Properties

Label 272.2.l.c.205.11
Level $272$
Weight $2$
Character 272.205
Analytic conductor $2.172$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [272,2,Mod(69,272)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(272, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("272.69"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 272.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17193093498\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 205.11
Character \(\chi\) \(=\) 272.205
Dual form 272.2.l.c.69.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.591533 - 1.28456i) q^{2} +(0.915574 + 0.915574i) q^{3} +(-1.30018 - 1.51972i) q^{4} +(2.93727 - 2.93727i) q^{5} +(1.71770 - 0.634516i) q^{6} +1.91420i q^{7} +(-2.72126 + 0.771193i) q^{8} -1.32345i q^{9} +(-2.03560 - 5.51058i) q^{10} +(-2.96543 + 2.96543i) q^{11} +(0.201003 - 2.58182i) q^{12} +(1.16040 + 1.16040i) q^{13} +(2.45890 + 1.13231i) q^{14} +5.37857 q^{15} +(-0.619073 + 3.95180i) q^{16} +1.00000 q^{17} +(-1.70004 - 0.782862i) q^{18} +(-1.64396 - 1.64396i) q^{19} +(-8.28279 - 0.644841i) q^{20} +(-1.75259 + 1.75259i) q^{21} +(2.05512 + 5.56341i) q^{22} +0.425350i q^{23} +(-3.19760 - 1.78543i) q^{24} -12.2551i q^{25} +(2.17701 - 0.804184i) q^{26} +(3.95844 - 3.95844i) q^{27} +(2.90904 - 2.48880i) q^{28} +(4.17622 + 4.17622i) q^{29} +(3.18160 - 6.90909i) q^{30} -4.08327 q^{31} +(4.71012 + 3.13286i) q^{32} -5.43014 q^{33} +(0.591533 - 1.28456i) q^{34} +(5.62252 + 5.62252i) q^{35} +(-2.01126 + 1.72072i) q^{36} +(-7.58603 + 7.58603i) q^{37} +(-3.08421 + 1.13930i) q^{38} +2.12486i q^{39} +(-5.72787 + 10.2583i) q^{40} +11.1907i q^{41} +(1.21459 + 3.28802i) q^{42} +(4.70645 - 4.70645i) q^{43} +(8.36219 + 0.651023i) q^{44} +(-3.88732 - 3.88732i) q^{45} +(0.546387 + 0.251609i) q^{46} -1.47082 q^{47} +(-4.18498 + 3.05136i) q^{48} +3.33584 q^{49} +(-15.7424 - 7.24928i) q^{50} +(0.915574 + 0.915574i) q^{51} +(0.254751 - 3.27220i) q^{52} +(-1.05515 + 1.05515i) q^{53} +(-2.74330 - 7.42639i) q^{54} +17.4205i q^{55} +(-1.47622 - 5.20904i) q^{56} -3.01033i q^{57} +(7.83496 - 2.89422i) q^{58} +(-6.30743 + 6.30743i) q^{59} +(-6.99310 - 8.17390i) q^{60} +(-6.38682 - 6.38682i) q^{61} +(-2.41539 + 5.24519i) q^{62} +2.53334 q^{63} +(6.81052 - 4.19723i) q^{64} +6.81679 q^{65} +(-3.21210 + 6.97532i) q^{66} +(-3.95752 - 3.95752i) q^{67} +(-1.30018 - 1.51972i) q^{68} +(-0.389440 + 0.389440i) q^{69} +(10.5483 - 3.89655i) q^{70} +7.48068i q^{71} +(1.02063 + 3.60145i) q^{72} -0.137605i q^{73} +(5.25731 + 14.2321i) q^{74} +(11.2204 - 11.2204i) q^{75} +(-0.360910 + 4.63578i) q^{76} +(-5.67642 - 5.67642i) q^{77} +(2.72950 + 1.25692i) q^{78} +15.5985 q^{79} +(9.78912 + 13.4259i) q^{80} +3.27814 q^{81} +(14.3751 + 6.61968i) q^{82} +(-9.36325 - 9.36325i) q^{83} +(4.94212 + 0.384760i) q^{84} +(2.93727 - 2.93727i) q^{85} +(-3.26169 - 8.82972i) q^{86} +7.64727i q^{87} +(5.78278 - 10.3566i) q^{88} -3.78735i q^{89} +(-7.29296 + 2.69401i) q^{90} +(-2.22123 + 2.22123i) q^{91} +(0.646412 - 0.553031i) q^{92} +(-3.73853 - 3.73853i) q^{93} +(-0.870040 + 1.88936i) q^{94} -9.65748 q^{95} +(1.44410 + 7.18083i) q^{96} +1.68978 q^{97} +(1.97326 - 4.28508i) q^{98} +(3.92459 + 3.92459i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{4} - 16 q^{6} - 18 q^{8} - 6 q^{10} - 4 q^{11} + 2 q^{12} + 14 q^{14} + 24 q^{15} + 26 q^{16} + 32 q^{17} + 10 q^{18} - 14 q^{20} - 8 q^{22} - 50 q^{24} - 6 q^{26} + 12 q^{27} - 8 q^{29} + 36 q^{30}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.591533 1.28456i 0.418277 0.908320i
\(3\) 0.915574 + 0.915574i 0.528607 + 0.528607i 0.920157 0.391550i \(-0.128061\pi\)
−0.391550 + 0.920157i \(0.628061\pi\)
\(4\) −1.30018 1.51972i −0.650089 0.759858i
\(5\) 2.93727 2.93727i 1.31359 1.31359i 0.394834 0.918753i \(-0.370802\pi\)
0.918753 0.394834i \(-0.129198\pi\)
\(6\) 1.71770 0.634516i 0.701248 0.259040i
\(7\) 1.91420i 0.723499i 0.932275 + 0.361750i \(0.117820\pi\)
−0.932275 + 0.361750i \(0.882180\pi\)
\(8\) −2.72126 + 0.771193i −0.962111 + 0.272658i
\(9\) 1.32345i 0.441149i
\(10\) −2.03560 5.51058i −0.643714 1.74260i
\(11\) −2.96543 + 2.96543i −0.894110 + 0.894110i −0.994907 0.100797i \(-0.967861\pi\)
0.100797 + 0.994907i \(0.467861\pi\)
\(12\) 0.201003 2.58182i 0.0580246 0.745308i
\(13\) 1.16040 + 1.16040i 0.321836 + 0.321836i 0.849471 0.527635i \(-0.176921\pi\)
−0.527635 + 0.849471i \(0.676921\pi\)
\(14\) 2.45890 + 1.13231i 0.657169 + 0.302623i
\(15\) 5.37857 1.38874
\(16\) −0.619073 + 3.95180i −0.154768 + 0.987951i
\(17\) 1.00000 0.242536
\(18\) −1.70004 0.782862i −0.400704 0.184522i
\(19\) −1.64396 1.64396i −0.377149 0.377149i 0.492923 0.870073i \(-0.335928\pi\)
−0.870073 + 0.492923i \(0.835928\pi\)
\(20\) −8.28279 0.644841i −1.85209 0.144191i
\(21\) −1.75259 + 1.75259i −0.382447 + 0.382447i
\(22\) 2.05512 + 5.56341i 0.438152 + 1.18612i
\(23\) 0.425350i 0.0886917i 0.999016 + 0.0443458i \(0.0141203\pi\)
−0.999016 + 0.0443458i \(0.985880\pi\)
\(24\) −3.19760 1.78543i −0.652708 0.364450i
\(25\) 12.2551i 2.45102i
\(26\) 2.17701 0.804184i 0.426947 0.157714i
\(27\) 3.95844 3.95844i 0.761802 0.761802i
\(28\) 2.90904 2.48880i 0.549757 0.470339i
\(29\) 4.17622 + 4.17622i 0.775504 + 0.775504i 0.979063 0.203559i \(-0.0652508\pi\)
−0.203559 + 0.979063i \(0.565251\pi\)
\(30\) 3.18160 6.90909i 0.580878 1.26142i
\(31\) −4.08327 −0.733376 −0.366688 0.930344i \(-0.619508\pi\)
−0.366688 + 0.930344i \(0.619508\pi\)
\(32\) 4.71012 + 3.13286i 0.832639 + 0.553816i
\(33\) −5.43014 −0.945265
\(34\) 0.591533 1.28456i 0.101447 0.220300i
\(35\) 5.62252 + 5.62252i 0.950379 + 0.950379i
\(36\) −2.01126 + 1.72072i −0.335211 + 0.286786i
\(37\) −7.58603 + 7.58603i −1.24714 + 1.24714i −0.290157 + 0.956979i \(0.593708\pi\)
−0.956979 + 0.290157i \(0.906292\pi\)
\(38\) −3.08421 + 1.13930i −0.500325 + 0.184819i
\(39\) 2.12486i 0.340250i
\(40\) −5.72787 + 10.2583i −0.905656 + 1.62198i
\(41\) 11.1907i 1.74770i 0.486197 + 0.873849i \(0.338384\pi\)
−0.486197 + 0.873849i \(0.661616\pi\)
\(42\) 1.21459 + 3.28802i 0.187415 + 0.507353i
\(43\) 4.70645 4.70645i 0.717727 0.717727i −0.250413 0.968139i \(-0.580566\pi\)
0.968139 + 0.250413i \(0.0805663\pi\)
\(44\) 8.36219 + 0.651023i 1.26065 + 0.0981454i
\(45\) −3.88732 3.88732i −0.579487 0.579487i
\(46\) 0.546387 + 0.251609i 0.0805604 + 0.0370977i
\(47\) −1.47082 −0.214542 −0.107271 0.994230i \(-0.534211\pi\)
−0.107271 + 0.994230i \(0.534211\pi\)
\(48\) −4.18498 + 3.05136i −0.604049 + 0.440426i
\(49\) 3.33584 0.476549
\(50\) −15.7424 7.24928i −2.22631 1.02520i
\(51\) 0.915574 + 0.915574i 0.128206 + 0.128206i
\(52\) 0.254751 3.27220i 0.0353276 0.453772i
\(53\) −1.05515 + 1.05515i −0.144936 + 0.144936i −0.775851 0.630916i \(-0.782679\pi\)
0.630916 + 0.775851i \(0.282679\pi\)
\(54\) −2.74330 7.42639i −0.373315 1.01060i
\(55\) 17.4205i 2.34898i
\(56\) −1.47622 5.20904i −0.197268 0.696087i
\(57\) 3.01033i 0.398728i
\(58\) 7.83496 2.89422i 1.02878 0.380030i
\(59\) −6.30743 + 6.30743i −0.821158 + 0.821158i −0.986274 0.165116i \(-0.947200\pi\)
0.165116 + 0.986274i \(0.447200\pi\)
\(60\) −6.99310 8.17390i −0.902806 1.05525i
\(61\) −6.38682 6.38682i −0.817749 0.817749i 0.168032 0.985781i \(-0.446259\pi\)
−0.985781 + 0.168032i \(0.946259\pi\)
\(62\) −2.41539 + 5.24519i −0.306754 + 0.666140i
\(63\) 2.53334 0.319171
\(64\) 6.81052 4.19723i 0.851315 0.524654i
