Properties

Label 272.2.l.b.205.3
Level $272$
Weight $2$
Character 272.205
Analytic conductor $2.172$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [272,2,Mod(69,272)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(272, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("272.69"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 272 = 2^{4} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 272.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.17193093498\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(15\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 205.3
Character \(\chi\) \(=\) 272.205
Dual form 272.2.l.b.69.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.13198 - 0.847715i) q^{2} +(0.907888 + 0.907888i) q^{3} +(0.562758 + 1.91919i) q^{4} +(0.218362 - 0.218362i) q^{5} +(-0.258081 - 1.79734i) q^{6} +4.34872i q^{7} +(0.989900 - 2.64955i) q^{8} -1.35148i q^{9} +(-0.432289 + 0.0620725i) q^{10} +(-3.20019 + 3.20019i) q^{11} +(-1.23149 + 2.25333i) q^{12} +(1.70475 + 1.70475i) q^{13} +(3.68647 - 4.92266i) q^{14} +0.396496 q^{15} +(-3.36661 + 2.16008i) q^{16} -1.00000 q^{17} +(-1.14567 + 1.52985i) q^{18} +(0.630802 + 0.630802i) q^{19} +(0.541963 + 0.296193i) q^{20} +(-3.94815 + 3.94815i) q^{21} +(6.33541 - 0.909702i) q^{22} -0.799019i q^{23} +(3.30421 - 1.50677i) q^{24} +4.90464i q^{25} +(-0.484599 - 3.37488i) q^{26} +(3.95066 - 3.95066i) q^{27} +(-8.34603 + 2.44727i) q^{28} +(2.21985 + 2.21985i) q^{29} +(-0.448825 - 0.336116i) q^{30} +6.06127 q^{31} +(5.64207 + 0.408756i) q^{32} -5.81084 q^{33} +(1.13198 + 0.847715i) q^{34} +(0.949593 + 0.949593i) q^{35} +(2.59375 - 0.760554i) q^{36} +(4.96211 - 4.96211i) q^{37} +(-0.179315 - 1.24879i) q^{38} +3.09544i q^{39} +(-0.362403 - 0.794715i) q^{40} -11.0340i q^{41} +(7.81613 - 1.12232i) q^{42} +(-4.85759 + 4.85759i) q^{43} +(-7.94273 - 4.34086i) q^{44} +(-0.295111 - 0.295111i) q^{45} +(-0.677341 + 0.904474i) q^{46} +10.8190 q^{47} +(-5.01762 - 1.09539i) q^{48} -11.9113 q^{49} +(4.15774 - 5.55195i) q^{50} +(-0.907888 - 0.907888i) q^{51} +(-2.31238 + 4.23110i) q^{52} +(-3.33187 + 3.33187i) q^{53} +(-7.82109 + 1.12303i) q^{54} +1.39760i q^{55} +(11.5221 + 4.30479i) q^{56} +1.14539i q^{57} +(-0.631026 - 4.39463i) q^{58} +(-3.82207 + 3.82207i) q^{59} +(0.223131 + 0.760952i) q^{60} +(-3.16363 - 3.16363i) q^{61} +(-6.86123 - 5.13823i) q^{62} +5.87719 q^{63} +(-6.04020 - 5.24557i) q^{64} +0.744502 q^{65} +(6.57775 + 4.92594i) q^{66} +(-7.94007 - 7.94007i) q^{67} +(-0.562758 - 1.91919i) q^{68} +(0.725420 - 0.725420i) q^{69} +(-0.269936 - 1.87990i) q^{70} -6.71291i q^{71} +(-3.58080 - 1.33783i) q^{72} -10.1781i q^{73} +(-9.82346 + 1.41055i) q^{74} +(-4.45286 + 4.45286i) q^{75} +(-0.855642 + 1.56562i) q^{76} +(-13.9167 - 13.9167i) q^{77} +(2.62405 - 3.50397i) q^{78} +1.19136 q^{79} +(-0.263459 + 1.20682i) q^{80} +3.11908 q^{81} +(-9.35371 + 12.4903i) q^{82} +(-0.310373 - 0.310373i) q^{83} +(-9.79912 - 5.35541i) q^{84} +(-0.218362 + 0.218362i) q^{85} +(9.61654 - 1.38084i) q^{86} +4.03076i q^{87} +(5.31119 + 11.6469i) q^{88} +0.417625i q^{89} +(0.0838896 + 0.584229i) q^{90} +(-7.41346 + 7.41346i) q^{91} +(1.53347 - 0.449654i) q^{92} +(5.50295 + 5.50295i) q^{93} +(-12.2469 - 9.17146i) q^{94} +0.275486 q^{95} +(4.75126 + 5.49347i) q^{96} +1.28394 q^{97} +(13.4834 + 10.0974i) q^{98} +(4.32499 + 4.32499i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q + 2 q^{2} - 2 q^{3} - 2 q^{4} - 2 q^{5} + 8 q^{6} + 2 q^{8} - 6 q^{10} - 10 q^{11} - 2 q^{12} - 6 q^{13} - 22 q^{14} - 28 q^{15} + 2 q^{16} - 30 q^{17} + 8 q^{18} + 10 q^{19} - 10 q^{20} - 4 q^{21}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/272\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(239\) \(241\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.13198 0.847715i −0.800431 0.599425i
