406 + 5.63021i 0.0235127 + 0.241393i
\(545\) 5.31993 0.227881
\(546\) 0.229055 0.328497i 0.00980265 0.0140584i
\(547\) 9.29903 + 9.29903i 0.397598 + 0.397598i 0.877385 0.479787i \(-0.159286\pi\)
−0.479787 + 0.877385i \(0.659286\pi\)
\(548\) 38.1602 14.0594i 1.63012 0.600587i
\(549\) −12.2303 + 12.2303i −0.521977 + 0.521977i
\(550\) 30.8312 5.49889i 1.31464 0.234474i
\(551\) 8.80783i 0.375226i
\(552\) −2.79570 + 1.63616i −0.118993 + 0.0696398i
\(553\) 1.71907i 0.0731023i
\(554\) 1.87489 + 10.5121i 0.0796563 + 0.446616i
\(555\) 0.205797 0.205797i 0.00873558 0.00873558i
\(556\) −8.12532 3.75007i −0.344590 0.159038i
\(557\) −18.9984 18.9984i −0.804988 0.804988i 0.178883 0.983870i \(-0.442752\pi\)
−0.983870 + 0.178883i \(0.942752\pi\)
\(558\) −29.7667 20.7558i −1.26013 0.878662i
\(559\) 10.9082 0.461366
\(560\) −1.53667 0.122271i −0.0649363 0.00516689i
\(561\) −0.652968 −0.0275683
\(562\) 12.5946 + 8.78195i 0.531269 + 0.370444i
\(563\) 32.0489 + 32.0489i 1.35070 + 1.35070i 0.884878 + 0.465822i \(0.154241\pi\)
0.465822 + 0.884878i \(0.345759\pi\)
\(564\) −0.571962 + 1.23928i −0.0240839 + 0.0521829i
\(565\) 2.98081 2.98081i 0.125404 0.125404i
\(566\) 3.30574 + 18.5346i 0.138951 + 0.779068i
\(567\) 5.37918i 0.225904i
\(568\) 9.89916 37.8355i 0.415360 1.58754i
\(569\) 6.24532i 0.261817i 0.991394 + 0.130909i \(0.0417895\pi\)
−0.991394 + 0.130909i \(0.958211\pi\)
\(570\) 0.388598 0.0693084i 0.0162766 0.00290301i
\(571\) −21.2572 + 21.2572i −0.889587 + 0.889587i −0.994483 0.104897i \(-0.966549\pi\)
0.104897 + 0.994483i \(0.466549\pi\)
\(572\) 11.4168 + 30.9876i 0.477359 + 1.29566i
\(573\) 1.05346 + 1.05346i 0.0440088 + 0.0440088i
\(574\) −2.23674 + 3.20780i −0.0933597 + 0.133891i
\(575\) −38.8408 −1.61977
\(576\) 11.6819 20.7964i 0.486746 0.866519i
\(577\) −18.7832 −0.781955 −0.390977 0.920400i \(-0.627863\pi\)
−0.390977 + 0.920400i \(0.627863\pi\)
\(578\) 0.808880 1.16005i 0.0336450 0.0482517i
\(579\) 1.50103 + 1.50103i 0.0623809 + 0.0623809i
\(580\) −1.18547 3.21762i −0.0492238 0.133604i
\(581\) 6.13284 6.13284i 0.254433 0.254433i
\(582\) −2.79376 + 0.498281i −0.115805 + 0.0206544i
\(583\) 57.2103i 2.36941i
\(584\) −9.08976 + 34.7419i −0.376137 + 1.43763i
\(585\) 6.47209i 0.267588i
\(586\) 5.72873 + 32.1198i 0.236652 + 1.32686i
\(587\) 25.1712 25.1712i 1.03893 1.03893i 0.0397141 0.999211i \(-0.487355\pi\)
0.999211 0.0397141i \(-0.0126447\pi\)
\(588\) −0.753492 + 1.63260i −0.0310735 + 0.0673273i
\(589\) 19.7873 + 19.7873i 0.815322 + 0.815322i
\(590\) 3.77199 + 2.63014i 0.155290 + 0.108281i
\(591\) −1.36305 −0.0560685
\(592\) −1.07571 + 13.5193i −0.0442116 + 0.555640i
\(593\) −3.70296 −0.152062 −0.0760312 0.997105i \(-0.524225\pi\)
−0.0760312 + 0.997105i \(0.524225\pi\)
\(594\) 4.53092 + 3.15932i 0.185906 + 0.129629i
\(595\) 0.272506 + 0.272506i 0.0111717 + 0.0111717i
\(596\) −3.70820 1.71144i −0.151894 0.0701034i
\(597\) 1.87821 1.87821i 0.0768701 0.0768701i
\(598\) −7.19137 40.3205i −0.294077 1.64883i
\(599\) 8.39789i 0.343129i 0.985173 + 0.171564i \(0.0548821\pi\)
−0.985173 + 0.171564i \(0.945118\pi\)
\(600\) −1.52265 + 0.891119i −0.0621619 + 0.0363798i