\(65\) 6.81679 0.845519
\(66\) −3.21210 + 6.97532i −0.395383 + 0.858603i
\(67\) −3.95752 3.95752i −0.483488 0.483488i 0.422756 0.906244i \(-0.361063\pi\)
−0.906244 + 0.422756i \(0.861063\pi\)
\(68\) −1.30018 1.51972i −0.157670 0.184293i
\(69\) −0.389440 + 0.389440i −0.0468830 + 0.0468830i
\(70\) 10.5483 3.89655i 1.26077 0.465726i
\(71\) 7.48068i 0.887794i 0.896078 + 0.443897i \(0.146404\pi\)
−0.896078 + 0.443897i \(0.853596\pi\)
\(72\) 1.02063 + 3.60145i 0.120283 + 0.424435i
\(73\) 0.137605i 0.0161055i −0.999968 0.00805274i \(-0.997437\pi\)
0.999968 0.00805274i \(-0.00256329\pi\)
\(74\) 5.25731 + 14.2321i 0.611150 + 1.65445i
\(75\) 11.2204 11.2204i 1.29563 1.29563i
\(76\) −0.360910 + 4.63578i −0.0413993 + 0.531761i
\(77\) −5.67642 5.67642i −0.646888 0.646888i
\(78\) 2.72950 + 1.25692i 0.309056 + 0.142319i
\(79\) 15.5985 1.75497 0.877486 0.479602i \(-0.159219\pi\)
0.877486 + 0.479602i \(0.159219\pi\)
\(80\) 9.78912 + 13.4259i 1.09446 + 1.50106i
\(81\) 3.27814 0.364238
\(82\) 14.3751 + 6.61968i 1.58747 + 0.731022i
\(83\) −9.36325 9.36325i −1.02775 1.02775i −0.999604 0.0281462i \(-0.991040\pi\)
−0.0281462 0.999604i \(-0.508960\pi\)
\(84\) 4.94212 + 0.384760i 0.539230 + 0.0419808i
\(85\) 2.93727 2.93727i 0.318591 0.318591i
\(86\) −3.26169 8.82972i −0.351717 0.952133i
\(87\) 7.64727i 0.819874i
\(88\) 5.78278 10.3566i 0.616447 1.10402i
\(89\) 3.78735i 0.401458i −0.979647 0.200729i \(-0.935669\pi\)
0.979647 0.200729i \(-0.0643311\pi\)
\(90\) −7.29296 + 2.69401i −0.768746 + 0.283974i
\(91\) −2.22123 + 2.22123i −0.232848 + 0.232848i
\(92\) 0.646412 0.553031i 0.0673931 0.0576575i
\(93\) −3.73853 3.73853i −0.387668 0.387668i
\(94\) −0.870040 + 1.88936i −0.0897378 + 0.194872i
\(95\) −9.65748 −0.990836
\(96\) 1.44410 + 7.18083i 0.147388 + 0.732890i
\(97\) 1.68978 0.171571 0.0857855 0.996314i \(-0.472660\pi\)
0.0857855 + 0.996314i \(0.472660\pi\)
\(98\) 1.97326 4.28508i 0.199329 0.432859i
\(99\) 3.92459 + 3.92459i 0.394436 + 0.394436i
\(100\) −18.6243 + 15.9338i −1.86243 + 1.59338i
\(101\) 2.40086 2.40086i 0.238895 0.238895i −0.577498 0.816392i \(-0.695971\pi\)
0.816392 + 0.577498i \(0.195971\pi\)
\(102\) 1.71770 0.634516i 0.170078 0.0628265i
\(103\) 4.93499i 0.486259i 0.969994 + 0.243129i \(0.0781740\pi\)
−0.969994 + 0.243129i \(0.921826\pi\)
\(104\) −4.05263 2.26285i −0.397393 0.221891i
\(105\) 10.2957i 1.00475i
\(106\) 0.731244 + 1.97955i 0.0710247 + 0.192271i
\(107\) 13.9279 13.9279i 1.34646 1.34646i 0.456993 0.889470i \(-0.348927\pi\)
0.889470 0.456993i \(-0.151073\pi\)
\(108\) −11.1624 0.869026i −1.07410 0.0836221i
\(109\) −6.89083 6.89083i −0.660022 0.660022i 0.295363 0.955385i \(-0.404559\pi\)
−0.955385 + 0.295363i \(0.904559\pi\)
\(110\) 22.3776 + 10.3048i 2.13363 + 0.982524i
\(111\) −13.8912 −1.31849
\(112\) −7.56454 1.18503i −0.714782 0.111975i
\(113\) −5.92173 −0.557069 −0.278535 0.960426i \(-0.589849\pi\)
−0.278535 + 0.960426i \(0.589849\pi\)
\(114\) −3.86694 1.78071i −0.362172 0.166779i
\(115\) 1.24937 + 1.24937i 0.116504 + 0.116504i
\(116\) 0.916837 11.7765i 0.0851262 1.09342i
\(117\) 1.53572 1.53572i 0.141978 0.141978i
\(118\) 4.37121 + 11.8333i 0.402403 + 1.08934i
\(119\) 1.91420i 0.175474i
\(120\) −14.6365 + 4.14792i −1.33612 + 0.378651i
\(121\) 6.58751i 0.598864i
\(122\) −11.9823 + 4.42623i −1.08482 + 0.400732i
\(123\) −10.2459 + 10.2459i −0.923846 + 0.923846i
\(124\) 5.30897 + 6.20540i 0.476760 + 0.557262i
\(125\) −21.3101 21.3101i −1.90604 1.90604i
\(126\) 1.49855 3.25422i 0.133502 0.289909i
\(127\) −5.93843 −0.526951 −0.263475 0.964666i \(-0.584869\pi\)
−0.263475 + 0.964666i \(0.584869\pi\)
\(128\) −1.36294 11.2313i −0.120468 0.992717i
\(129\) 8.61820 0.758791
\(130\) 4.03236 8.75657i 0.353661 0.768002i
\(131\) −10.4950 10.4950i −0.916956 0.916956i 0.0798505 0.996807i \(-0.474556\pi\)
−0.996807 + 0.0798505i \(0.974556\pi\)
\(132\) 7.06015 + 8.25227i 0.614507 + 0.718267i
\(133\) 3.14686 3.14686i 0.272867 0.272867i
\(134\) −7.42466 + 2.74266i −0.641393 + 0.236930i
\(135\) 23.2540i 2.00138i
\(136\) −2.72126 + 0.771193i −0.233346 + 0.0661292i
\(137\) 7.10624i 0.607127i −0.952811 0.303563i \(-0.901824\pi\)
0.952811 0.303563i \(-0.0981764\pi\)
\(138\) 0.269892 + 0.730624i 0.0229747 + 0.0621949i
\(139\) 11.2068 11.2068i 0.950546 0.950546i −0.0482875 0.998833i \(-0.515376\pi\)
0.998833 + 0.0482875i \(0.0153764\pi\)
\(140\) 1.23435 15.8549i 0.104322 1.33998i
\(141\) −1.34665 1.34665i −0.113408 0.113408i
\(142\) 9.60937 + 4.42507i 0.806400 + 0.371343i
\(143\) −6.88214 −0.575514
\(144\) 5.23000 + 0.819311i 0.435834 + 0.0682759i
\(145\) 24.5333 2.03738
\(146\) −0.176762 0.0813980i −0.0146289 0.00673655i
\(147\) 3.05421 + 3.05421i 0.251907 + 0.251907i
\(148\) 21.3918 + 1.66542i 1.75840 + 0.136897i
\(149\) −10.0729 + 10.0729i −0.825201 + 0.825201i −0.986849 0.161647i \(-0.948319\pi\)
0.161647 + 0.986849i \(0.448319\pi\)
\(150\) −7.77605 21.0506i −0.634912 1.71877i
\(151\) 5.78045i 0.470407i 0.971946 + 0.235203i \(0.0755756\pi\)
−0.971946 + 0.235203i \(0.924424\pi\)
\(152\) 5.74144 + 3.20583i 0.465692 + 0.260027i
\(153\) 1.32345i 0.106994i
\(154\) −10.6495 + 3.93390i −0.858159 + 0.317003i
\(155\) −11.9936 + 11.9936i −0.963353 + 0.963353i
\(156\) 3.22918 2.76270i 0.258542 0.221193i
\(157\) 6.72462 + 6.72462i 0.536683 + 0.536683i 0.922553 0.385870i \(-0.126099\pi\)
−0.385870 + 0.922553i \(0.626099\pi\)
\(158\) 9.22704 20.0372i 0.734064 1.59408i
\(159\) −1.93213 −0.153228
\(160\) 23.0369 4.63284i 1.82123 0.366258i
\(161\) −0.814205 −0.0641684
\(162\) 1.93913 4.21097i 0.152352 0.330845i
\(163\) −9.93227 9.93227i −0.777955 0.777955i 0.201527 0.979483i \(-0.435409\pi\)
−0.979483 + 0.201527i \(0.935409\pi\)
\(164\) 17.0067 14.5499i 1.32800 1.13616i
\(165\) −15.9498 + 15.9498i −1.24169 + 1.24169i
\(166\) −17.5663 + 6.48897i −1.36341 + 0.503642i
\(167\) 7.81828i 0.604997i 0.953150 + 0.302498i \(0.0978207\pi\)
−0.953150 + 0.302498i \(0.902179\pi\)
\(168\) 3.41767 6.12084i 0.263679 0.472233i
\(169\) 10.3070i 0.792843i
\(170\) −2.03560 5.51058i −0.156123 0.422642i
\(171\) −2.17569 + 2.17569i −0.166379 + 0.166379i
\(172\) −13.2717 1.03324i −1.01196 0.0787840i
\(173\) −0.562763 0.562763i −0.0427861 0.0427861i 0.685390 0.728176i \(-0.259632\pi\)
−0.728176 + 0.685390i \(0.759632\pi\)
\(174\) 9.82337 + 4.52361i 0.744708 + 0.342934i
\(175\) 23.4587 1.77331
\(176\) −9.88297 13.5546i −0.744957 1.02172i
\(177\) −11.5498 −0.868140
\(178\) −4.86507 2.24034i −0.364652 0.167921i
\(179\) −3.83028 3.83028i −0.286288 0.286288i 0.549322 0.835611i \(-0.314886\pi\)
−0.835611 + 0.549322i \(0.814886\pi\)
\(180\) −0.853413 + 10.9618i −0.0636097 + 0.817047i
\(181\) −0.219366 + 0.219366i −0.0163054 + 0.0163054i −0.715212 0.698907i \(-0.753670\pi\)
0.698907 + 0.715212i \(0.253670\pi\)
\(182\) 1.53937 + 4.16723i 0.114106 + 0.308896i
\(183\) 11.6952i 0.864536i
\(184\) −0.328027 1.15749i −0.0241825 0.0853312i
\(185\) 44.5644i 3.27644i
\(186\) −7.01383 + 2.59090i −0.514279 + 0.189974i
\(187\) −2.96543 + 2.96543i −0.216853 + 0.216853i
\(188\) 1.91233 + 2.23523i 0.139471 + 0.163021i
\(189\) 7.57724 + 7.57724i 0.551163 + 0.551163i
\(190\) −5.71271 + 12.4056i −0.414444 + 0.899996i
\(191\) 3.21567 0.232677 0.116339 0.993210i \(-0.462884\pi\)
0.116339 + 0.993210i \(0.462884\pi\)
\(192\) 10.0784 + 2.39266i 0.727347 + 0.172676i
\(193\) 15.8802 1.14308 0.571542 0.820573i \(-0.306346\pi\)