\(3\) 0.907888 + 0.907888i 0.524170 + 0.524170i 0.918828 0.394658i \(-0.129137\pi\)
−0.394658 + 0.918828i \(0.629137\pi\)
\(4\) 0.562758 + 1.91919i 0.281379 + 0.959597i
\(5\) 0.218362 0.218362i 0.0976542 0.0976542i −0.656592 0.754246i \(-0.728003\pi\)
0.754246 + 0.656592i \(0.228003\pi\)
\(6\) −0.258081 1.79734i −0.105361 0.733762i
\(7\) 4.34872i 1.64366i 0.569732 + 0.821830i \(0.307047\pi\)
−0.569732 + 0.821830i \(0.692953\pi\)
\(8\) 0.989900 2.64955i 0.349982 0.936756i
\(9\) 1.35148i 0.450493i
\(10\) −0.432289 + 0.0620725i −0.136702 + 0.0196290i
\(11\) −3.20019 + 3.20019i −0.964895 + 0.964895i −0.999404 0.0345093i \(-0.989013\pi\)
0.0345093 + 0.999404i \(0.489013\pi\)
\(12\) −1.23149 + 2.25333i −0.355501 + 0.650482i
\(13\) 1.70475 + 1.70475i 0.472812 + 0.472812i 0.902823 0.430012i \(-0.141491\pi\)
−0.430012 + 0.902823i \(0.641491\pi\)
\(14\) 3.68647 4.92266i 0.985252 1.31564i
\(15\) 0.396496 0.102375
\(16\) −3.36661 + 2.16008i −0.841652 + 0.540020i
\(17\) −1.00000 −0.242536
\(18\) −1.14567 + 1.52985i −0.270037 + 0.360588i
\(19\) 0.630802 + 0.630802i 0.144716 + 0.144716i 0.775753 0.631037i \(-0.217370\pi\)
−0.631037 + 0.775753i \(0.717370\pi\)
\(20\) 0.541963 + 0.296193i 0.121187 + 0.0662309i
\(21\) −3.94815 + 3.94815i −0.861557 + 0.861557i
\(22\) 6.33541 0.909702i 1.35071 0.193949i
\(23\) 0.799019i 0.166607i −0.996524 0.0833035i \(-0.973453\pi\)
0.996524 0.0833035i \(-0.0265471\pi\)
\(24\) 3.30421 1.50677i 0.674469 0.307569i
\(25\) 4.90464i 0.980927i
\(26\) −0.484599 3.37488i −0.0950377 0.661868i
\(27\) 3.95066 3.95066i 0.760304 0.760304i
\(28\) −8.34603 + 2.44727i −1.57725 + 0.462491i
\(29\) 2.21985 + 2.21985i 0.412217 + 0.412217i 0.882510 0.470294i \(-0.155852\pi\)
−0.470294 + 0.882510i \(0.655852\pi\)
\(30\) −0.448825 0.336116i −0.0819439 0.0613660i
\(31\) 6.06127 1.08864 0.544318 0.838879i \(-0.316789\pi\)
0.544318 + 0.838879i \(0.316789\pi\)
\(32\) 5.64207 + 0.408756i 0.997386 + 0.0722586i
\(33\) −5.81084 −1.01154
\(34\) 1.13198 + 0.847715i 0.194133 + 0.145382i
\(35\) 0.949593 + 0.949593i 0.160510 + 0.160510i
\(36\) 2.59375 0.760554i 0.432291 0.126759i
\(37\) 4.96211 4.96211i 0.815765 0.815765i −0.169726 0.985491i \(-0.554288\pi\)
0.985491 + 0.169726i \(0.0542883\pi\)
\(38\) −0.179315 1.24879i −0.0290887 0.202581i
\(39\) 3.09544i 0.495667i
\(40\) −0.362403 0.794715i −0.0573010 0.125655i
\(41\) 11.0340i 1.72322i −0.507567 0.861612i \(-0.669455\pi\)
0.507567 0.861612i \(-0.330545\pi\)
\(42\) 7.81613 1.12232i 1.20606 0.173178i
\(43\) −4.85759 + 4.85759i −0.740775 + 0.740775i −0.972727 0.231952i \(-0.925489\pi\)
0.231952 + 0.972727i \(0.425489\pi\)
\(44\) −7.94273 4.34086i −1.19741 0.654409i
\(45\) −0.295111 0.295111i −0.0439925 0.0439925i
\(46\) −0.677341 + 0.904474i −0.0998685 + 0.133357i
\(47\) 10.8190 1.57812 0.789059 0.614318i \(-0.210569\pi\)
0.789059 + 0.614318i \(0.210569\pi\)
\(48\) −5.01762 1.09539i −0.724231 0.158106i
\(49\) −11.9113 −1.70162
\(50\) 4.15774 5.55195i 0.587993 0.785164i
\(51\) −0.907888 0.907888i −0.127130 0.127130i
\(52\) −2.31238 + 4.23110i −0.320669 + 0.586748i
\(53\) −3.33187 + 3.33187i −0.457668 + 0.457668i −0.897889 0.440222i \(-0.854900\pi\)
0.440222 + 0.897889i \(0.354900\pi\)
\(54\) −7.82109 + 1.12303i −1.06432 + 0.152825i