\(601\) 33.9424i 1.38454i −0.721638 0.692270i \(-0.756611\pi\)
0.721638 0.692270i \(-0.243389\pi\)
\(602\) 2.69628 0.480895i 0.109892 0.0195998i
\(603\) −19.1047 + 19.1047i −0.778003 + 0.778003i
\(604\) −5.43552 + 2.00261i −0.221168 + 0.0814850i
\(605\) 5.45231 + 5.45231i 0.221668 + 0.221668i
\(606\) 1.54185 2.21123i 0.0626332 0.0898249i
\(607\) −38.3466 −1.55644 −0.778220 0.627992i \(-0.783877\pi\)
−0.778220 + 0.627992i \(0.783877\pi\)
\(608\) −11.6842 + 14.2061i −0.473858 + 0.576132i
\(609\) 0.223669 0.00906352
\(610\) 2.97001 4.25942i 0.120252 0.172459i
\(611\) −12.2028 12.2028i −0.493674 0.493674i
\(612\) −5.59553 + 2.06156i −0.226186 + 0.0833336i
\(613\) −13.9857 + 13.9857i −0.564879 + 0.564879i −0.930689 0.365810i \(-0.880792\pi\)
0.365810 + 0.930689i \(0.380792\pi\)
\(614\) 36.1930 6.45521i 1.46063 0.260511i
\(615\) 0.389852i 0.0157203i
\(616\) 4.18811 + 7.15619i 0.168744 + 0.288331i
\(617\) 17.0510i 0.686447i 0.939254 + 0.343223i \(0.111519\pi\)
−0.939254 + 0.343223i \(0.888481\pi\)
\(618\) 0.103386 + 0.579665i 0.00415880 + 0.0233175i
\(619\) −20.1561 + 20.1561i −0.810144 + 0.810144i −0.984655 0.174511i \(-0.944165\pi\)
0.174511 + 0.984655i \(0.444165\pi\)
\(620\) 9.89179 + 4.56534i 0.397264 + 0.183349i
\(621\) −4.84404 4.84404i −0.194385 0.194385i
\(622\) −17.7176 12.3542i −0.710413 0.495358i
\(623\) 3.30388 0.132367
\(624\) −1.20699 1.41567i −0.0483181 0.0566721i
\(625\) −19.1510 −0.766041
\(626\) 19.2955 + 13.4544i 0.771203 + 0.537745i
\(627\) −1.50132 1.50132i −0.0599571 0.0599571i
\(628\) −0.769554 + 1.66740i −0.0307086 + 0.0665366i
\(629\) 2.39745 2.39745i 0.0955927 0.0955927i
\(630\) −0.285327 1.59977i −0.0113677 0.0637363i
\(631\) 5.55501i 0.221141i −0.993868 0.110571i \(-0.964732\pi\)
0.993868 0.110571i \(-0.0352679\pi\)
\(632\) −7.72577 2.02134i −0.307314 0.0804048i
\(633\) 0.125444i 0.00498596i
\(634\) −29.9467 + 5.34114i −1.18933 + 0.212124i
\(635\) 4.77024 4.77024i 0.189301 0.189301i
\(636\) −1.11419 3.02415i −0.0441804 0.119915i
\(637\) −16.0758 16.0758i −0.636947 0.636947i
\(638\) −10.5495 + 15.1295i −0.417659 + 0.598982i
\(639\) 41.2271 1.63092
\(640\) −2.35638 + 6.76227i −0.0931441 + 0.267302i
\(641\) 46.4400 1.83427 0.917134 0.398579i \(-0.130497\pi\)
0.917134 + 0.398579i \(0.130497\pi\)
\(642\) −0.430765 + 0.617778i −0.0170009 + 0.0243818i
\(643\) 24.3358 + 24.3358i 0.959711 + 0.959711i 0.999219 0.0395087i \(-0.0125793\pi\)
−0.0395087 + 0.999219i \(0.512579\pi\)
\(644\) −3.55512 9.64937i −0.140091 0.380239i
\(645\) −0.193065 + 0.193065i −0.00760192 + 0.00760192i
\(646\) 4.52702 0.807417i 0.178113 0.0317674i
\(647\) 33.1871i 1.30472i −0.757909 0.652361i \(-0.773779\pi\)
0.757909 0.652361i \(-0.226221\pi\)
\(648\) 24.1749 + 6.32504i 0.949679 + 0.248471i
\(649\) 24.7342i 0.970903i
\(650\) −3.91670 21.9601i −0.153626 0.861346i
\(651\) −0.502485 + 0.502485i −0.0196940 + 0.0196940i
\(652\) 1.24711 2.70212i 0.0488404 0.105823i
\(653\) 25.1203 + 25.1203i 0.983033 + 0.983033i 0.999858 0.0168254i \(-0.00535593\pi\)
−0.0168254 + 0.999858i \(0.505356\pi\)
\(654\) 1.32228 + 0.922004i 0.0517054 + 0.0360532i
\(655\) 4.91097 0.191887
\(656\) 11.7863 + 13.8241i 0.460178 + 0.539740i