0.571542 + 0.820573i \(0.306346\pi\)
\(194\) 0.999560 2.17062i 0.0717642 0.155841i
\(195\) 6.24128 + 6.24128i 0.446947 + 0.446947i
\(196\) −4.33719 5.06953i −0.309799 0.362109i
\(197\) −0.417650 + 0.417650i −0.0297563 + 0.0297563i −0.721828 0.692072i \(-0.756698\pi\)
0.692072 + 0.721828i \(0.256698\pi\)
\(198\) 7.36288 2.71984i 0.523257 0.193290i
\(199\) 20.8176i 1.47572i −0.674954 0.737859i \(-0.735837\pi\)
0.674954 0.737859i \(-0.264163\pi\)
\(200\) 9.45103 + 33.3493i 0.668289 + 2.35815i
\(201\) 7.24680i 0.511150i
\(202\) −1.66386 4.50424i −0.117069 0.316917i
\(203\) −7.99411 + 7.99411i −0.561077 + 0.561077i
\(204\) 0.201003 2.58182i 0.0140730 0.180764i
\(205\) 32.8702 + 32.8702i 2.29575 + 2.29575i
\(206\) 6.33928 + 2.91921i 0.441678 + 0.203391i
\(207\) 0.562929 0.0391263
\(208\) −5.30403 + 3.86729i −0.367768 + 0.268148i
\(209\) 9.75006 0.674426
\(210\) 13.2254 + 6.09022i 0.912637 + 0.420265i
\(211\) −11.4639 11.4639i −0.789208 0.789208i 0.192156 0.981364i \(-0.438452\pi\)
−0.981364 + 0.192156i \(0.938452\pi\)
\(212\) 2.97541 + 0.231645i 0.204352 + 0.0159094i
\(213\) −6.84912 + 6.84912i −0.469294 + 0.469294i
\(214\) −9.65240 26.1300i −0.659825 1.78621i
\(215\) 27.6482i 1.88559i
\(216\) −7.71922 + 13.8247i −0.525227 + 0.940649i
\(217\) 7.81618i 0.530597i
\(218\) −12.9278 + 4.77552i −0.875583 + 0.323439i
\(219\) 0.125988 0.125988i 0.00851347 0.00851347i
\(220\) 26.4742 22.6498i 1.78489 1.52705i
\(221\) 1.16040 + 1.16040i 0.0780567 + 0.0780567i
\(222\) −8.21707 + 17.8440i −0.551494 + 1.19761i
\(223\) −11.0552 −0.740313 −0.370157 0.928969i \(-0.620696\pi\)
−0.370157 + 0.928969i \(0.620696\pi\)
\(224\) −5.99691 + 9.01610i −0.400685 + 0.602414i
\(225\) −16.2190 −1.08126
\(226\) −3.50289 + 7.60680i −0.233009 + 0.505997i
\(227\) 4.84456 + 4.84456i 0.321545 + 0.321545i 0.849360 0.527815i \(-0.176988\pi\)
−0.527815 + 0.849360i \(0.676988\pi\)
\(228\) −4.57484 + 3.91396i −0.302976 + 0.259209i
\(229\) 6.60647 6.60647i 0.436568 0.436568i −0.454287 0.890855i \(-0.650106\pi\)
0.890855 + 0.454287i \(0.150106\pi\)
\(230\) 2.34393 0.865843i 0.154554 0.0570920i
\(231\) 10.3944i 0.683899i
\(232\) −14.5852 8.14391i −0.957568 0.534674i
\(233\) 22.5206i 1.47537i 0.675143 + 0.737687i \(0.264082\pi\)
−0.675143 + 0.737687i \(0.735918\pi\)
\(234\) −1.06430 2.88116i −0.0695752 0.188347i
\(235\) −4.32020 + 4.32020i −0.281819 + 0.281819i
\(236\) 17.7863 + 1.38472i 1.15779 + 0.0901376i
\(237\) 14.2816 + 14.2816i 0.927691 + 0.927691i
\(238\) 2.45890 + 1.13231i 0.159387 + 0.0733968i
\(239\) 7.24955 0.468934 0.234467 0.972124i \(-0.424665\pi\)
0.234467 + 0.972124i \(0.424665\pi\)
\(240\) −3.32973 + 21.2551i −0.214933 + 1.37201i
\(241\) 17.5538 1.13074 0.565369 0.824838i \(-0.308734\pi\)
0.565369 + 0.824838i \(0.308734\pi\)
\(242\) −8.46204 3.89673i −0.543960 0.250491i
\(243\) −8.87393 8.87393i −0.569263 0.569263i
\(244\) −1.40215 + 18.0102i −0.0897634 + 1.15298i
\(245\) 9.79826 9.79826i 0.625988 0.625988i
\(246\) 7.10070 + 19.2223i 0.452724 + 1.22557i
\(247\) 3.81528i 0.242761i
\(248\) 11.1116 3.14898i 0.705589 0.199961i
\(249\) 17.1455i 1.08655i
\(250\) −39.9797 + 14.7685i −2.52854 + 0.934040i
\(251\) 9.65571 9.65571i 0.609463 0.609463i −0.333343 0.942806i \(-0.608177\pi\)
0.942806 + 0.333343i \(0.108177\pi\)
\(252\) −3.29380 3.84996i −0.207490 0.242525i
\(253\) −1.26135 1.26135i −0.0793001 0.0793001i
\(254\) −3.51278 + 7.62826i −0.220411 + 0.478640i
\(255\) 5.37857 0.336819
\(256\) −15.2335 4.89291i −0.952094 0.305807i
\(257\) −27.0496 −1.68731 −0.843655 0.536885i \(-0.819601\pi\)
−0.843655 + 0.536885i \(0.819601\pi\)
\(258\) 5.09795 11.0706i 0.317384 0.689224i
\(259\) −14.5212 14.5212i −0.902302 0.902302i
\(260\) −8.86305 10.3596i −0.549663 0.642475i
\(261\) 5.52700 5.52700i 0.342113 0.342113i
\(262\) −19.6897 + 7.27333i −1.21643 + 0.449348i
\(263\) 10.2744i 0.633548i 0.948501 + 0.316774i \(0.102600\pi\)
−0.948501 + 0.316774i \(0.897400\pi\)
\(264\) 14.7768 4.18768i 0.909450 0.257734i
\(265\) 6.19850i 0.380771i
\(266\) −2.18085 5.90379i −0.133717 0.361985i
\(267\) 3.46760 3.46760i 0.212214 0.212214i
\(268\) −0.868824 + 11.1598i −0.0530719 + 0.681692i
\(269\) 1.48239 + 1.48239i 0.0903828 + 0.0903828i 0.750853 0.660470i \(-0.229643\pi\)
−0.660470 + 0.750853i \(0.729643\pi\)
\(270\) −29.8711 13.7555i −1.81790 0.837132i
\(271\) 31.1942 1.89491 0.947457 0.319882i \(-0.103643\pi\)
0.947457 + 0.319882i \(0.103643\pi\)
\(272\) −0.619073 + 3.95180i −0.0375368 + 0.239613i
\(273\) −4.06740 −0.246170
\(274\) −9.12837 4.20357i −0.551465 0.253947i
\(275\) 36.3416 + 36.3416i 2.19148 + 2.19148i
\(276\) 1.09818 + 0.0854967i 0.0661026 + 0.00514630i
\(277\) −3.64733 + 3.64733i −0.219147 + 0.219147i −0.808139 0.588992i \(-0.799525\pi\)
0.588992 + 0.808139i \(0.299525\pi\)
\(278\) −7.76658 21.0249i −0.465808 1.26099i
\(279\) 5.40399i 0.323528i
\(280\) −19.6364 10.9643i −1.17350 0.655242i
\(281\) 1.14571i 0.0683473i −0.999416 0.0341737i \(-0.989120\pi\)
0.999416 0.0341737i \(-0.0108799\pi\)
\(282\) −2.52643 + 0.933261i −0.150447 + 0.0555749i
\(283\) −10.7612 + 10.7612i −0.639686 + 0.639686i −0.950478 0.310792i \(-0.899406\pi\)
0.310792 + 0.950478i \(0.399406\pi\)
\(284\) 11.3685 9.72622i 0.674597 0.577145i
\(285\) −8.84214 8.84214i −0.523763 0.523763i
\(286\) −4.07101 + 8.84051i −0.240724 + 0.522750i
\(287\) −21.4213 −1.26446
\(288\) 4.14617 6.23359i 0.244315 0.367318i
\(289\) 1.00000 0.0588235
\(290\) 14.5123 31.5145i 0.852190 1.85059i
\(291\) 1.54712 + 1.54712i 0.0906937 + 0.0906937i
\(292\) −0.209121 + 0.178911i −0.0122379 + 0.0104700i
\(293\) 3.56707 3.56707i 0.208390 0.208390i −0.595193 0.803583i \(-0.702924\pi\)
0.803583 + 0.595193i \(0.202924\pi\)
\(294\) 5.72998 2.11665i 0.334179 0.123445i
\(295\) 37.0532i 2.15732i
\(296\) 14.7933 26.4939i 0.859842 1.53993i
\(297\) 23.4769i 1.36227i
\(298\) 6.98075 + 18.8976i 0.404384 + 1.09471i
\(299\) −0.493575 + 0.493575i −0.0285442 + 0.0285442i
\(300\) −31.6405 2.46331i −1.82676 0.142219i
\(301\) 9.00908 + 9.00908i 0.519275 + 0.519275i
\(302\) 7.42533 + 3.41933i 0.427280 + 0.196760i
\(303\) 4.39634 0.252563
\(304\) 7.51432 5.47886i 0.430976 0.314234i
\(305\) −37.5196 −2.14837
\(306\) −1.70004 0.782862i −0.0971851 0.0447533i
\(307\) 1.56785 + 1.56785i 0.0894822 + 0.0894822i 0.750431 0.660949i \(-0.229846\pi\)
−0.660949 + 0.750431i \(0.729846\pi\)
\(308\) −1.24619 + 16.0069i −0.0710081 + 0.912077i
\(309\) −4.51835 + 4.51835i −0.257040 + 0.257040i
\(310\) 8.31190 + 22.5012i 0.472084 + 1.27798i
\(311\) 24.5729i 1.39340i 0.717361 + 0.696702i \(0.245350\pi\)
−0.717361 + 0.696702i \(0.754650\pi\)
\(312\) −1.63868 5.78230i −0.0927717 0.327358i
\(313\) 13.7255i 0.775814i −0.921699 0.387907i \(-0.873198\pi\)
0.921699 0.387907i \(-0.126802\pi\)
\(314\) 12.6160 4.66033i 0.711962 0.262998i
\(315\) 7.44110 7.44110i 0.419259 0.419259i
\(316\) −20.2809 23.7053i −1.14089 1.33353i
\(317\) 20.9868 + 20.9868i 1.17874 + 1.17874i 0.980066 + 0.198671i \(0.0636624\pi\)
0.198671 + 0.980066i \(0.436338\pi\)
\(318\) −1.14292 + 2.48194i −0.0640917 + 0.139180i
\(319\) −24.7685 −1.38677
\(320\) 7.67594 32.3327i 0.429098 1.80745i
\(321\) 25.5041 1.42350
\(322\) −0.481629 + 1.04589i −0.0268401 + 0.0582854i
\(323\) −1.64396 1.64396i −0.0914722 0.0914722i
\(324\) −4.26217 4.98185i −0.236787 0.276769i
\(325\) 14.2208 14.2208i 0.788826 0.788826i