\(55\) 1.39760i 0.188452i
\(56\) 11.5221 + 4.30479i 1.53971 + 0.575252i
\(57\) 1.14539i 0.151711i
\(58\) −0.631026 4.39463i −0.0828578 0.577044i
\(59\) −3.82207 + 3.82207i −0.497591 + 0.497591i −0.910687 0.413096i \(-0.864447\pi\)
0.413096 + 0.910687i \(0.364447\pi\)
\(60\) 0.223131 + 0.760952i 0.0288061 + 0.0982385i
\(61\) −3.16363 3.16363i −0.405061 0.405061i 0.474951 0.880012i \(-0.342466\pi\)
−0.880012 + 0.474951i \(0.842466\pi\)
\(62\) −6.86123 5.13823i −0.871378 0.652556i
\(63\) 5.87719 0.740457
\(64\) −6.04020 5.24557i −0.755025 0.655696i
\(65\) 0.744502 0.0923441
\(66\) 6.57775 + 4.92594i 0.809666 + 0.606341i
\(67\) −7.94007 7.94007i −0.970034 0.970034i 0.0295295 0.999564i \(-0.490599\pi\)
−0.999564 + 0.0295295i \(0.990599\pi\)
\(68\) −0.562758 1.91919i −0.0682444 0.232736i
\(69\) 0.725420 0.725420i 0.0873304 0.0873304i
\(70\) −0.269936 1.87990i −0.0322635 0.224692i
\(71\) 6.71291i 0.796676i −0.917239 0.398338i \(-0.869587\pi\)
0.917239 0.398338i \(-0.130413\pi\)
\(72\) −3.58080 1.33783i −0.422002 0.157664i
\(73\) 10.1781i 1.19126i −0.803260 0.595629i \(-0.796903\pi\)
0.803260 0.595629i \(-0.203097\pi\)
\(74\) −9.82346 + 1.41055i −1.14195 + 0.163973i
\(75\) −4.45286 + 4.45286i −0.514172 + 0.514172i
\(76\) −0.855642 + 1.56562i −0.0981489 + 0.179589i
\(77\) −13.9167 13.9167i −1.58596 1.58596i
\(78\) 2.62405 3.50397i 0.297115 0.396747i
\(79\) 1.19136 0.134038 0.0670192 0.997752i \(-0.478651\pi\)
0.0670192 + 0.997752i \(0.478651\pi\)
\(80\) −0.263459 + 1.20682i −0.0294556 + 0.134926i
\(81\) 3.11908 0.346564
\(82\) −9.35371 + 12.4903i −1.03294 + 1.37932i
\(83\) −0.310373 0.310373i −0.0340679 0.0340679i 0.689868 0.723936i \(-0.257669\pi\)
−0.723936 + 0.689868i \(0.757669\pi\)
\(84\) −9.79912 5.35541i −1.06917 0.584324i
\(85\) −0.218362 + 0.218362i −0.0236846 + 0.0236846i
\(86\) 9.61654 1.38084i 1.03698 0.148900i
\(87\) 4.03076i 0.432143i
\(88\) 5.31119 + 11.6469i 0.566175 + 1.24157i
\(89\) 0.417625i 0.0442682i 0.999755 + 0.0221341i \(0.00704607\pi\)
−0.999755 + 0.0221341i \(0.992954\pi\)
\(90\) 0.0838896 + 0.584229i 0.00884274 + 0.0615832i
\(91\) −7.41346 + 7.41346i −0.777142 + 0.777142i
\(92\) 1.53347 0.449654i 0.159876 0.0468797i
\(93\) 5.50295 + 5.50295i 0.570630 + 0.570630i
\(94\) −12.2469 9.17146i −1.26317 0.945964i
\(95\) 0.275486 0.0282642
\(96\) 4.75126 + 5.49347i 0.484924 + 0.560675i
\(97\) 1.28394 0.130364 0.0651820 0.997873i \(-0.479237\pi\)
0.0651820 + 0.997873i \(0.479237\pi\)
\(98\) 13.4834 + 10.0974i 1.36203 + 1.01999i
\(99\) 4.32499 + 4.32499i 0.434678 + 0.434678i
\(100\) −9.41295 + 2.76012i −0.941295 + 0.276012i
\(101\) −4.33008 + 4.33008i −0.430859 + 0.430859i −0.888921 0.458061i \(-0.848544\pi\)
0.458061 + 0.888921i \(0.348544\pi\)
\(102\) 0.258081 + 1.79734i 0.0255538 + 0.177963i
\(103\) 11.1306i 1.09673i −0.836239 0.548366i \(-0.815250\pi\)
0.836239 0.548366i \(-0.184750\pi\)
\(104\) 6.20433 2.82928i 0.608385 0.277434i
\(105\) 1.72425i 0.168269i
\(106\) 6.59609 0.947133i 0.640669 0.0919937i
\(107\) 9.53747 9.53747i 0.922022 0.922022i −0.0751502 0.997172i \(-0.523944\pi\)
0.997172 + 0.0751502i \(0.0239436\pi\)
\(108\) 9.80533 + 5.35881i 0.943519 + 0.515652i
\(109\) 8.07061 + 8.07061i 0.773025 + 0.773025i 0.978634 0.205609i \(-0.0659177\pi\)
−0.205609 + 0.978634i \(0.565918\pi\)
\(110\) 1.18477 1.58205i 0.112963 0.150843i
\(111\) 9.01008 0.855199
\(112\) −9.39358 14.6404i −0.887610 1.38339i
\(113\) 13.9211 1.30959 0.654795 0.755806i \(-0.272755\pi\)
0.654795 + 0.755806i \(0.272755\pi\)
\(114\) 0.970969 1.29656i 0.0909395 0.121434i