\(657\) −37.8562 −1.47691
\(658\) −3.55427 2.47832i −0.138560 0.0966152i
\(659\) 22.9394 + 22.9394i 0.893593 + 0.893593i 0.994859 0.101266i \(-0.0322894\pi\)
−0.101266 + 0.994859i \(0.532289\pi\)
\(660\) −0.750520 0.346387i −0.0292140 0.0134831i
\(661\) 26.1598 26.1598i 1.01750 1.01750i 0.0176527 0.999844i \(-0.494381\pi\)
0.999844 0.0176527i \(-0.00561931\pi\)
\(662\) 0.823478 + 4.61707i 0.0320054 + 0.179447i
\(663\) 0.465089i 0.0180626i
\(664\) −20.3507 34.7731i −0.789761 1.34946i
\(665\) 1.25311i 0.0485935i
\(666\) −14.0744 + 2.51025i −0.545373 + 0.0972701i
\(667\) 16.1751 16.1751i 0.626301 0.626301i
\(668\) −3.11003 + 1.14583i −0.120331 + 0.0443334i
\(669\) −1.06341 1.06341i −0.0411139 0.0411139i
\(670\) 4.63939 6.65354i 0.179235 0.257049i
\(671\) −27.9305 −1.07824
\(672\) −0.360753 0.296713i −0.0139164 0.0114460i
\(673\) 35.8860 1.38330 0.691651 0.722232i \(-0.256884\pi\)
0.691651 + 0.722232i \(0.256884\pi\)
\(674\) 8.58440 12.3112i 0.330659 0.474211i
\(675\) −2.63825 2.63825i −0.101546 0.101546i
\(676\) −2.32529 + 0.856708i −0.0894343 + 0.0329503i
\(677\) 27.3189 27.3189i 1.04995 1.04995i 0.0512670 0.998685i \(-0.483674\pi\)
0.998685 0.0512670i \(-0.0163259\pi\)
\(678\) 1.25750 0.224281i 0.0482939 0.00861346i
\(679\) 9.00901i 0.345734i
\(680\) 1.54511 0.904263i 0.0592522 0.0346769i
\(681\) 0.517082i 0.0198146i
\(682\) −10.2892 57.6894i −0.393994 2.20904i
\(683\) 14.7494 14.7494i 0.564371 0.564371i −0.366175 0.930546i \(-0.619333\pi\)
0.930546 + 0.366175i \(0.119333\pi\)
\(684\) −17.6054 8.12540i −0.673160 0.310683i
\(685\) −9.10078 9.10078i −0.347723 0.347723i
\(686\) −9.62650 6.71238i −0.367541 0.256280i
\(687\) 0.509046 0.0194213
\(688\) 1.00916 12.6829i 0.0384740 0.483533i
\(689\) 40.7492 1.55242
\(690\) 0.840918 + 0.586356i 0.0320132 + 0.0223222i
\(691\) 22.3536 + 22.3536i 0.850371 + 0.850371i 0.990179 0.139807i \(-0.0446483\pi\)
−0.139807 + 0.990179i \(0.544648\pi\)
\(692\) 8.00563 17.3459i 0.304328 0.659392i
\(693\) −6.18061 + 6.18061i −0.234782 + 0.234782i
\(694\) 1.52285 + 8.53828i 0.0578064 + 0.324109i
\(695\) 2.83214i 0.107429i
\(696\) 0.262998 1.00520i 0.00996891 0.0381021i
\(697\) 4.54163i 0.172027i
\(698\) 35.3023 6.29634i 1.33621 0.238320i
\(699\) 1.52554 1.52554i 0.0577014 0.0577014i
\(700\) −1.93626 5.25542i −0.0731836 0.198636i
\(701\) −23.2968 23.2968i −0.879907 0.879907i 0.113618 0.993525i \(-0.463756\pi\)
−0.993525 + 0.113618i \(0.963756\pi\)
\(702\) 2.25029 3.22724i 0.0849317 0.121804i
\(703\) 11.0246 0.415801
\(704\) 37.0856 10.4075i 1.39772 0.392247i
\(705\) 0.431959 0.0162685
\(706\) −23.7465 + 34.0559i −0.893712 + 1.28171i
\(707\) 6.05126 + 6.05126i 0.227581 + 0.227581i
\(708\) 0.481706 + 1.30746i 0.0181036 + 0.0491372i
\(709\) −20.3230 + 20.3230i −0.763247 + 0.763247i −0.976908 0.213661i \(-0.931461\pi\)
0.213661 + 0.976908i \(0.431461\pi\)
\(710\) −12.1849 + 2.17323i −0.457289 + 0.0815599i
\(711\) 8.41831i 0.315711i
\(712\) 3.88482 14.8481i 0.145590 0.556457i
\(713\) 72.6764i 2.72175i
\(714\) 0.0205038 + 0.114961i 0.000767336 + 0.00430230i
\(715\) 7.39019 7.39019i 0.276377 0.276377i
\(716\) −21.1606 + 45.8490i −0.790811 + 1.71346i