\(326\) −18.6338 + 6.88331i −1.03203 + 0.381232i
\(327\) 12.6181i 0.697785i
\(328\) −8.63021 30.4529i −0.476524 1.68148i
\(329\) 2.81545i 0.155221i
\(330\) 11.0536 + 29.9232i 0.608480 + 1.64722i
\(331\) −23.5100 + 23.5100i −1.29223 + 1.29223i −0.358818 + 0.933407i \(0.616820\pi\)
−0.933407 + 0.358818i \(0.883180\pi\)
\(332\) −2.05559 + 26.4034i −0.112815 + 1.44907i
\(333\) 10.0397 + 10.0397i 0.550173 + 0.550173i
\(334\) 10.0430 + 4.62477i 0.549531 + 0.253056i
\(335\) −23.2486 −1.27021
\(336\) −5.84091 8.01088i −0.318648 0.437029i
\(337\) 2.96026 0.161255 0.0806277 0.996744i \(-0.474308\pi\)
0.0806277 + 0.996744i \(0.474308\pi\)
\(338\) −13.2399 6.09690i −0.720155 0.331628i
\(339\) −5.42178 5.42178i −0.294471 0.294471i
\(340\) −8.28279 0.644841i −0.449197 0.0349714i
\(341\) 12.1086 12.1086i 0.655719 0.655719i
\(342\) 1.50781 + 4.08179i 0.0815329 + 0.220718i
\(343\) 19.7849i 1.06828i
\(344\) −9.17790 + 16.4371i −0.494839 + 0.886226i
\(345\) 2.28778i 0.123170i
\(346\) −1.05579 + 0.390009i −0.0567598 + 0.0209670i
\(347\) 19.2917 19.2917i 1.03563 1.03563i 0.0362923 0.999341i \(-0.488445\pi\)
0.999341 0.0362923i \(-0.0115547\pi\)
\(348\) 11.6217 9.94282i 0.622988 0.532991i
\(349\) −2.15002 2.15002i −0.115088 0.115088i 0.647217 0.762305i \(-0.275933\pi\)
−0.762305 + 0.647217i \(0.775933\pi\)
\(350\) 13.8766 30.1340i 0.741734 1.61073i
\(351\) 9.18672 0.490351
\(352\) −23.2578 + 4.67725i −1.23964 + 0.249299i
\(353\) −19.5532 −1.04071 −0.520355 0.853950i \(-0.674200\pi\)
−0.520355 + 0.853950i \(0.674200\pi\)
\(354\) −6.83211 + 14.8364i −0.363123 + 0.788548i
\(355\) 21.9728 + 21.9728i 1.16619 + 1.16619i
\(356\) −5.75570 + 4.92423i −0.305051 + 0.260984i
\(357\) −1.75259 + 1.75259i −0.0927570 + 0.0927570i
\(358\) −7.18595 + 2.65448i −0.379789 + 0.140294i
\(359\) 2.99664i 0.158157i 0.996868 + 0.0790783i \(0.0251977\pi\)
−0.996868 + 0.0790783i \(0.974802\pi\)
\(360\) 13.5763 + 7.58054i 0.715533 + 0.399530i
\(361\) 13.5948i 0.715517i
\(362\) 0.152026 + 0.411551i 0.00799032 + 0.0216306i
\(363\) 6.03135 6.03135i 0.316564 0.316564i
\(364\) 6.26364 + 0.487644i 0.328304 + 0.0255595i
\(365\) −0.404184 0.404184i −0.0211559 0.0211559i
\(366\) −15.0232 6.91811i −0.785275 0.361615i
\(367\) 31.7706 1.65841 0.829205 0.558944i \(-0.188793\pi\)
0.829205 + 0.558944i \(0.188793\pi\)
\(368\) −1.68090 0.263323i −0.0876230 0.0137267i
\(369\) 14.8103 0.770996
\(370\) 57.2456 + 26.3613i 2.97606 + 1.37046i
\(371\) −2.01976 2.01976i −0.104861 0.104861i
\(372\) −0.820749 + 10.5423i −0.0425539 + 0.546591i
\(373\) −19.1741 + 19.1741i −0.992799 + 0.992799i −0.999974 0.00717519i \(-0.997716\pi\)
0.00717519 + 0.999974i \(0.497716\pi\)
\(374\) 2.05512 + 5.56341i 0.106267 + 0.287677i
\(375\) 39.0220i 2.01509i
\(376\) 4.00250 1.13429i 0.206413 0.0584965i
\(377\) 9.69214i 0.499171i
\(378\) 14.2156 5.25122i 0.731171 0.270093i
\(379\) −18.5793 + 18.5793i −0.954355 + 0.954355i −0.999003 0.0446480i \(-0.985783\pi\)
0.0446480 + 0.999003i \(0.485783\pi\)
\(380\) 12.5564 + 14.6766i 0.644132 + 0.752895i
\(381\) −5.43707 5.43707i −0.278550 0.278550i
\(382\) 1.90217 4.13071i 0.0973236 0.211345i
\(383\) 9.41797 0.481236 0.240618 0.970620i \(-0.422650\pi\)
0.240618 + 0.970620i \(0.422650\pi\)
\(384\) 9.03523 11.5310i 0.461077 0.588438i
\(385\) −33.3463 −1.69949
\(386\) 9.39367 20.3991i 0.478125 1.03829i
\(387\) −6.22874 6.22874i −0.316624 0.316624i
\(388\) −2.19701 2.56798i −0.111536 0.130370i
\(389\) −4.00504 + 4.00504i −0.203064 + 0.203064i −0.801311 0.598248i \(-0.795864\pi\)
0.598248 + 0.801311i \(0.295864\pi\)
\(390\) 11.7092 4.32537i 0.592919 0.219023i
\(391\) 0.425350i 0.0215109i
\(392\) −9.07770 + 2.57258i −0.458493 + 0.129935i
\(393\) 19.2180i 0.969419i
\(394\) 0.289442 + 0.783548i 0.0145819 + 0.0394746i
\(395\) 45.8171 45.8171i 2.30531 2.30531i
\(396\) 0.861595 11.0669i 0.0432968 0.556134i
\(397\) −27.2892 27.2892i −1.36961 1.36961i −0.860996 0.508611i \(-0.830159\pi\)
−0.508611 0.860996i \(-0.669841\pi\)
\(398\) −26.7414 12.3143i −1.34042 0.617259i
\(399\) 5.76237 0.288479
\(400\) 48.4297 + 7.58680i 2.42148 + 0.379340i
\(401\) 18.9964 0.948637 0.474319 0.880353i \(-0.342694\pi\)
0.474319 + 0.880353i \(0.342694\pi\)
\(402\) −9.30894 4.28672i −0.464288 0.213802i
\(403\) −4.73821 4.73821i −0.236027 0.236027i
\(404\) −6.77018 0.527080i −0.336829 0.0262232i
\(405\) 9.62879 9.62879i 0.478458 0.478458i
\(406\) 5.54012 + 14.9977i 0.274952 + 0.744322i
\(407\) 44.9917i 2.23015i
\(408\) −3.19760 1.78543i −0.158305 0.0883921i
\(409\) 11.7972i 0.583335i 0.956520 + 0.291668i \(0.0942101\pi\)
−0.956520 + 0.291668i \(0.905790\pi\)
\(410\) 61.6674 22.7799i 3.04554 1.12502i
\(411\) 6.50629 6.50629i 0.320932 0.320932i
\(412\) 7.49978 6.41636i 0.369488 0.316111i
\(413\) −12.0737 12.0737i −0.594107 0.594107i
\(414\) 0.332991 0.723115i 0.0163656 0.0355391i
\(415\) −55.0047 −2.70008
\(416\) 1.83025 + 9.10096i 0.0897354 + 0.446211i
\(417\) 20.5213 1.00493
\(418\) 5.76748 12.5245i 0.282097 0.612594i
\(419\) 23.2461 + 23.2461i 1.13565 + 1.13565i 0.989222 + 0.146424i \(0.0467763\pi\)
0.146424 + 0.989222i \(0.453224\pi\)
\(420\) 15.6465 13.3862i 0.763470 0.653179i
\(421\) 24.0868 24.0868i 1.17392 1.17392i 0.192649 0.981268i \(-0.438292\pi\)
0.981268 0.192649i \(-0.0617078\pi\)
\(422\) −21.5073 + 7.94478i −1.04696 + 0.386746i
\(423\) 1.94656i 0.0946449i
\(424\) 2.05761 3.68506i 0.0999264 0.178962i
\(425\) 12.2551i 0.594459i
\(426\) 4.74661 + 12.8496i 0.229974 + 0.622564i
\(427\) 12.2257 12.2257i 0.591641 0.591641i
\(428\) −39.2753 3.05770i −1.89844 0.147800i
\(429\) −6.30111 6.30111i −0.304221 0.304221i
\(430\) −35.5157 16.3548i −1.71272 0.788699i
\(431\) −6.77278 −0.326233 −0.163117 0.986607i \(-0.552155\pi\)
−0.163117 + 0.986607i \(0.552155\pi\)
\(432\) 13.1924 + 18.0935i 0.634720 + 0.870525i
\(433\) −16.2468 −0.780772 −0.390386 0.920651i \(-0.627658\pi\)
−0.390386 + 0.920651i \(0.627658\pi\)
\(434\) −10.0403 4.62353i −0.481952 0.221936i
\(435\) 22.4621 + 22.4621i 1.07698 + 1.07698i
\(436\) −1.51280 + 19.4314i −0.0724499 + 0.930596i
\(437\) 0.699257 0.699257i 0.0334500 0.0334500i
\(438\) −0.0873128 0.236365i −0.00417197 0.0112939i
\(439\) 18.2586i 0.871437i −0.900083 0.435718i \(-0.856494\pi\)
0.900083 0.435718i \(-0.143506\pi\)
\(440\) −13.4346 47.4057i −0.640468 2.25998i
\(441\) 4.41481i 0.210229i
\(442\) 2.17701 0.804184i 0.103550 0.0382512i
\(443\) −15.4561 + 15.4561i −0.734342 + 0.734342i −0.971477 0.237135i \(-0.923792\pi\)
0.237135 + 0.971477i \(0.423792\pi\)
\(444\) 18.0610 + 21.1106i 0.857136 + 1.00187i
\(445\) −11.1245 11.1245i −0.527350 0.527350i
\(446\) −6.53953 + 14.2011i −0.309656 + 0.672441i
\(447\) −18.4449 −0.872414
\(448\) 8.03434 + 13.0367i 0.379587 + 0.615926i
\(449\) 3.76619 0.177737 0.0888687 0.996043i \(-0.471675\pi\)
0.0888687 + 0.996043i \(0.471675\pi\)
\(450\) −9.59405 + 20.8342i −0.452268 + 0.982134i
\(451\) −33.1853 33.1853i −1.56263 1.56263i
\(452\) 7.69930 + 8.99934i 0.362145 + 0.423293i
\(453\) −5.29243 + 5.29243i −0.248660 + 0.248660i
\(454\) 9.08884 3.35740i 0.426560 0.157571i
\(455\) 13.0487i 0.611733i
\(456\) 2.32154 + 8.19189i 0.108716 + 0.383620i
\(457\) 3.58004i 0.167467i 0.996488 + 0.0837337i \(0.0266845\pi\)
−0.996488 + 0.0837337i \(0.973315\pi\)
\(458\) −4.57845 12.3943i −0.213937 0.579150i
\(459\) 3.95844 3.95844i 0.184764 0.184764i