\(115\) −0.174475 0.174475i −0.0162699 0.0162699i
\(116\) −3.01109 + 5.50957i −0.279573 + 0.511551i
\(117\) 2.30393 2.30393i 0.212998 0.212998i
\(118\) 7.56653 1.08648i 0.696555 0.100018i
\(119\) 4.34872i 0.398646i
\(120\) 0.392491 1.05053i 0.0358294 0.0959002i
\(121\) 9.48249i 0.862045i
\(122\) 0.899308 + 6.26302i 0.0814195 + 0.567027i
\(123\) 10.0177 10.0177i 0.903262 0.903262i
\(124\) 3.41102 + 11.6327i 0.306319 + 1.04465i
\(125\) 2.16279 + 2.16279i 0.193446 + 0.193446i
\(126\) −6.65287 4.98219i −0.592684 0.443849i
\(127\) 16.7206 1.48371 0.741857 0.670558i \(-0.233945\pi\)
0.741857 + 0.670558i \(0.233945\pi\)
\(128\) 2.39063 + 11.0582i 0.211304 + 0.977420i
\(129\) −8.82029 −0.776584
\(130\) −0.842761 0.631126i −0.0739151 0.0553534i
\(131\) 13.1402 + 13.1402i 1.14806 + 1.14806i 0.986933 + 0.161129i \(0.0515135\pi\)
0.161129 + 0.986933i \(0.448486\pi\)
\(132\) −3.27009 11.1521i −0.284625 0.970668i
\(133\) −2.74318 + 2.74318i −0.237864 + 0.237864i
\(134\) 2.25708 + 15.7189i 0.194982 + 1.35791i
\(135\) 1.72534i 0.148494i
\(136\) −0.989900 + 2.64955i −0.0848832 + 0.227197i
\(137\) 19.2469i 1.64438i −0.569215 0.822189i \(-0.692753\pi\)
0.569215 0.822189i \(-0.307247\pi\)
\(138\) −1.43611 + 0.206211i −0.122250 + 0.0175539i
\(139\) −10.1679 + 10.1679i −0.862432 + 0.862432i −0.991620 0.129188i \(-0.958763\pi\)
0.129188 + 0.991620i \(0.458763\pi\)
\(140\) −1.28806 + 2.35684i −0.108861 + 0.199190i
\(141\) 9.82247 + 9.82247i 0.827201 + 0.827201i
\(142\) −5.69064 + 7.59888i −0.477548 + 0.637684i
\(143\) −10.9110 −0.912427
\(144\) 2.91930 + 4.54989i 0.243275 + 0.379158i
\(145\) 0.969461 0.0805094
\(146\) −8.62814 + 11.5214i −0.714070 + 0.953519i
\(147\) −10.8142 10.8142i −0.891938 0.891938i
\(148\) 12.3157 + 6.73078i 1.01234 + 0.553267i
\(149\) −15.5419 + 15.5419i −1.27324 + 1.27324i −0.328869 + 0.944375i \(0.606668\pi\)
−0.944375 + 0.328869i \(0.893332\pi\)
\(150\) 8.81531 1.26579i 0.719767 0.103351i
\(151\) 11.7132i 0.953210i 0.879118 + 0.476605i \(0.158133\pi\)
−0.879118 + 0.476605i \(0.841867\pi\)
\(152\) 2.29577 1.04691i 0.186211 0.0849155i
\(153\) 1.35148i 0.109260i
\(154\) 3.95604 + 27.5509i 0.318787 + 2.22012i
\(155\) 1.32355 1.32355i 0.106310 0.106310i
\(156\) −5.94075 + 1.74198i −0.475640 + 0.139470i
\(157\) 10.3731 + 10.3731i 0.827862 + 0.827862i 0.987221 0.159359i \(-0.0509426\pi\)
−0.159359 + 0.987221i \(0.550943\pi\)
\(158\) −1.34859 1.00993i −0.107288 0.0803460i
\(159\) −6.04993 −0.479791
\(160\) 1.32127 1.14275i 0.104455 0.0903426i
\(161\) 3.47471 0.273846
\(162\) −3.53073 2.64409i −0.277400 0.207739i
\(163\) −8.39724 8.39724i −0.657723 0.657723i 0.297118 0.954841i \(-0.403974\pi\)
−0.954841 + 0.297118i \(0.903974\pi\)
\(164\) 21.1764 6.20948i 1.65360 0.484879i
\(165\) −1.26886 + 1.26886i −0.0987809 + 0.0987809i
\(166\) 0.0882282 + 0.614445i 0.00684784 + 0.0476902i
\(167\) 15.5541i 1.20361i −0.798642 0.601807i \(-0.794448\pi\)
0.798642 0.601807i \(-0.205552\pi\)
\(168\) 6.55254 + 14.3691i 0.505539 + 1.10860i
\(169\) 7.18768i 0.552898i
\(170\) 0.432289 0.0620725i 0.0331551 0.00476074i
\(171\) 0.852514 0.852514i 0.0651934 0.0651934i
\(172\) −12.0563 6.58901i −0.919284 0.502407i
\(173\) −4.32493 4.32493i −0.328818 0.328818i 0.523319 0.852137i \(-0.324694\pi\)
−0.852137 + 0.523319i \(0.824694\pi\)
\(174\) 3.41694 4.56274i 0.259037 0.345900i
\(175\) −21.3289 −1.61231
\(176\) 3.86112 17.6865i 0.291043 1.33317i
\(177\) −6.94002 −0.521644
\(178\) 0.354027 0.472743i 0.0265355 0.0354336i
\(179\) −7.50749 7.50749i −0.561136 0.561136i 0.368494 0.929630i \(-0.379874\pi\)