\(717\) −0.779612 0.779612i −0.0291151 0.0291151i
\(718\) 11.9581 + 8.33814i 0.446272 + 0.311177i
\(719\) 44.9144 1.67502 0.837512 0.546418i \(-0.184009\pi\)
0.837512 + 0.546418i \(0.184009\pi\)
\(720\) −7.52511 0.598762i −0.280444 0.0223146i
\(721\) −1.86924 −0.0696143
\(722\) −9.77582 6.81649i −0.363818 0.253684i
\(723\) −1.98816 1.98816i −0.0739405 0.0739405i
\(724\) −21.5594 9.95029i −0.801249 0.369800i
\(725\) 8.80956 8.80956i 0.327179 0.327179i
\(726\) 0.410241 + 2.30013i 0.0152255 + 0.0853660i
\(727\) 21.6605i 0.803344i −0.915784 0.401672i \(-0.868429\pi\)
0.915784 0.401672i \(-0.131571\pi\)
\(728\) 5.09714 2.98306i 0.188913 0.110560i
\(729\) 26.0119i 0.963404i
\(730\) 11.1886 1.99554i 0.414107 0.0738581i
\(731\) −2.24913 + 2.24913i −0.0831872 + 0.0831872i
\(732\) 1.47641 0.543954i 0.0545697 0.0201051i
\(733\) −34.2629 34.2629i −1.26553 1.26553i −0.948373 0.317158i \(-0.897271\pi\)
−0.317158 0.948373i \(-0.602729\pi\)
\(734\) 3.03719 4.35576i 0.112105 0.160774i
\(735\) 0.569056 0.0209899
\(736\) −47.5460 + 4.63118i −1.75257 + 0.170708i
\(737\) −43.6296 −1.60712
\(738\) −10.9533 + 15.7086i −0.403198 + 0.578243i
\(739\) −38.0567 38.0567i −1.39994 1.39994i −0.800187 0.599751i \(-0.795266\pi\)
−0.599751 0.800187i \(-0.704734\pi\)
\(740\) 4.02743 1.48383i 0.148051 0.0545466i
\(741\) −1.06935 + 1.06935i −0.0392835 + 0.0392835i
\(742\) 10.0724 1.79646i 0.369768 0.0659500i
\(743\) 8.82982i 0.323935i −0.986796 0.161967i \(-0.948216\pi\)
0.986796 0.161967i \(-0.0517839\pi\)
\(744\) 1.66741 + 2.84909i 0.0611301 + 0.104453i
\(745\) 1.29252i 0.0473543i
\(746\) −7.13195 39.9873i −0.261119 1.46404i
\(747\) 30.0326 30.0326i 1.09884 1.09884i
\(748\) −8.74329 4.03528i −0.319686 0.147544i
\(749\) −1.69062 1.69062i −0.0617738 0.0617738i
\(750\) 0.955887 + 0.666522i 0.0349041 + 0.0243380i
\(751\) 11.4767 0.418791 0.209395 0.977831i \(-0.432850\pi\)
0.209395 + 0.977831i \(0.432850\pi\)
\(752\) −15.3172 + 13.0593i −0.558561 + 0.476225i
\(753\) 1.51584 0.0552402
\(754\) 10.7763 + 7.51409i 0.392449 + 0.273647i
\(755\) 1.29631 + 1.29631i 0.0471775 + 0.0471775i
\(756\) 0.413951 0.896913i 0.0150553 0.0326204i
\(757\) −25.0038 + 25.0038i −0.908777 + 0.908777i −0.996174 0.0873968i \(-0.972145\pi\)
0.0873968 + 0.996174i \(0.472145\pi\)
\(758\) 0.777283 + 4.35806i 0.0282322 + 0.158292i
\(759\) 5.51419i 0.200152i
\(760\) 5.63167 + 1.47345i 0.204282 + 0.0534477i
\(761\) 7.22929i 0.262062i −0.991378 0.131031i \(-0.958171\pi\)
0.991378 0.131031i \(-0.0418287\pi\)
\(762\) 2.01239 0.358921i 0.0729013 0.0130023i
\(763\) −3.61857 + 3.61857i −0.131001 + 0.131001i
\(764\) 7.59560 + 20.6161i 0.274799 + 0.745865i
\(765\) 1.33447 + 1.33447i 0.0482478 + 0.0482478i
\(766\) −15.7939 + 22.6507i −0.570657 + 0.818402i
\(767\) −17.6174 −0.636129
\(768\) −1.75766 + 1.27240i −0.0634242 + 0.0459136i
\(769\) 20.6947 0.746269 0.373135 0.927777i \(-0.378283\pi\)
0.373135 + 0.927777i \(0.378283\pi\)
\(770\) 1.50090 2.15251i 0.0540888 0.0775710i
\(771\) 0.187359 + 0.187359i 0.00674756 + 0.00674756i
\(772\) 10.8227 + 29.3752i 0.389518 + 1.05724i
\(773\) 13.4277 13.4277i 0.482961 0.482961i −0.423115 0.906076i \(-0.639063\pi\)