\(460\) 0.274283 3.52309i 0.0127885 0.164265i
\(461\) −7.08206 7.08206i −0.329844 0.329844i 0.522683 0.852527i \(-0.324931\pi\)
−0.852527 + 0.522683i \(0.824931\pi\)
\(462\) −13.3522 6.14860i −0.621199 0.286059i
\(463\) −24.4270 −1.13522 −0.567608 0.823299i \(-0.692131\pi\)
−0.567608 + 0.823299i \(0.692131\pi\)
\(464\) −19.0890 + 13.9182i −0.886183 + 0.646136i
\(465\) −21.9621 −1.01847
\(466\) 28.9290 + 13.3217i 1.34011 + 0.617114i
\(467\) −6.87038 6.87038i −0.317923 0.317923i 0.530046 0.847969i \(-0.322175\pi\)
−0.847969 + 0.530046i \(0.822175\pi\)
\(468\) −4.33058 0.337149i −0.200181 0.0155847i
\(469\) 7.57548 7.57548i 0.349803 0.349803i
\(470\) 2.99401 + 8.10509i 0.138103 + 0.373860i
\(471\) 12.3138i 0.567389i
\(472\) 12.2999 22.0284i 0.566150 1.01394i
\(473\) 27.9132i 1.28345i
\(474\) 26.7936 9.89752i 1.23067 0.454608i
\(475\) −20.1468 + 20.1468i −0.924400 + 0.924400i
\(476\) 2.90904 2.48880i 0.133336 0.114074i
\(477\) 1.39643 + 1.39643i 0.0639383 + 0.0639383i
\(478\) 4.28835 9.31247i 0.196144 0.425942i
\(479\) 21.5863 0.986303 0.493152 0.869943i \(-0.335845\pi\)
0.493152 + 0.869943i \(0.335845\pi\)
\(480\) 25.3337 + 16.8503i 1.15632 + 0.769107i
\(481\) −17.6056 −0.802747
\(482\) 10.3836 22.5488i 0.472962 1.02707i
\(483\) −0.745465 0.745465i −0.0339198 0.0339198i
\(484\) −10.0111 + 8.56494i −0.455052 + 0.389315i
\(485\) 4.96333 4.96333i 0.225373 0.225373i
\(486\) −16.6483 + 6.14986i −0.755182 + 0.278963i
\(487\) 9.48194i 0.429668i 0.976651 + 0.214834i \(0.0689210\pi\)
−0.976651 + 0.214834i \(0.931079\pi\)
\(488\) 22.3057 + 12.4547i 1.00973 + 0.563800i
\(489\) 18.1875i 0.822465i
\(490\) −6.79044 18.3824i −0.306761 0.830433i
\(491\) −9.57445 + 9.57445i −0.432089 + 0.432089i −0.889338 0.457250i \(-0.848835\pi\)
0.457250 + 0.889338i \(0.348835\pi\)
\(492\) 28.8925 + 2.24937i 1.30257 + 0.101409i
\(493\) 4.17622 + 4.17622i 0.188087 + 0.188087i
\(494\) −4.90095 2.25686i −0.220504 0.101541i
\(495\) 23.0551 1.03625
\(496\) 2.52784 16.1363i 0.113503 0.724540i
\(497\) −14.3195 −0.642318
\(498\) −22.0244 10.1421i −0.986936 0.454479i
\(499\) 18.3357 + 18.3357i 0.820818 + 0.820818i 0.986225 0.165407i \(-0.0528939\pi\)
−0.165407 + 0.986225i \(0.552894\pi\)
\(500\) −4.67838 + 60.0923i −0.209223 + 2.68741i
\(501\) −7.15822 + 7.15822i −0.319806 + 0.319806i
\(502\) −6.69165 18.1150i −0.298663 0.808512i
\(503\) 17.9457i 0.800159i 0.916481 + 0.400079i \(0.131017\pi\)
−0.916481 + 0.400079i \(0.868983\pi\)
\(504\) −6.89388 + 1.95369i −0.307078 + 0.0870245i
\(505\) 14.1040i 0.627618i
\(506\) −2.36640 + 0.874144i −0.105199 + 0.0388604i
\(507\) 9.43679 9.43679i 0.419102 0.419102i
\(508\) 7.72102 + 9.02473i 0.342565 + 0.400408i
\(509\) 15.1095 + 15.1095i 0.669715 + 0.669715i 0.957650 0.287935i \(-0.0929687\pi\)
−0.287935 + 0.957650i \(0.592969\pi\)
\(510\) 3.18160 6.90909i 0.140884 0.305940i
\(511\) 0.263404 0.0116523
\(512\) −15.2963 + 16.6740i −0.676009 + 0.736893i
\(513\) −13.0150 −0.574626
\(514\) −16.0007 + 34.7468i −0.705763 + 1.53262i
\(515\) 14.4954 + 14.4954i 0.638743 + 0.638743i
\(516\) −11.2052 13.0972i −0.493282 0.576573i
\(517\) 4.36162 4.36162i 0.191824 0.191824i
\(518\) −27.2430 + 10.0635i −1.19699 + 0.442167i
\(519\) 1.03050i 0.0452340i
\(520\) −18.5503 + 5.25706i −0.813483 + 0.230537i
\(521\) 16.9507i 0.742623i −0.928508 0.371311i \(-0.878908\pi\)
0.928508 0.371311i \(-0.121092\pi\)
\(522\) −3.83035 10.3692i −0.167650 0.453846i
\(523\) −18.3841 + 18.3841i −0.803883 + 0.803883i −0.983700 0.179817i \(-0.942449\pi\)
0.179817 + 0.983700i \(0.442449\pi\)
\(524\) −2.30406 + 29.5949i −0.100653 + 1.29286i
\(525\) 21.4782 + 21.4782i 0.937384 + 0.937384i
\(526\) 13.1981 + 6.07766i 0.575464 + 0.264998i
\(527\) −4.08327 −0.177870
\(528\) 3.36165 21.4588i 0.146297 0.933876i
\(529\) 22.8191 0.992134
\(530\) 7.96234 + 3.66662i 0.345862 + 0.159268i
\(531\) 8.34756 + 8.34756i 0.362253 + 0.362253i
\(532\) −8.87381 0.690854i −0.384728 0.0299523i
\(533\) −12.9857 + 12.9857i −0.562473 + 0.562473i
\(534\) −2.40313 6.50553i −0.103994 0.281522i
\(535\) 81.8201i 3.53739i
\(536\) 13.8214 + 7.71743i 0.596996 + 0.333342i
\(537\) 7.01381i 0.302668i
\(538\) 2.78110 1.02733i 0.119902 0.0442915i
\(539\) −9.89220 + 9.89220i −0.426087 + 0.426087i
\(540\) −35.3394 + 30.2343i −1.52077 + 1.30108i
\(541\) 22.9230 + 22.9230i 0.985537 + 0.985537i 0.999897 0.0143595i \(-0.00457093\pi\)
−0.0143595 + 0.999897i \(0.504571\pi\)
\(542\) 18.4524 40.0708i 0.792599 1.72119i
\(543\) −0.401692 −0.0172382
\(544\) 4.71012 + 3.13286i 0.201945 + 0.134320i
\(545\) −40.4805 −1.73399
\(546\) −2.40600 + 5.22482i −0.102967 + 0.223601i
\(547\) −23.2817 23.2817i −0.995454 0.995454i 0.00453534 0.999990i \(-0.498556\pi\)
−0.999990 + 0.00453534i \(0.998556\pi\)
\(548\) −10.7995 + 9.23938i −0.461330 + 0.394687i
\(549\) −8.45263 + 8.45263i −0.360749 + 0.360749i
\(550\) 68.1801 25.1856i 2.90721 1.07392i
\(551\) 13.7310i 0.584962i
\(552\) 0.759434 1.36010i 0.0323237 0.0578897i
\(553\) 29.8587i 1.26972i
\(554\) 2.52769 + 6.84272i 0.107391 + 0.290719i
\(555\) −40.8020 + 40.8020i −1.73195 + 1.73195i
\(556\) −31.6019 2.46031i −1.34022 0.104340i
\(557\) −20.9779 20.9779i −0.888861 0.888861i 0.105553 0.994414i \(-0.466339\pi\)
−0.994414 + 0.105553i \(0.966339\pi\)
\(558\) 6.94174 + 3.19664i 0.293867 + 0.135324i
\(559\) 10.9227 0.461981
\(560\) −25.6998 + 18.7383i −1.08602 + 0.791839i
\(561\) −5.43014 −0.229261
\(562\) −1.47173 0.677725i −0.0620812 0.0285881i
\(563\) 3.66561 + 3.66561i 0.154487 + 0.154487i 0.780119 0.625632i \(-0.215159\pi\)
−0.625632 + 0.780119i \(0.715159\pi\)
\(564\) −0.295640 + 3.79741i −0.0124487 + 0.159900i
\(565\) −17.3937 + 17.3937i −0.731758 + 0.731758i
\(566\) 7.45777 + 20.1889i 0.313473 + 0.848605i
\(567\) 6.27502i 0.263526i
\(568\) −5.76905 20.3569i −0.242064 0.854156i
\(569\) 5.33680i 0.223730i −0.993723 0.111865i \(-0.964318\pi\)
0.993723 0.111865i \(-0.0356825\pi\)
\(570\) −16.5887 + 6.12783i −0.694822 + 0.256666i
\(571\) −2.80602 + 2.80602i −0.117428 + 0.117428i −0.763379 0.645951i \(-0.776461\pi\)
0.645951 + 0.763379i \(0.276461\pi\)
\(572\) 8.94801 + 10.4589i 0.374135 + 0.437309i
\(573\) 2.94418 + 2.94418i 0.122995 + 0.122995i
\(574\) −12.6714 + 27.5169i −0.528894 + 1.14853i
\(575\) 5.21270 0.217385
\(576\) −5.55482 9.01337i −0.231451 0.375557i
\(577\) 30.5852 1.27328 0.636640 0.771161i \(-0.280324\pi\)
0.636640 + 0.771161i \(0.280324\pi\)
\(578\) 0.591533 1.28456i 0.0246045 0.0534306i
\(579\) 14.5395 + 14.5395i 0.604242 + 0.604242i
\(580\) −31.8977 37.2837i −1.32448 1.54812i
\(581\) 17.9231 17.9231i 0.743576 0.743576i
\(582\) 2.90253 1.07219i 0.120314 0.0444438i
\(583\) 6.25793i 0.259177i
\(584\) 0.106120 + 0.374460i 0.00439129 + 0.0154953i
\(585\) 9.02167i 0.373000i
\(586\) −2.47207 6.69214i −0.102120 0.276450i
\(587\) 13.5707 13.5707i 0.560122 0.560122i −0.369220 0.929342i \(-0.620375\pi\)
0.929342 + 0.369220i \(0.120375\pi\)
\(588\) 0.670515 8.61255i 0.0276516 0.355176i
\(589\) 6.71271 + 6.71271i 0.276592 + 0.276592i
\(590\) 47.5970 + 21.9182i 1.95954 + 0.902358i
\(591\) −0.764778 −0.0314588
\(592\) −25.2822 34.6748i −1.03909 1.42513i
\(593\) 7.50668 0.308262 0.154131 0.988050i \(-0.450742\pi\)
0.154131 + 0.988050i \(0.450742\pi\)
\(594\) 30.1575 + 13.8874i 1.23738 + 0.569805i
\(595\) 5.62252 + 5.62252i 0.230501 + 0.230501i
\(596\) 28.4044 + 2.21137i 1.16349 + 0.0905814i