−0.929630 + 0.368494i \(0.879874\pi\)
\(180\) 0.400299 0.732450i 0.0298365 0.0545936i
\(181\) 11.2316 11.2316i 0.834842 0.834842i −0.153333 0.988175i \(-0.549001\pi\)
0.988175 + 0.153333i \(0.0490006\pi\)
\(182\) 14.6764 2.10739i 1.08789 0.156210i
\(183\) 5.74444i 0.424641i
\(184\) −2.11704 0.790949i −0.156070 0.0583095i
\(185\) 2.16707i 0.159326i
\(186\) −1.56430 10.8942i −0.114700 0.798800i
\(187\) 3.20019 3.20019i 0.234021 0.234021i
\(188\) 6.08849 + 20.7638i 0.444049 + 1.51436i
\(189\) 17.1803 + 17.1803i 1.24968 + 1.24968i
\(190\) −0.311844 0.233533i −0.0226236 0.0169423i
\(191\) −21.5439 −1.55886 −0.779431 0.626489i \(-0.784491\pi\)
−0.779431 + 0.626489i \(0.784491\pi\)
\(192\) −0.721433 10.2462i −0.0520649 0.739457i
\(193\) 6.73755 0.484980 0.242490 0.970154i \(-0.422036\pi\)
0.242490 + 0.970154i \(0.422036\pi\)
\(194\) −1.45339 1.08841i −0.104347 0.0781435i
\(195\) 0.675925 + 0.675925i 0.0484040 + 0.0484040i
\(196\) −6.70320 22.8602i −0.478800 1.63287i
\(197\) −4.29287 + 4.29287i −0.305854 + 0.305854i −0.843299 0.537445i \(-0.819390\pi\)
0.537445 + 0.843299i \(0.319390\pi\)
\(198\) −1.22944 8.56217i −0.0873727 0.608487i
\(199\) 12.1391i 0.860521i 0.902705 + 0.430260i \(0.141578\pi\)
−0.902705 + 0.430260i \(0.858422\pi\)
\(200\) 12.9951 + 4.85510i 0.918890 + 0.343307i
\(201\) 14.4174i 1.01693i
\(202\) 8.57224 1.23089i 0.603141 0.0866051i
\(203\) −9.65352 + 9.65352i −0.677544 + 0.677544i
\(204\) 1.23149 2.25333i 0.0862217 0.157765i
\(205\) −2.40940 2.40940i −0.168280 0.168280i
\(206\) −9.43559 + 12.5996i −0.657409 + 0.877858i
\(207\) −1.07986 −0.0750552
\(208\) −9.42160 2.05682i −0.653271 0.142615i
\(209\) −4.03738 −0.279271
\(210\) 1.46167 1.95181i 0.100865 0.134688i
\(211\) 13.1133 + 13.1133i 0.902755 + 0.902755i 0.995674 0.0929183i \(-0.0296195\pi\)
−0.0929183 + 0.995674i \(0.529620\pi\)
\(212\) −8.26954 4.51947i −0.567954 0.310398i
\(213\) 6.09457 6.09457i 0.417593 0.417593i
\(214\) −18.8813 + 2.71117i −1.29070 + 0.185332i
\(215\) 2.12142i 0.144680i
\(216\) −6.55670 14.3782i −0.446127 0.978313i
\(217\) 26.3587i 1.78935i
\(218\) −2.29419 15.9774i −0.155382 1.08212i
\(219\) 9.24058 9.24058i 0.624421 0.624421i
\(220\) −2.68226 + 0.786509i −0.180838 + 0.0530264i
\(221\) −1.70475 1.70475i −0.114674 0.114674i
\(222\) −10.1992 7.63798i −0.684527 0.512628i
\(223\) −6.52936 −0.437238 −0.218619 0.975810i \(-0.570155\pi\)
−0.218619 + 0.975810i \(0.570155\pi\)
\(224\) −1.77757 + 24.5358i −0.118769 + 1.63936i
\(225\) 6.62851 0.441900
\(226\) −15.7585 11.8012i −1.04824 0.785002i
\(227\) −12.5151 12.5151i −0.830656 0.830656i 0.156951 0.987606i \(-0.449834\pi\)
−0.987606 + 0.156951i \(0.949834\pi\)
\(228\) −2.19823 + 0.644579i −0.145582 + 0.0426883i
\(229\) 2.02898 2.02898i 0.134079 0.134079i −0.636882 0.770961i \(-0.719776\pi\)
0.770961 + 0.636882i \(0.219776\pi\)
\(230\) 0.0495971 + 0.345408i 0.00327034 + 0.0227755i
\(231\) 25.2697i 1.66262i
\(232\) 8.07904 3.68418i 0.530415 0.241878i
\(233\) 15.3064i 1.00276i 0.865228 + 0.501379i \(0.167174\pi\)
−0.865228 + 0.501379i \(0.832826\pi\)
\(234\) −4.56107 + 0.654925i −0.298167 + 0.0428138i
\(235\) 2.36246 2.36246i 0.154110 0.154110i
\(236\) −9.48618 5.18439i −0.617498 0.337475i
\(237\) 1.08162 + 1.08162i 0.0702588 + 0.0702588i
\(238\) −3.68647 + 4.92266i −0.238959 + 0.319089i
\(239\) −6.69415 −0.433009 −0.216504 0.976282i \(-0.569466\pi\)
−0.216504 + 0.976282i \(0.569466\pi\)
\(240\) −1.33485 + 0.856463i −0.0861639 + 0.0552845i
\(241\) 27.6474 1.78093 0.890464 0.455054i \(-0.150380\pi\)