0.906076 + 0.423115i \(0.139063\pi\)
\(774\) 13.2037 2.35495i 0.474598 0.0846469i
\(775\) 39.5824i 1.42184i
\(776\) −40.4879 10.5931i −1.45343 0.380271i
\(777\) 0.279962i 0.0100436i
\(778\) −6.71998 37.6776i −0.240923 1.35081i
\(779\) 10.4423 10.4423i 0.374133 0.374133i
\(780\) −0.246721 + 0.534573i −0.00883402 + 0.0191408i
\(781\) 47.0754 + 47.0754i 1.68449 + 1.68449i
\(782\) 9.79638 + 6.83083i 0.350318 + 0.244270i
\(783\) 2.19738 0.0785278
\(784\) −20.1786 + 17.2041i −0.720665 + 0.614433i
\(785\) 0.581186 0.0207434
\(786\) 1.22064 + 0.851126i 0.0435386 + 0.0303587i
\(787\) −21.6660 21.6660i −0.772308 0.772308i 0.206201 0.978510i \(-0.433890\pi\)
−0.978510 + 0.206201i \(0.933890\pi\)
\(788\) −18.2514 8.42354i −0.650179 0.300076i
\(789\) −0.134409 + 0.134409i −0.00478507 + 0.00478507i
\(790\) 0.443759 + 2.48807i 0.0157883 + 0.0885215i
\(791\) 4.05505i 0.144181i
\(792\) 20.5092 + 35.0440i 0.728764 + 1.24523i
\(793\) 19.8940i 0.706458i
\(794\) −52.8558 + 9.42711i −1.87578 + 0.334556i
\(795\) −0.721224 + 0.721224i −0.0255792 + 0.0255792i
\(796\) 36.7565 13.5422i 1.30280 0.479991i
\(797\) −1.59575 1.59575i −0.0565243 0.0565243i 0.678280 0.734804i \(-0.262726\pi\)
−0.734804 + 0.678280i \(0.762726\pi\)
\(798\) −0.217178 + 0.311464i −0.00768802 + 0.0110257i
\(799\) 5.03217 0.178025
\(800\) −25.8954 + 2.52232i −0.915541 + 0.0891775i
\(801\) 16.1791 0.571661
\(802\) −8.89620 + 12.7584i −0.314136 + 0.450515i
\(803\) −43.2263 43.2263i −1.52542 1.52542i
\(804\) 2.30627 0.849699i 0.0813358 0.0299666i
\(805\) −2.30126 + 2.30126i −0.0811089 + 0.0811089i
\(806\) −41.0904 + 7.32868i −1.44735 + 0.258142i
\(807\) 3.36834i 0.118571i
\(808\) 34.3106 20.0800i 1.20704 0.706412i
\(809\) 41.7205i 1.46682i −0.679789 0.733408i \(-0.737929\pi\)
0.679789 0.733408i \(-0.262071\pi\)
\(810\) −1.38858 7.78547i −0.0487897 0.273554i
\(811\) −5.85439 + 5.85439i −0.205576 + 0.205576i −0.802384 0.596808i \(-0.796435\pi\)
0.596808 + 0.802384i \(0.296435\pi\)
\(812\) 2.99494 + 1.38225i 0.105102 + 0.0485075i
\(813\) 2.52838 + 2.52838i 0.0886740 + 0.0886740i
\(814\) −18.9373 13.2046i −0.663752 0.462822i
\(815\) −0.941844 −0.0329914
\(816\) 0.540760 + 0.0430275i 0.0189304 + 0.00150627i
\(817\) −10.3426 −0.361840
\(818\) −22.3432 15.5795i −0.781211 0.544724i
\(819\) 4.40226 + 4.40226i 0.153827 + 0.153827i
\(820\) 2.40925 5.22014i 0.0841345 0.182295i
\(821\) 21.6806 21.6806i 0.756656 0.756656i −0.219056 0.975712i \(-0.570298\pi\)
0.975712 + 0.219056i \(0.0702977\pi\)
\(822\) −0.684757 3.83929i −0.0238836 0.133911i
\(823\) 0.871155i 0.0303666i −0.999885 0.0151833i \(-0.995167\pi\)
0.999885 0.0151833i \(-0.00483317\pi\)
\(824\) −2.19792 + 8.40067i −0.0765683 + 0.292651i
\(825\) 3.00324i 0.104559i
\(826\) −4.35467 + 0.776678i −0.151519 + 0.0270241i
\(827\) 4.84149 4.84149i 0.168355 0.168355i −0.617901 0.786256i \(-0.712017\pi\)
0.786256 + 0.617901i \(0.212017\pi\)
\(828\) −17.4095 47.2531i −0.605021 1.64216i
\(829\) −3.86675 3.86675i −0.134298 0.134298i 0.636762 0.771060i \(-0.280273\pi\)
−0.771060 + 0.636762i \(0.780273\pi\)
\(830\) −7.29313 + 10.4594i −0.253148 + 0.363051i