\(597\) 19.0600 19.0600i 0.780075 0.780075i
\(598\) 0.342060 + 0.925992i 0.0139879 + 0.0378666i
\(599\) 32.1259i 1.31263i 0.754488 + 0.656314i \(0.227885\pi\)
−0.754488 + 0.656314i \(0.772115\pi\)
\(600\) −21.8806 + 39.1869i −0.893273 + 1.59980i
\(601\) 10.6598i 0.434822i −0.976080 0.217411i \(-0.930239\pi\)
0.976080 0.217411i \(-0.0697612\pi\)
\(602\) 16.9018 6.24352i 0.688868 0.254467i
\(603\) −5.23757 + 5.23757i −0.213290 + 0.213290i
\(604\) 8.78465 7.51562i 0.357442 0.305806i
\(605\) −19.3493 19.3493i −0.786660 0.786660i
\(606\) 2.60058 5.64735i 0.105641 0.229408i
\(607\) 28.1457 1.14240 0.571200 0.820811i \(-0.306478\pi\)
0.571200 + 0.820811i \(0.306478\pi\)
\(608\) −2.59295 12.8935i −0.105158 0.522901i
\(609\) −14.6384 −0.593178
\(610\) −22.1941 + 48.1961i −0.898612 + 1.95140i
\(611\) −1.70674 1.70674i −0.0690473 0.0690473i
\(612\) −2.01126 + 1.72072i −0.0813005 + 0.0695559i
\(613\) 32.0193 32.0193i 1.29325 1.29325i 0.360483 0.932766i \(-0.382612\pi\)
0.932766 0.360483i \(-0.117388\pi\)
\(614\) 2.94144 1.08656i 0.118707 0.0438501i
\(615\) 60.1902i 2.42710i
\(616\) 19.8246 + 11.0694i 0.798757 + 0.445999i
\(617\) 17.1962i 0.692291i 0.938181 + 0.346146i \(0.112510\pi\)
−0.938181 + 0.346146i \(0.887490\pi\)
\(618\) 3.13133 + 8.47683i 0.125961 + 0.340988i
\(619\) −10.1800 + 10.1800i −0.409169 + 0.409169i −0.881449 0.472280i \(-0.843431\pi\)
0.472280 + 0.881449i \(0.343431\pi\)
\(620\) 33.8208 + 2.63306i 1.35828 + 0.105746i
\(621\) 1.68372 + 1.68372i 0.0675655 + 0.0675655i
\(622\) 31.5654 + 14.5357i 1.26566 + 0.582828i
\(623\) 7.24974 0.290455
\(624\) −8.39703 1.31544i −0.336150 0.0526599i
\(625\) −63.9117 −2.55647
\(626\) −17.6313 8.11911i −0.704687 0.324505i
\(627\) 8.92691 + 8.92691i 0.356506 + 0.356506i
\(628\) 1.47631 18.9627i 0.0589111 0.756695i
\(629\) −7.58603 + 7.58603i −0.302475 + 0.302475i
\(630\) −5.15687 13.9602i −0.205455 0.556187i
\(631\) 9.80769i 0.390438i −0.980760 0.195219i \(-0.937458\pi\)
0.980760 0.195219i \(-0.0625418\pi\)
\(632\) −42.4477 + 12.0295i −1.68848 + 0.478507i
\(633\) 20.9921i 0.834362i
\(634\) 39.3732 14.5444i 1.56371 0.577632i
\(635\) −17.4428 + 17.4428i −0.692195 + 0.692195i
\(636\) 2.51212 + 2.93629i 0.0996119 + 0.116432i
\(637\) 3.87090 + 3.87090i 0.153371 + 0.153371i
\(638\) −14.6514 + 31.8166i −0.580054 + 1.25963i
\(639\) 9.90029 0.391649
\(640\) −36.9927 28.9861i −1.46226 1.14577i
\(641\) 4.79538 0.189406 0.0947031 0.995506i \(-0.469810\pi\)
0.0947031 + 0.995506i \(0.469810\pi\)
\(642\) 15.0865 32.7615i 0.595417 1.29299i
\(643\) −1.18375 1.18375i −0.0466827 0.0466827i 0.683380 0.730063i \(-0.260509\pi\)
−0.730063 + 0.683380i \(0.760509\pi\)
\(644\) 1.05861 + 1.23736i 0.0417151 + 0.0487588i
\(645\) 25.3140 25.3140i 0.996737 0.996737i
\(646\) −3.08421 + 1.13930i −0.121347 + 0.0448253i
\(647\) 9.79140i 0.384940i 0.981303 + 0.192470i \(0.0616497\pi\)
−0.981303 + 0.192470i \(0.938350\pi\)
\(648\) −8.92069 + 2.52808i −0.350438 + 0.0993124i
\(649\) 37.4085i 1.46841i
\(650\) −9.85535 26.6794i −0.386559 1.04645i
\(651\) 7.15630 7.15630i 0.280477 0.280477i
\(652\) −2.18051 + 28.0080i −0.0853953 + 1.09688i
\(653\) −10.4277 10.4277i −0.408068 0.408068i 0.472996 0.881064i \(-0.343172\pi\)
−0.881064 + 0.472996i \(0.843172\pi\)
\(654\) −16.2087 7.46404i −0.633812 0.291867i
\(655\) −61.6535 −2.40900
\(656\) −44.2236 6.92788i −1.72664 0.270488i
\(657\) −0.182113 −0.00710492
\(658\) −3.61661 1.66543i −0.140990 0.0649252i
\(659\) 20.2555 + 20.2555i 0.789041 + 0.789041i 0.981337 0.192296i \(-0.0615934\pi\)
−0.192296 + 0.981337i \(0.561593\pi\)
\(660\) 44.9767 + 3.50158i 1.75071 + 0.136299i
\(661\) 7.38826 7.38826i 0.287370 0.287370i −0.548669 0.836039i \(-0.684865\pi\)
0.836039 + 0.548669i \(0.184865\pi\)
\(662\) 16.2930 + 44.1069i 0.633246 + 1.71426i
\(663\) 2.12486i 0.0825227i
\(664\) 32.7007 + 18.2590i 1.26903 + 0.708586i
\(665\) 18.4863i 0.716869i
\(666\) 18.8354 6.95778i 0.729858 0.269608i
\(667\) −1.77636 + 1.77636i −0.0687808 + 0.0687808i
\(668\) 11.8816 10.1652i 0.459712 0.393302i
\(669\) −10.1219 10.1219i −0.391335 0.391335i
\(670\) −13.7523 + 29.8641i −0.531297 + 1.15375i
\(671\) 37.8793 1.46231
\(672\) −13.7455 + 2.76430i −0.530245 + 0.106635i
\(673\) −11.3011 −0.435627 −0.217813 0.975990i \(-0.569892\pi\)
−0.217813 + 0.975990i \(0.569892\pi\)
\(674\) 1.75109 3.80262i 0.0674494 0.146471i
\(675\) −48.5110 48.5110i −1.86719 1.86719i
\(676\) −15.6636 + 13.4009i −0.602448 + 0.515419i
\(677\) −31.7314 + 31.7314i −1.21954 + 1.21954i −0.251741 + 0.967795i \(0.581003\pi\)
−0.967795 + 0.251741i \(0.918997\pi\)
\(678\) −10.1718 + 3.75743i −0.390644 + 0.144303i
\(679\) 3.23457i 0.124132i
\(680\) −5.72787 + 10.2583i −0.219654 + 0.393387i
\(681\) 8.87112i 0.339942i
\(682\) −8.39158 22.7169i −0.321330 0.869874i
\(683\) −1.73147 + 1.73147i −0.0662530 + 0.0662530i −0.739457 0.673204i \(-0.764918\pi\)
0.673204 + 0.739457i \(0.264918\pi\)
\(684\) 6.13521 + 0.477646i 0.234586 + 0.0182633i
\(685\) −20.8729 20.8729i −0.797514 0.797514i
\(686\) 25.4148 + 11.7034i 0.970341 + 0.446838i
\(687\) 12.0974 0.461546
\(688\) 15.6853 + 21.5126i 0.597997 + 0.820160i
\(689\) −2.44878 −0.0932911
\(690\) 2.93878 + 1.35330i 0.111878 + 0.0515191i
\(691\) 31.6831 + 31.6831i 1.20528 + 1.20528i 0.972538 + 0.232744i \(0.0747705\pi\)
0.232744 + 0.972538i \(0.425230\pi\)
\(692\) −0.123548 + 1.58693i −0.00469658 + 0.0603261i
\(693\) −7.51244 + 7.51244i −0.285374 + 0.285374i
\(694\) −13.3696 36.1930i −0.507505 1.37387i
\(695\) 65.8346i 2.49725i
\(696\) −5.89752 20.8102i −0.223545 0.788810i
\(697\) 11.1907i 0.423879i
\(698\) −4.03363 + 1.49002i −0.152675 + 0.0563980i
\(699\) −20.6193 + 20.6193i −0.779893 + 0.779893i
\(700\) −30.5005 35.6505i −1.15281 1.34746i
\(701\) 18.7141 + 18.7141i 0.706822 + 0.706822i 0.965866 0.259044i \(-0.0834073\pi\)
−0.259044 + 0.965866i \(0.583407\pi\)
\(702\) 5.43424 11.8009i 0.205102 0.445395i
\(703\) 24.9422 0.940713
\(704\) −7.74952 + 32.6427i −0.292071 + 1.23027i
\(705\) −7.91093 −0.297943
\(706\) −11.5663 + 25.1172i −0.435305 + 0.945297i
\(707\) 4.59573 + 4.59573i 0.172840 + 0.172840i
\(708\) 15.0169 + 17.5525i 0.564368 + 0.659663i
\(709\) 0.260136 0.260136i 0.00976960 0.00976960i −0.702205 0.711975i \(-0.747801\pi\)
0.711975 + 0.702205i \(0.247801\pi\)
\(710\) 41.2229 15.2277i 1.54707 0.571485i
\(711\) 20.6438i 0.774205i
\(712\) 2.92078 + 10.3064i 0.109461 + 0.386247i
\(713\) 1.73682i 0.0650444i
\(714\) 1.21459 + 3.28802i 0.0454549 + 0.123051i
\(715\) −20.2147 + 20.2147i −0.755987 + 0.755987i
\(716\) −0.840891 + 10.8010i −0.0314256 + 0.403652i
\(717\) 6.63750 + 6.63750i 0.247882 + 0.247882i
\(718\) 3.84936 + 1.77261i 0.143657 + 0.0661532i
\(719\) 15.8428 0.590836 0.295418 0.955368i \(-0.404541\pi\)
0.295418 + 0.955368i \(0.404541\pi\)
\(720\) 17.7685 12.9554i 0.662191 0.482819i
\(721\) −9.44655 −0.351808
\(722\) −17.4633 8.04178i −0.649918 0.299284i
\(723\) 16.0718 + 16.0718i 0.597716 + 0.597716i
\(724\) 0.618589 + 0.0481591i 0.0229897 + 0.00178982i
\(725\) 51.1799 51.1799i 1.90077 1.90077i
\(726\) −4.17988 11.3154i −0.155130 0.419953i
\(727\) 12.2637i 0.454835i −0.973797 0.227418i \(-0.926972\pi\)
0.973797 0.227418i \(-0.0730283\pi\)
\(728\) 4.33155 7.75755i 0.160538 0.287514i
\(729\) 26.0839i 0.966071i
\(730\) −0.758285 + 0.280110i −0.0280654 + 0.0103673i
\(731\) 4.70645 4.70645i 0.174074 0.174074i