0.890464 + 0.455054i \(0.150380\pi\)
\(242\) −8.03845 + 10.7340i −0.516731 + 0.690007i
\(243\) −9.02019 9.02019i −0.578646 0.578646i
\(244\) 4.29126 7.85197i 0.274720 0.502671i
\(245\) −2.60098 + 2.60098i −0.166171 + 0.166171i
\(246\) −19.8319 + 2.84767i −1.26444 + 0.181561i
\(247\) 2.15071i 0.136847i
\(248\) 6.00005 16.0596i 0.381003 1.01979i
\(249\) 0.563569i 0.0357147i
\(250\) −0.614805 4.28167i −0.0388837 0.270796i
\(251\) −14.5898 + 14.5898i −0.920900 + 0.920900i −0.997093 0.0761933i \(-0.975723\pi\)
0.0761933 + 0.997093i \(0.475723\pi\)
\(252\) 3.30744 + 11.2795i 0.208349 + 0.710540i
\(253\) 2.55702 + 2.55702i 0.160758 + 0.160758i
\(254\) −18.9274 14.1743i −1.18761 0.889376i
\(255\) −0.396496 −0.0248295
\(256\) 6.66810 14.5443i 0.416756 0.909018i
\(257\) −1.86651 −0.116429 −0.0582147 0.998304i \(-0.518541\pi\)
−0.0582147 + 0.998304i \(0.518541\pi\)
\(258\) 9.98440 + 7.47710i 0.621601 + 0.465504i
\(259\) 21.5788 + 21.5788i 1.34084 + 1.34084i
\(260\) 0.418974 + 1.42884i 0.0259837 + 0.0886131i
\(261\) 3.00008 3.00008i 0.185700 0.185700i
\(262\) −3.73529 26.0135i −0.230767 1.60712i
\(263\) 20.7112i 1.27711i 0.769577 + 0.638553i \(0.220467\pi\)
−0.769577 + 0.638553i \(0.779533\pi\)
\(264\) −5.75215 + 15.3961i −0.354020 + 0.947564i
\(265\) 1.45510i 0.0893864i
\(266\) 5.43066 0.779789i 0.332975 0.0478119i
\(267\) −0.379157 + 0.379157i −0.0232040 + 0.0232040i
\(268\) 10.7702 19.7069i 0.657895 1.20379i
\(269\) −1.46061 1.46061i −0.0890551 0.0890551i 0.661176 0.750231i \(-0.270058\pi\)
−0.750231 + 0.661176i \(0.770058\pi\)
\(270\) −1.46260 + 1.95305i −0.0890110 + 0.118859i
\(271\) 5.12993 0.311621 0.155810 0.987787i \(-0.450201\pi\)
0.155810 + 0.987787i \(0.450201\pi\)
\(272\) 3.36661 2.16008i 0.204131 0.130974i
\(273\) −13.4612 −0.814708
\(274\) −16.3159 + 21.7872i −0.985681 + 1.31621i
\(275\) −15.6958 15.6958i −0.946492 0.946492i
\(276\) 1.80046 + 0.983986i 0.108375 + 0.0592290i
\(277\) 10.4664 10.4664i 0.628866 0.628866i −0.318917 0.947783i \(-0.603319\pi\)
0.947783 + 0.318917i \(0.103319\pi\)
\(278\) 20.1294 2.89038i 1.20728 0.173354i
\(279\) 8.19167i 0.490422i
\(280\) 3.45599 1.57599i 0.206535 0.0941834i
\(281\) 19.3081i 1.15183i 0.817511 + 0.575913i \(0.195353\pi\)
−0.817511 + 0.575913i \(0.804647\pi\)
\(282\) −2.79218 19.4455i −0.166272 1.15796i
\(283\) −13.2247 + 13.2247i −0.786124 + 0.786124i −0.980856 0.194732i \(-0.937616\pi\)
0.194732 + 0.980856i \(0.437616\pi\)
\(284\) 12.8834 3.77774i 0.764487 0.224168i
\(285\) 0.250110 + 0.250110i 0.0148152 + 0.0148152i
\(286\) 12.3511 + 9.24946i 0.730335 + 0.546932i
\(287\) 47.9838 2.83240
\(288\) 0.552425 7.62513i 0.0325520 0.449315i
\(289\) 1.00000 0.0588235
\(290\) −1.09741 0.821827i −0.0644422 0.0482594i
\(291\) 1.16567 + 1.16567i 0.0683329 + 0.0683329i
\(292\) 19.5338 5.72781i 1.14313 0.335194i
\(293\) −6.75051 + 6.75051i −0.394369 + 0.394369i −0.876241 0.481872i \(-0.839957\pi\)
0.481872 + 0.876241i \(0.339957\pi\)
\(294\) 3.07409 + 21.4088i 0.179284 + 1.24858i
\(295\) 1.66918i 0.0971837i
\(296\) −8.23535 18.0593i −0.478670 1.04968i
\(297\) 25.2857i 1.46723i
\(298\) 30.7683 4.41802i 1.78236 0.255929i
\(299\) 1.36213 1.36213i 0.0787737 0.0787737i
\(300\) −11.0518 6.04002i −0.638075 0.348721i
\(301\) −21.1243 21.1243i −1.21758 1.21758i
\(302\) 9.92949 13.2592i 0.571378 0.762978i
\(303\) −7.86246 −0.451687
\(304\) −3.48624 0.761079i −0.199950 0.0436509i
\(305\) −1.38163 −0.0791119
\(306\) 1.14567 1.52985i 0.0654935 0.0874554i
\(307\) −4.76317 4.76317i −0.271848 0.271848i 0.557996 0.829844i \(-0.311571\pi\)