\(831\) 1.02398 0.0355213
\(832\) −7.41295 26.4149i −0.256998 0.915773i
\(833\) 6.62929 0.229691
\(834\) −0.490842 + 0.703937i −0.0169965 + 0.0243754i
\(835\) 0.741705 + 0.741705i 0.0256678 + 0.0256678i
\(836\) −10.8248 29.3809i −0.374383 1.01616i
\(837\) −4.93654 + 4.93654i −0.170632 + 0.170632i
\(838\) 44.1532 7.87494i 1.52525 0.272035i
\(839\) 31.6810i 1.09375i 0.837214 + 0.546875i \(0.184183\pi\)
−0.837214 + 0.546875i \(0.815817\pi\)
\(840\) −0.0374173 + 0.143013i −0.00129102 + 0.00493440i
\(841\) 21.6626i 0.746986i
\(842\) 0.285617 + 1.60139i 0.00984300 + 0.0551877i
\(843\) 1.04113 1.04113i 0.0358586 0.0358586i
\(844\) −0.775234 + 1.67971i −0.0266846 + 0.0578179i
\(845\) 0.554555 + 0.554555i 0.0190773 + 0.0190773i
\(846\) −17.4053 12.1364i −0.598407 0.417258i
\(847\) −7.41724 −0.254859
\(848\) 3.76989 47.3791i 0.129459 1.62701i
\(849\) 1.80544 0.0619626
\(850\) 5.33549 + 3.72034i 0.183006 + 0.127607i
\(851\) 20.2460 + 20.2460i 0.694025 + 0.694025i
\(852\) −3.40523 1.57161i −0.116661 0.0538424i
\(853\) 1.64443 1.64443i 0.0563042 0.0563042i −0.678394 0.734698i \(-0.737324\pi\)
0.734698 + 0.678394i \(0.237324\pi\)
\(854\) 0.877044 + 4.91740i 0.0300118 + 0.168270i
\(855\) 6.13650i 0.209864i
\(856\) −9.58578 + 5.61001i −0.327635 + 0.191746i
\(857\) 1.43180i 0.0489095i 0.999701 + 0.0244547i \(0.00778496\pi\)
−0.999701 + 0.0244547i \(0.992215\pi\)
\(858\) 3.11766 0.556050i 0.106435 0.0189832i
\(859\) −34.7594 + 34.7594i −1.18598 + 1.18598i −0.207806 + 0.978170i \(0.566632\pi\)
−0.978170 + 0.207806i \(0.933368\pi\)
\(860\) −3.77827 + 1.39203i −0.128838 + 0.0474678i
\(861\) 0.265174 + 0.265174i 0.00903711 + 0.00903711i
\(862\) 9.17755 13.1619i 0.312589 0.448297i
\(863\) −14.5240 −0.494403 −0.247201 0.968964i \(-0.579511\pi\)
−0.247201 + 0.968964i \(0.579511\pi\)
\(864\) −3.54413 2.91498i −0.120574 0.0991697i
\(865\) −6.04605 −0.205572
\(866\) −19.5671 + 28.0620i −0.664916 + 0.953584i
\(867\) −0.0958959 0.0958959i −0.00325680 0.00325680i
\(868\) −9.83362 + 3.62300i −0.333775 + 0.122973i
\(869\) 9.61249 9.61249i 0.326082 0.326082i
\(870\) −0.323723 + 0.0577377i −0.0109752 + 0.00195749i
\(871\) 31.0760i 1.05297i
\(872\) 12.0076 + 20.5173i 0.406628 + 0.694803i
\(873\) 44.1173i 1.49314i
\(874\) 6.81848 + 38.2298i 0.230639 + 1.29314i
\(875\) −2.61589 + 2.61589i −0.0884332 + 0.0884332i
\(876\) 3.12680 + 1.44311i 0.105645 + 0.0487581i
\(877\) 16.0120 + 16.0120i 0.540687 + 0.540687i 0.923730 0.383043i \(-0.125124\pi\)
−0.383043 + 0.923730i \(0.625124\pi\)
\(878\) −28.2299 19.6842i −0.952714 0.664309i
\(879\) 3.12876 0.105531
\(880\) −7.90888 9.27628i −0.266608 0.312703i
\(881\) 10.9681 0.369525 0.184762 0.982783i \(-0.440848\pi\)
0.184762 + 0.982783i \(0.440848\pi\)
\(882\) −22.9294 15.9883i −0.772075 0.538353i
\(883\) −8.54066 8.54066i −0.287416 0.287416i 0.548642 0.836058i \(-0.315145\pi\)
−0.836058 + 0.548642i \(0.815145\pi\)
\(884\) −2.87421 + 6.22758i −0.0966700 + 0.209456i
\(885\) 0.311813 0.311813i 0.0104815 0.0104815i
\(886\) 5.89644 + 33.0601i 0.198095 + 1.11068i
\(887\) 50.6985i 1.70229i 0.524933 + 0.851144i \(0.324091\pi\)
−0.524933 + 0.851144i \(0.675909\pi\)