\(732\) −17.7734 + 15.2059i −0.656925 + 0.562025i
\(733\) 5.21560 + 5.21560i 0.192642 + 0.192642i 0.796837 0.604194i \(-0.206505\pi\)
−0.604194 + 0.796837i \(0.706505\pi\)
\(734\) 18.7933 40.8111i 0.693675 1.50637i
\(735\) 17.9421 0.661803
\(736\) −1.33256 + 2.00345i −0.0491189 + 0.0738482i
\(737\) 23.4715 0.864582
\(738\) 8.76080 19.0247i 0.322490 0.700310i
\(739\) −19.0681 19.0681i −0.701432 0.701432i 0.263286 0.964718i \(-0.415194\pi\)
−0.964718 + 0.263286i \(0.915194\pi\)
\(740\) 67.7253 57.9417i 2.48963 2.12998i
\(741\) 3.49318 3.49318i 0.128325 0.128325i
\(742\) −3.78926 + 1.39975i −0.139108 + 0.0513863i
\(743\) 31.7602i 1.16517i 0.812770 + 0.582585i \(0.197959\pi\)
−0.812770 + 0.582585i \(0.802041\pi\)
\(744\) 13.0567 + 7.29040i 0.478680 + 0.267279i
\(745\) 59.1734i 2.16795i
\(746\) 13.2882 + 35.9724i 0.486514 + 1.31704i
\(747\) −12.3918 + 12.3918i −0.453391 + 0.453391i
\(748\) 8.36219 + 0.651023i 0.305752 + 0.0238038i
\(749\) 26.6608 + 26.6608i 0.974165 + 0.974165i
\(750\) −50.1260 23.0828i −1.83034 0.842865i
\(751\) 4.29550 0.156745 0.0783726 0.996924i \(-0.475028\pi\)
0.0783726 + 0.996924i \(0.475028\pi\)
\(752\) 0.910548 5.81241i 0.0332043 0.211957i
\(753\) 17.6810 0.644333
\(754\) 12.4501 + 5.73322i 0.453406 + 0.208791i
\(755\) 16.9787 + 16.9787i 0.617920 + 0.617920i
\(756\) 1.66349 21.3670i 0.0605005 0.777110i
\(757\) −21.0672 + 21.0672i −0.765700 + 0.765700i −0.977346 0.211647i \(-0.932117\pi\)
0.211647 + 0.977346i \(0.432117\pi\)
\(758\) 12.8759 + 34.8565i 0.467675 + 1.26604i
\(759\) 2.30971i 0.0838372i
\(760\) 26.2805 7.44778i 0.953295 0.270159i
\(761\) 10.1716i 0.368720i −0.982859 0.184360i \(-0.940979\pi\)
0.982859 0.184360i \(-0.0590212\pi\)
\(762\) −10.2004 + 3.76803i −0.369523 + 0.136501i
\(763\) 13.1904 13.1904i 0.477526 0.477526i
\(764\) −4.18094 4.88690i −0.151261 0.176802i
\(765\) −3.88732 3.88732i −0.140546 0.140546i
\(766\) 5.57104 12.0979i 0.201290 0.437116i
\(767\) −14.6383 −0.528557
\(768\) −9.46757 18.4272i −0.341632 0.664935i
\(769\) 47.0356 1.69615 0.848073 0.529879i \(-0.177763\pi\)
0.848073 + 0.529879i \(0.177763\pi\)
\(770\) −19.7254 + 42.8353i −0.710855 + 1.54368i
\(771\) −24.7660 24.7660i −0.891924 0.891924i
\(772\) −20.6471 24.1334i −0.743106 0.868581i
\(773\) −28.1162 + 28.1162i −1.01127 + 1.01127i −0.0113345 + 0.999936i \(0.503608\pi\)
−0.999936 + 0.0113345i \(0.996392\pi\)
\(774\) −11.6857 + 4.31667i −0.420033 + 0.155160i
\(775\) 50.0408i 1.79752i
\(776\) −4.59833 + 1.30315i −0.165070 + 0.0467802i
\(777\) 26.5904i 0.953927i
\(778\) 2.77560 + 7.51383i 0.0995100 + 0.269384i
\(779\) 18.3971 18.3971i 0.659143 0.659143i
\(780\) 1.37020 17.5998i 0.0490609 0.630172i
\(781\) −22.1834 22.1834i −0.793785 0.793785i
\(782\) 0.546387 + 0.251609i 0.0195388 + 0.00899750i
\(783\) 33.0626 1.18156
\(784\) −2.06513 + 13.1826i −0.0737547 + 0.470807i
\(785\) 39.5040 1.40996
\(786\) −24.6866 11.3681i −0.880542 0.405485i
\(787\) 12.9893 + 12.9893i 0.463020 + 0.463020i 0.899644 0.436624i \(-0.143826\pi\)
−0.436624 + 0.899644i \(0.643826\pi\)
\(788\) 1.17773 + 0.0916899i 0.0419548 + 0.00326632i
\(789\) −9.40700 + 9.40700i −0.334898 + 0.334898i
\(790\) −31.7524 85.9570i −1.12970 3.05821i
\(791\) 11.3354i 0.403039i
\(792\) −13.7064 7.65321i −0.487037 0.271945i
\(793\) 14.8225i 0.526363i
\(794\) −51.1971 + 18.9121i −1.81692 + 0.671166i
\(795\) −5.67519 + 5.67519i −0.201278 + 0.201278i
\(796\) −31.6368 + 27.0666i −1.12134 + 0.959349i
\(797\) −2.64339 2.64339i −0.0936338 0.0936338i 0.658738 0.752372i \(-0.271090\pi\)
−0.752372 + 0.658738i \(0.771090\pi\)
\(798\) 3.40863 7.40209i 0.120664 0.262031i
\(799\) −1.47082 −0.0520340
\(800\) 38.3934 57.7229i 1.35741 2.04081i
\(801\) −5.01236 −0.177103
\(802\) 11.2370 24.4020i 0.396793 0.861666i
\(803\) 0.408058 + 0.408058i 0.0144001 + 0.0144001i
\(804\) −11.0131 + 9.42213i −0.388401 + 0.332293i
\(805\) −2.39154 + 2.39154i −0.0842907 + 0.0842907i
\(806\) −8.88931 + 3.28370i −0.313113 + 0.115663i
\(807\) 2.71447i 0.0955540i
\(808\) −4.68185 + 8.38490i −0.164707 + 0.294980i
\(809\) 27.5076i 0.967117i 0.875312 + 0.483559i \(0.160656\pi\)
−0.875312 + 0.483559i \(0.839344\pi\)
\(810\) −6.67299 18.0645i −0.234465 0.634721i
\(811\) 4.86403 4.86403i 0.170799 0.170799i −0.616531 0.787330i \(-0.711463\pi\)
0.787330 + 0.616531i \(0.211463\pi\)
\(812\) 22.5425 + 1.75501i 0.791088 + 0.0615887i
\(813\) 28.5606 + 28.5606i 1.00167 + 1.00167i
\(814\) −57.7944 26.6140i −2.02569 0.932821i
\(815\) −58.3475 −2.04382
\(816\) −4.18498 + 3.05136i −0.146503 + 0.106819i
\(817\) −15.4744 −0.541380
\(818\) 15.1542 + 6.97844i 0.529855 + 0.243996i
\(819\) 2.93968 + 2.93968i 0.102721 + 0.102721i
\(820\) 7.21624 92.6904i 0.252002 3.23689i
\(821\) 4.96364 4.96364i 0.173232 0.173232i −0.615166 0.788398i \(-0.710911\pi\)
0.788398 + 0.615166i \(0.210911\pi\)
\(822\) −4.50902 12.2064i −0.157270 0.425747i
\(823\) 16.2032i 0.564809i −0.959295 0.282404i \(-0.908868\pi\)
0.959295 0.282404i \(-0.0911320\pi\)
\(824\) −3.80583 13.4294i −0.132582 0.467835i
\(825\) 66.5468i 2.31686i
\(826\) −22.6513 + 8.36737i −0.788140 + 0.291138i
\(827\) 33.3978 33.3978i 1.16136 1.16136i 0.177178 0.984179i \(-0.443303\pi\)
0.984179 0.177178i \(-0.0566968\pi\)
\(828\) −0.731908 0.855492i −0.0254356 0.0297304i
\(829\) 5.19197 + 5.19197i 0.180325 + 0.180325i 0.791497 0.611173i \(-0.209302\pi\)
−0.611173 + 0.791497i \(0.709302\pi\)
\(830\) −32.5371 + 70.6568i −1.12938 + 2.45253i
\(831\) −6.67880 −0.231685
\(832\) 12.7734 + 3.03245i 0.442837 + 0.105131i
\(833\) 3.33584 0.115580
\(834\) 12.1390 26.3608i 0.420339 0.912798i
\(835\) 22.9644 + 22.9644i 0.794716 + 0.794716i
\(836\) −12.6768 14.8173i −0.438437 0.512468i
\(837\) −16.1634 + 16.1634i −0.558687 + 0.558687i
\(838\) 43.6118 16.1101i 1.50654 0.556515i
\(839\) 16.3603i 0.564821i −0.959294 0.282410i \(-0.908866\pi\)
0.959294 0.282410i \(-0.0911340\pi\)
\(840\) −7.93994 28.0172i −0.273954 0.966685i
\(841\) 5.88159i 0.202813i
\(842\) −16.6927 45.1889i −0.575269 1.55731i
\(843\) 1.04898 1.04898i 0.0361289 0.0361289i
\(844\) −2.51676 + 32.3270i −0.0866305 + 1.11274i
\(845\) −30.2743 30.2743i −1.04147 1.04147i
\(846\) 2.50047 + 1.15145i 0.0859678 + 0.0395878i
\(847\) 12.6098 0.433278
\(848\) −3.51652 4.82295i −0.120758 0.165621i
\(849\) −19.7053 −0.676285
\(850\) −15.7424 7.24928i −0.539959 0.248648i
\(851\) −3.22672 3.22672i −0.110611 0.110611i
\(852\) 19.3138 + 1.50364i 0.661680 + 0.0515139i
\(853\) 16.5619 16.5619i 0.567070 0.567070i −0.364237 0.931306i \(-0.618670\pi\)
0.931306 + 0.364237i \(0.118670\pi\)
\(854\) −8.47269 22.9364i −0.289929 0.784869i
\(855\) 12.7812i 0.437107i
\(856\) −27.1604 + 48.6426i −0.928323 + 1.66257i
\(857\) 30.6293i 1.04628i 0.852247 + 0.523139i \(0.175239\pi\)
−0.852247 + 0.523139i \(0.824761\pi\)
\(858\) −11.8215 + 4.36683i −0.403578 + 0.149081i
\(859\) 30.9534 30.9534i 1.05612 1.05612i 0.0577876 0.998329i \(-0.481595\pi\)
0.998329 0.0577876i \(-0.0184046\pi\)
\(860\) −42.0174 + 35.9476i −1.43278 + 1.22580i
\(861\) −19.6128 19.6128i −0.668402 0.668402i
\(862\) −4.00632 + 8.70003i −0.136456 + 0.296324i
\(863\) 6.81263 0.231905 0.115952 0.993255i \(-0.463008\pi\)
0.115952 + 0.993255i \(0.463008\pi\)
\(864\) 31.0459 6.24349i 1.05620 0.212408i
\(865\) −3.30597 −0.112406
\(866\) −9.61052 + 20.8700i −0.326579 + 0.709190i
\(867\) 0.915574 + 0.915574i 0.0310945 + 0.0310945i