−0.829844 + 0.557996i \(0.811571\pi\)
\(308\) 18.8772 34.5407i 1.07563 1.96814i
\(309\) 10.1054 10.1054i 0.574873 0.574873i
\(310\) −2.62022 + 0.376238i −0.148819 + 0.0213689i
\(311\) 4.29643i 0.243628i 0.992553 + 0.121814i \(0.0388712\pi\)
−0.992553 + 0.121814i \(0.961129\pi\)
\(312\) 8.20151 + 3.06417i 0.464319 + 0.173475i
\(313\) 3.56363i 0.201428i −0.994915 0.100714i \(-0.967887\pi\)
0.994915 0.100714i \(-0.0321127\pi\)
\(314\) −2.94870 20.5355i −0.166405 1.15889i
\(315\) 1.28335 1.28335i 0.0723088 0.0723088i
\(316\) 0.670446 + 2.28645i 0.0377155 + 0.128623i
\(317\) 3.97879 + 3.97879i 0.223471 + 0.223471i 0.809959 0.586487i \(-0.199490\pi\)
−0.586487 + 0.809959i \(0.699490\pi\)
\(318\) 6.84840 + 5.12862i 0.384039 + 0.287599i
\(319\) −14.2079 −0.795491
\(320\) −2.46438 + 0.173516i −0.137763 + 0.00969984i
\(321\) 17.3179 0.966592
\(322\) −3.93330 2.94556i −0.219194 0.164150i
\(323\) −0.630802 0.630802i −0.0350987 0.0350987i
\(324\) 1.75528 + 5.98611i 0.0975157 + 0.332562i
\(325\) −8.36116 + 8.36116i −0.463794 + 0.463794i
\(326\) 2.38704 + 16.6240i 0.132206 + 0.920717i
\(327\) 14.6544i 0.810392i
\(328\) −29.2351 10.9226i −1.61424 0.603098i
\(329\) 47.0489i 2.59389i
\(330\) 2.51196 0.360693i 0.138279 0.0198555i
\(331\) −7.16883 + 7.16883i −0.394035 + 0.394035i −0.876123 0.482088i \(-0.839879\pi\)
0.482088 + 0.876123i \(0.339879\pi\)
\(332\) 0.421002 0.770332i 0.0231055 0.0422774i
\(333\) −6.70618 6.70618i −0.367496 0.367496i
\(334\) −13.1855 + 17.6069i −0.721476 + 0.963409i
\(335\) −3.46761 −0.189456
\(336\) 4.76355 21.8202i 0.259873 1.19039i
\(337\) −10.8336 −0.590146 −0.295073 0.955475i \(-0.595344\pi\)
−0.295073 + 0.955475i \(0.595344\pi\)
\(338\) −6.09311 + 8.13631i −0.331421 + 0.442557i
\(339\) 12.6388 + 12.6388i 0.686448 + 0.686448i
\(340\) −0.541963 0.296193i −0.0293920 0.0160633i
\(341\) −19.3972 + 19.3972i −1.05042 + 1.05042i
\(342\) −1.68772 + 0.242340i −0.0912613 + 0.0131042i
\(343\) 21.3581i 1.15323i
\(344\) 8.06188 + 17.6789i 0.434668 + 0.953184i
\(345\) 0.316808i 0.0170564i
\(346\) 1.22942 + 8.56204i 0.0660943 + 0.460298i
\(347\) 12.0092 12.0092i 0.644686 0.644686i −0.307018 0.951704i \(-0.599331\pi\)
0.951704 + 0.307018i \(0.0993310\pi\)
\(348\) −7.73581 + 2.26834i −0.414683 + 0.121596i
\(349\) −19.9188 19.9188i −1.06623 1.06623i −0.997645 0.0685821i \(-0.978152\pi\)
−0.0685821 0.997645i \(-0.521848\pi\)
\(350\) 24.1439 + 18.0808i 1.29054 + 0.966460i
\(351\) 13.4697 0.718961
\(352\) −19.3638 + 16.7476i −1.03209 + 0.892651i
\(353\) 18.3604 0.977226 0.488613 0.872501i \(-0.337503\pi\)
0.488613 + 0.872501i \(0.337503\pi\)
\(354\) 7.85596 + 5.88316i 0.417540 + 0.312687i
\(355\) −1.46584 1.46584i −0.0777988 0.0777988i
\(356\) −0.801504 + 0.235022i −0.0424796 + 0.0124561i
\(357\) 3.94815 3.94815i 0.208958 0.208958i
\(358\) 2.13412 + 14.8626i 0.112792 + 0.785510i
\(359\) 0.624108i 0.0329391i 0.999864 + 0.0164696i \(0.00524266\pi\)
−0.999864 + 0.0164696i \(0.994757\pi\)
\(360\) −1.07404 + 0.489780i −0.0566069 + 0.0258137i
\(361\) 18.2042i 0.958115i
\(362\) −22.2352 + 3.19276i −1.16866 + 0.167808i
\(363\) 8.60905 8.60905i 0.451858 0.451858i
\(364\) −18.3998 10.0559i −0.964414 0.527072i
\(365\) −2.22251 2.22251i −0.116331 0.116331i
\(366\) −4.86965 + 6.50259i −0.254541 + 0.339896i
\(367\) −3.47800 −0.181550 −0.0907750 0.995871i \(-0.528934\pi\)
−0.0907750 + 0.995871i \(0.528934\pi\)
\(368\) 1.72595 + 2.68999i 0.0899712 + 0.140225i
\(369\) −14.9122 −0.776300
\(370\) −1.83706 + 2.45308i −0.0955040 + 0.127529i