\(888\) 1.25819 + 0.329190i 0.0422222 + 0.0110469i
\(889\) 6.48936i 0.217646i
\(890\) −4.78181 + 0.852860i −0.160287 + 0.0285879i
\(891\) −30.0787 + 30.0787i −1.00767 + 1.00767i
\(892\) −7.66739 20.8110i −0.256723 0.696803i
\(893\) 11.5701 + 11.5701i 0.387179 + 0.387179i
\(894\) −0.224009 + 0.321260i −0.00749197 + 0.0107445i
\(895\) 15.9810 0.534187
\(896\) −2.99685 6.20243i −0.100118 0.207209i
\(897\) −3.92759 −0.131138
\(898\) −29.7659 + 42.6885i −0.993302 + 1.42454i
\(899\) −16.4839 16.4839i −0.549769 0.549769i
\(900\) −9.48188 25.7359i −0.316063 0.857863i
\(901\) −8.40199 + 8.40199i −0.279911 + 0.279911i
\(902\) −30.4441 + 5.42987i −1.01368 + 0.180795i
\(903\) 0.262642i 0.00874019i
\(904\) 18.2240 + 4.76807i 0.606121 + 0.158584i
\(905\) 7.51470i 0.249797i
\(906\) 0.0975363 + 0.546866i 0.00324043 + 0.0181684i
\(907\) 13.3190 13.3190i 0.442249 0.442249i −0.450518 0.892767i \(-0.648761\pi\)
0.892767 + 0.450518i \(0.148761\pi\)
\(908\) −3.19551 + 6.92376i −0.106047 + 0.229773i
\(909\) 29.6331 + 29.6331i 0.982868 + 0.982868i
\(910\) −1.53317 1.06905i −0.0508240 0.0354386i
\(911\) −10.6793 −0.353821 −0.176911 0.984227i \(-0.556610\pi\)
−0.176911 + 0.984227i \(0.556610\pi\)
\(912\) 1.14440 + 1.34226i 0.0378949 + 0.0444468i
\(913\) 68.5858 2.26986
\(914\) 10.0955 + 7.03938i 0.333928 + 0.232842i
\(915\) −0.352107 0.352107i −0.0116403 0.0116403i
\(916\) 6.81616 + 3.14585i 0.225212 + 0.103942i
\(917\) −3.34040 + 3.34040i −0.110310 + 0.110310i
\(918\) 0.201434 + 1.12940i 0.00664833 + 0.0372758i
\(919\) 58.3115i 1.92352i −0.273893 0.961760i \(-0.588312\pi\)
0.273893 0.961760i \(-0.411688\pi\)
\(920\) 7.63632 + 13.0481i 0.251762 + 0.430184i
\(921\) 3.52553i 0.116170i
\(922\) −19.3490 + 3.45100i −0.637226 + 0.113652i
\(923\) 33.5304 33.5304i 1.10367 1.10367i
\(924\) 0.746107 0.274888i 0.0245451 0.00904317i
\(925\) 11.0268 + 11.0268i 0.362558 + 0.362558i
\(926\) 19.2672 27.6319i 0.633160 0.908040i
\(927\) −9.15371 −0.300647
\(928\) 9.73361 11.8344i 0.319521 0.388484i
\(929\) 1.28973 0.0423145 0.0211573 0.999776i \(-0.493265\pi\)
0.0211573 + 0.999776i \(0.493265\pi\)
\(930\) 0.597553 0.856975i 0.0195945 0.0281013i
\(931\) 15.2423 + 15.2423i 0.499545 + 0.499545i
\(932\) 29.8549 10.9994i 0.977928 0.360298i
\(933\) −1.46464 + 1.46464i −0.0479501 + 0.0479501i
\(934\) 14.9562 2.66752i 0.489383 0.0872839i
\(935\) 3.04754i 0.0996652i
\(936\) 24.9608 14.6081i 0.815869 0.477481i
\(937\) 5.07491i 0.165790i 0.996558 + 0.0828951i \(0.0264166\pi\)
−0.996558 + 0.0828951i \(0.973583\pi\)
\(938\) 1.37001 + 7.68136i 0.0447324 + 0.250805i
\(939\) 1.59507 1.59507i 0.0520532 0.0520532i
\(940\) 5.78396 + 2.66947i 0.188652 + 0.0870684i
\(941\) −34.5527 34.5527i −1.12639 1.12639i −0.990760 0.135628i \(-0.956695\pi\)
−0.135628 0.990760i \(-0.543305\pi\)
\(942\) 0.144455 + 0.100726i 0.00470661 + 0.00328183i
\(943\) 38.3532 1.24895
\(944\) −1.62987 + 20.4838i −0.0530478 + 0.666692i
\(945\) −0.312626 −0.0101697
\(946\) 17.7657 + 12.3877i 0.577614 + 0.402759i
\(947\) −32.7025 32.7025i −1.06269 1.06269i −0.997899 0.0647907i \(-0.979362\pi\)
−0.0647907 0.997899i \(-0.520638\pi\)