\(868\) −11.8784 + 10.1624i −0.403178 + 0.344935i
\(869\) −46.2563 + 46.2563i −1.56914 + 1.56914i
\(870\) 42.1409 15.5668i 1.42871 0.527764i
\(871\) 9.18458i 0.311208i
\(872\) 24.0659 + 13.4376i 0.814975 + 0.455055i
\(873\) 2.23633i 0.0756884i
\(874\) −0.484603 1.31187i −0.0163919 0.0443747i
\(875\) 40.7918 40.7918i 1.37902 1.37902i
\(876\) −0.355272 0.0276591i −0.0120035 0.000934514i
\(877\) −26.2073 26.2073i −0.884957 0.884957i 0.109076 0.994033i \(-0.465211\pi\)
−0.994033 + 0.109076i \(0.965211\pi\)
\(878\) −23.4543 10.8006i −0.791543 0.364502i
\(879\) 6.53183 0.220313
\(880\) −68.8424 10.7846i −2.32068 0.363548i
\(881\) 42.1590 1.42037 0.710187 0.704013i \(-0.248610\pi\)
0.710187 + 0.704013i \(0.248610\pi\)
\(882\) −5.67108 2.61151i −0.190955 0.0879340i
\(883\) 11.4035 + 11.4035i 0.383758 + 0.383758i 0.872454 0.488696i \(-0.162527\pi\)
−0.488696 + 0.872454i \(0.662527\pi\)
\(884\) 0.254751 3.27220i 0.00856820 0.110056i
\(885\) −33.9250 + 33.9250i −1.14038 + 1.14038i
\(886\) 10.7115 + 28.9970i 0.359859 + 0.974175i
\(887\) 18.7407i 0.629252i −0.949216 0.314626i \(-0.898121\pi\)
0.949216 0.314626i \(-0.101879\pi\)
\(888\) 37.8015 10.7128i 1.26853 0.359497i
\(889\) 11.3673i 0.381248i
\(890\) −20.8705 + 7.70953i −0.699581 + 0.258424i
\(891\) −9.72110 + 9.72110i −0.325669 + 0.325669i
\(892\) 14.3738 + 16.8008i 0.481270 + 0.562533i
\(893\) 2.41797 + 2.41797i 0.0809143 + 0.0809143i
\(894\) −10.9108 + 23.6936i −0.364911 + 0.792431i
\(895\) −22.5011 −0.752129
\(896\) 21.4990 2.60894i 0.718230 0.0871586i
\(897\) −0.903810 −0.0301773
\(898\) 2.22782 4.83789i 0.0743434 0.161442i
\(899\) −17.0526 17.0526i −0.568736 0.568736i
\(900\) 21.0875 + 24.6482i 0.702918 + 0.821607i
\(901\) −1.05515 + 1.05515i −0.0351521 + 0.0351521i
\(902\) −62.2586 + 22.9982i −2.07298 + 0.765758i
\(903\) 16.4970i 0.548984i
\(904\) 16.1146 4.56679i 0.535962 0.151889i
\(905\) 1.28867i 0.0428370i
\(906\) 3.66779 + 9.92909i 0.121854 + 0.329872i
\(907\) 22.6508 22.6508i 0.752108 0.752108i −0.222764 0.974872i \(-0.571508\pi\)
0.974872 + 0.222764i \(0.0715079\pi\)
\(908\) 1.06356 13.6612i 0.0352956 0.453361i
\(909\) −3.17742 3.17742i −0.105388 0.105388i
\(910\) 16.7618 + 7.71873i 0.555649 + 0.255873i
\(911\) −25.2568 −0.836796 −0.418398 0.908264i \(-0.637408\pi\)
−0.418398 + 0.908264i \(0.637408\pi\)
\(912\) 11.8962 + 1.86361i 0.393923 + 0.0617104i
\(913\) 55.5321 1.83784
\(914\) 4.59877 + 2.11771i 0.152114 + 0.0700477i
\(915\) −34.3520 34.3520i −1.13564 1.13564i
\(916\) −18.6296 1.45037i −0.615538 0.0479216i
\(917\) 20.0896 20.0896i 0.663417 0.663417i
\(918\) −2.74330 7.42639i −0.0905423 0.245107i
\(919\) 16.7510i 0.552564i −0.961077 0.276282i \(-0.910898\pi\)
0.961077 0.276282i \(-0.0891023\pi\)
\(920\) −4.36336 2.43635i −0.143856 0.0803242i
\(921\) 2.87097i 0.0946018i
\(922\) −13.2866 + 4.90804i −0.437570 + 0.161638i
\(923\) −8.68056 + 8.68056i −0.285724 + 0.285724i
\(924\) −15.7965 + 13.5145i −0.519666 + 0.444595i
\(925\) 92.9675 + 92.9675i 3.05675 + 3.05675i
\(926\) −14.4493 + 31.3778i −0.474835 + 1.03114i
\(927\) 6.53120 0.214513
\(928\) 6.58699 + 32.7540i 0.216229 + 1.07520i
\(929\) −12.0439 −0.395147 −0.197573 0.980288i \(-0.563306\pi\)
−0.197573 + 0.980288i \(0.563306\pi\)
\(930\) −12.9913 + 28.2117i −0.426002 + 0.925097i
\(931\) −5.48398 5.48398i −0.179730 0.179730i
\(932\) 34.2249 29.2808i 1.12107 0.959124i
\(933\) −22.4984 + 22.4984i −0.736563 + 0.736563i
\(934\) −12.8894 + 4.76134i −0.421756 + 0.155796i
\(935\) 17.4205i 0.569711i
\(936\) −2.99477 + 5.36345i −0.0978871 + 0.175310i
\(937\) 0.394586i 0.0128906i −0.999979 0.00644528i \(-0.997948\pi\)
0.999979 0.00644528i \(-0.00205161\pi\)
\(938\) −5.25000 14.2123i −0.171418 0.464047i
\(939\) 12.5668 12.5668i 0.410101 0.410101i
\(940\) 12.1825 + 0.948448i 0.397350 + 0.0309350i
\(941\) −36.2931 36.2931i −1.18312 1.18312i −0.978931 0.204192i \(-0.934543\pi\)
−0.204192 0.978931i \(-0.565457\pi\)
\(942\) 15.8178 + 7.28400i 0.515370 + 0.237326i
\(943\) −4.75998 −0.155006
\(944\) −21.0210 28.8305i −0.684174 0.938353i
\(945\) 44.5127 1.44800
\(946\) 35.8562 + 16.5116i 1.16579 + 0.536838i
\(947\) −7.10426 7.10426i −0.230857 0.230857i 0.582193 0.813051i \(-0.302195\pi\)
−0.813051 + 0.582193i \(0.802195\pi\)
\(948\) 3.13535 40.2727i 0.101832 1.30799i
\(949\) 0.159677 0.159677i 0.00518333 0.00518333i
\(950\) 13.9623 + 37.7973i 0.452996 + 1.22631i
\(951\) 38.4300i 1.24618i
\(952\) −1.47622 5.20904i −0.0478444 0.168826i
\(953\) 23.0412i 0.746377i 0.927756 + 0.373188i \(0.121736\pi\)
−0.927756 + 0.373188i \(0.878264\pi\)
\(954\) 2.61983 0.967763i 0.0848203 0.0313325i
\(955\) 9.44527 9.44527i 0.305642 0.305642i
\(956\) −9.42571 11.0173i −0.304849 0.356324i
\(957\) −22.6774 22.6774i −0.733057 0.733057i
\(958\) 12.7690 27.7289i 0.412548 0.895879i
\(959\) 13.6028 0.439256
\(960\) 36.6309 22.5751i 1.18226 0.728609i
\(961\) −14.3269 −0.462159
\(962\) −10.4143 + 22.6154i −0.335771 + 0.729151i
\(963\) −18.4329 18.4329i −0.593991 0.593991i
\(964\) −22.8230 26.6768i −0.735081 0.859201i
\(965\) 46.6445 46.6445i 1.50154 1.50154i
\(966\) −1.39856 + 0.516626i −0.0449979 + 0.0166222i
\(967\) 27.7107i 0.891115i −0.895253 0.445557i \(-0.853006\pi\)
0.895253 0.445557i \(-0.146994\pi\)
\(968\) 5.08024 + 17.9263i 0.163285 + 0.576174i
\(969\) 3.01033i 0.0967057i
\(970\) −3.43972 9.31167i −0.110443 0.298980i
\(971\) 15.1296 15.1296i 0.485532 0.485532i −0.421361 0.906893i \(-0.638447\pi\)
0.906893 + 0.421361i \(0.138447\pi\)
\(972\) −1.94816 + 25.0235i −0.0624873 + 0.802630i
\(973\) 21.4520 + 21.4520i 0.687719 + 0.687719i
\(974\) 12.1801 + 5.60888i 0.390276 + 0.179720i
\(975\) 26.0403 0.833958
\(976\) 29.1934 21.2856i 0.934458 0.681334i
\(977\) 32.4997 1.03976 0.519878 0.854240i \(-0.325977\pi\)
0.519878 + 0.854240i \(0.325977\pi\)
\(978\) −23.3628 10.7585i −0.747062 0.344018i
\(979\) 11.2311 + 11.2311i 0.358948 + 0.358948i
\(980\) −27.6301 2.15109i −0.882610 0.0687140i
\(981\) −9.11966 + 9.11966i −0.291168 + 0.291168i
\(982\) 6.63533 + 17.9625i 0.211742 + 0.573207i
\(983\) 12.9181i 0.412024i −0.978549 0.206012i \(-0.933951\pi\)
0.978549 0.206012i \(-0.0660486\pi\)
\(984\) 19.9803 35.7835i 0.636948 1.14074i
\(985\) 2.45350i 0.0781749i
\(986\) 7.83496 2.89422i 0.249516 0.0921709i
\(987\) 2.57775 2.57775i 0.0820508 0.0820508i
\(988\) −5.79815 + 4.96055i −0.184464 + 0.157816i
\(989\) 2.00189 + 2.00189i 0.0636564 + 0.0636564i
\(990\) 13.6379 29.6156i 0.433440 0.941247i
\(991\) −50.4366 −1.60217 −0.801086 0.598549i \(-0.795744\pi\)
−0.801086 + 0.598549i \(0.795744\pi\)
\(992\) −19.2327 12.7923i −0.610638 0.406155i
\(993\) −43.0503 −1.36616
\(994\) −8.47046 + 18.3942i −0.268667 + 0.583430i
\(995\) −61.1468 61.1468i −1.93848 1.93848i
\(996\) −26.0563 + 22.2922i −0.825625 + 0.706356i
\(997\) 0.400248 0.400248i 0.0126760 0.0126760i −0.700740 0.713416i \(-0.747147\pi\)
0.713416 + 0.700740i \(0.247147\pi\)
\(998\) 34.3994 12.7071i 1.08889 0.402236i
\(999\) 60.0577i 1.90014i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.2.l.c.205.11 yes 32
4.3 odd 2 1088.2.l.c.273.5 32
16.5 even 4 inner 272.2.l.c.69.11 32
16.11 odd 4 1088.2.l.c.817.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
272.2.l.c.69.11 32 16.5 even 4 inner
272.2.l.c.205.11 yes 32 1.1 even 1 trivial
1088.2.l.c.273.5 32 4.3 odd 2
1088.2.l.c.817.5 32 16.11 odd 4