\(948\) −0.320912 + 0.695325i −0.0104227 + 0.0225831i
\(949\) −30.7888 + 30.7888i −0.999447 + 0.999447i
\(950\) 3.71361 + 20.8214i 0.120485 + 0.675537i
\(951\) 2.91708i 0.0945929i
\(952\) −0.435898 + 1.66604i −0.0141275 + 0.0539968i
\(953\) 0.0997215i 0.00323030i −0.999999 0.00161515i \(-0.999486\pi\)
0.999999 0.00161515i \(-0.000514118\pi\)
\(954\) 49.3245 8.79728i 1.59694 0.284822i
\(955\) 4.91671 4.91671i 0.159101 0.159101i
\(956\) −5.62113 15.2570i −0.181800 0.493446i
\(957\) 1.25069 + 1.25069i 0.0404289 + 0.0404289i
\(958\) 4.95707 7.10915i 0.160156 0.229686i
\(959\) 12.3805 0.399789
\(960\) 0.598724 + 0.336319i 0.0193237 + 0.0108546i
\(961\) 43.0642 1.38917
\(962\) −9.40526 + 13.4885i −0.303238 + 0.434886i
\(963\) −8.27898 8.27898i −0.266786 0.266786i
\(964\) −14.3350 38.9082i −0.461698 1.25315i
\(965\) 7.00565 7.00565i 0.225520 0.225520i
\(966\) −0.970820 + 0.173151i −0.0312356 + 0.00557103i
\(967\) 55.4027i 1.78163i −0.454365 0.890816i \(-0.650134\pi\)
0.454365 0.890816i \(-0.349866\pi\)
\(968\) −8.72145 + 33.3342i −0.280318 + 1.07140i
\(969\) 0.440974i 0.0141661i
\(970\) 2.32558 + 13.0390i 0.0746699 + 0.418659i
\(971\) 22.4810 22.4810i 0.721451 0.721451i −0.247450 0.968901i \(-0.579592\pi\)
0.968901 + 0.247450i \(0.0795925\pi\)
\(972\) 3.04380 6.59505i 0.0976300 0.211536i
\(973\) −1.92640 1.92640i −0.0617576 0.0617576i
\(974\) 5.97262 + 4.16459i 0.191375 + 0.133442i
\(975\) −2.13912 −0.0685066
\(976\) 23.1308 + 1.84049i 0.740400 + 0.0589126i
\(977\) 1.05316 0.0336937 0.0168468 0.999858i \(-0.494637\pi\)
0.0168468 + 0.999858i \(0.494637\pi\)
\(978\) −0.234098 0.163232i −0.00748563 0.00521959i
\(979\) 18.4742 + 18.4742i 0.590439 + 0.590439i
\(980\) 7.61969 + 3.51671i 0.243402 + 0.112337i
\(981\) −17.7202 + 17.7202i −0.565763 + 0.565763i
\(982\) −0.0297897 0.167025i −0.000950629 0.00532998i
\(983\) 4.74871i 0.151460i −0.997128 0.0757302i \(-0.975871\pi\)
0.997128 0.0757302i \(-0.0241288\pi\)
\(984\) 1.50353 0.879932i 0.0479309 0.0280512i
\(985\) 6.36166i 0.202699i
\(986\) −3.77126 + 0.672623i −0.120101 + 0.0214207i
\(987\) −0.293815 + 0.293815i −0.00935224 + 0.00935224i
\(988\) −20.9271 + 7.71018i −0.665780 + 0.245293i
\(989\) −18.9935 18.9935i −0.603958 0.603958i
\(990\) 7.34994 10.5409i 0.233597 0.335010i
\(991\) −21.2996 −0.676605 −0.338302 0.941037i \(-0.609853\pi\)
−0.338302 + 0.941037i \(0.609853\pi\)
\(992\) 4.71961 + 48.4539i 0.149848 + 1.53841i
\(993\) 0.449745 0.0142722
\(994\) 6.80982 9.76625i 0.215994 0.309767i
\(995\) −8.76601 8.76601i −0.277901 0.277901i
\(996\) −3.62546 + 1.33573i −0.114877 + 0.0423242i
\(997\) −2.00610 + 2.00610i −0.0635337 + 0.0635337i −0.738160 0.674626i \(-0.764305\pi\)
0.674626 + 0.738160i \(0.264305\pi\)
\(998\) 41.6550 7.42938i 1.31857 0.235173i
\(999\) 2.75042i 0.0870193i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.2.l.c.205.13 yes 32
4.3 odd 2 1088.2.l.c.273.9 32
16.5 even 4 inner 272.2.l.c.69.13 32
16.11 odd 4 1088.2.l.c.817.9 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
272.2.l.c.69.13 32 16.5 even 4 inner
272.2.l.c.205.13 yes 32 1.1 even 1 trivial
1088.2.l.c.273.9 32 4.3 odd 2
1088.2.l.c.817.9 32 16.11 odd 4