\(371\) −14.4894 14.4894i −0.752250 0.752250i
\(372\) −7.46441 + 13.6581i −0.387011 + 0.708138i
\(373\) 14.8724 14.8724i 0.770064 0.770064i −0.208054 0.978117i \(-0.566713\pi\)
0.978117 + 0.208054i \(0.0667128\pi\)
\(374\) −6.33541 + 0.909702i −0.327596 + 0.0470396i
\(375\) 3.92715i 0.202797i
\(376\) 10.7098 28.6655i 0.552313 1.47831i
\(377\) 7.56858i 0.389802i
\(378\) −4.88375 34.0117i −0.251193 1.74937i
\(379\) 12.2779 12.2779i 0.630675 0.630675i −0.317562 0.948237i \(-0.602864\pi\)
0.948237 + 0.317562i \(0.102864\pi\)
\(380\) 0.155032 + 0.528710i 0.00795295 + 0.0271223i
\(381\) 15.1804 + 15.1804i 0.777718 + 0.777718i
\(382\) 24.3873 + 18.2631i 1.24776 + 0.934421i
\(383\) 6.42453 0.328278 0.164139 0.986437i \(-0.447515\pi\)
0.164139 + 0.986437i \(0.447515\pi\)
\(384\) −7.86923 + 12.2101i −0.401575 + 0.623093i
\(385\) −6.07776 −0.309751
\(386\) −7.62677 5.71153i −0.388193 0.290709i
\(387\) 6.56492 + 6.56492i 0.333714 + 0.333714i
\(388\) 0.722545 + 2.46412i 0.0366817 + 0.125097i
\(389\) 2.70168 2.70168i 0.136980 0.136980i −0.635292 0.772272i \(-0.719120\pi\)
0.772272 + 0.635292i \(0.219120\pi\)
\(390\) −0.192142 1.33813i −0.00972947 0.0677586i
\(391\) 0.799019i 0.0404081i
\(392\) −11.7910 + 31.5597i −0.595537 + 1.59400i
\(393\) 23.8596i 1.20356i
\(394\) 8.49857 1.22031i 0.428152 0.0614783i
\(395\) 0.260147 0.260147i 0.0130894 0.0130894i
\(396\) −5.86657 + 10.7344i −0.294806 + 0.539425i
\(397\) 23.4561 + 23.4561i 1.17723 + 1.17723i 0.980448 + 0.196779i \(0.0630482\pi\)
0.196779 + 0.980448i \(0.436952\pi\)
\(398\) 10.2905 13.7413i 0.515818 0.688787i
\(399\) −4.98100 −0.249362
\(400\) −10.5944 16.5120i −0.529721 0.825599i
\(401\) −1.78480 −0.0891287 −0.0445644 0.999007i \(-0.514190\pi\)
−0.0445644 + 0.999007i \(0.514190\pi\)
\(402\) −12.2219 + 16.3202i −0.609571 + 0.813978i
\(403\) 10.3329 + 10.3329i 0.514720 + 0.514720i
\(404\) −10.7470 5.87348i −0.534686 0.292216i
\(405\) 0.681086 0.681086i 0.0338434 0.0338434i
\(406\) 19.1110 2.74415i 0.948464 0.136190i
\(407\) 31.7594i 1.57426i
\(408\) −3.30421 + 1.50677i −0.163583 + 0.0745965i
\(409\) 31.5259i 1.55886i −0.626492 0.779428i \(-0.715510\pi\)
0.626492 0.779428i \(-0.284490\pi\)
\(410\) 0.684909 + 4.76989i 0.0338252 + 0.235568i
\(411\) 17.4741 17.4741i 0.861932 0.861932i
\(412\) 21.3618 6.26383i 1.05242 0.308597i
\(413\) −16.6211 16.6211i −0.817871 0.817871i
\(414\) 1.22238 + 0.915411i 0.0600765 + 0.0449900i
\(415\) −0.135547 −0.00665375
\(416\) 8.92147 + 10.3151i 0.437411 + 0.505740i
\(417\) −18.4627 −0.904121
\(418\) 4.57023 + 3.42255i 0.223537 + 0.167402i
\(419\) −14.4975 14.4975i −0.708248 0.708248i 0.257918 0.966167i \(-0.416963\pi\)
−0.966167 + 0.257918i \(0.916963\pi\)
\(420\) −3.30917 + 0.970334i −0.161471 + 0.0473474i
\(421\) 12.0990 12.0990i 0.589667 0.589667i −0.347874 0.937541i \(-0.613096\pi\)
0.937541 + 0.347874i \(0.113096\pi\)
\(422\) −3.72764 25.9603i −0.181459 1.26373i
\(423\) 14.6217i 0.710930i
\(424\) 5.52973 + 12.1262i 0.268547 + 0.588899i
\(425\) 4.90464i 0.237910i
\(426\) −12.0654 + 1.73247i −0.584570 + 0.0839385i
\(427\) 13.7577 13.7577i 0.665783 0.665783i
\(428\) 23.6715 + 12.9370i 1.14421 + 0.625332i
\(429\) −9.90601 9.90601i −0.478267 0.478267i
\(430\) 1.79836 2.40141i 0.0867246 0.115806i
\(431\) −25.8793 −1.24656 −0.623281 0.781998i \(-0.714201\pi\)
−0.623281 + 0.781998i \(0.714201\pi\)
\(432\) −4.76657 + 21.8340i −0.229332 + 1.05049i
\(433\) −19.2252 −0.923904 −0.461952 0.886905i \(-0.652851\pi\)
−0.461952 + 0.886905i \(0.652851\pi\)
\(434\) 22.3447 29.8376i 1.07258 1.43225i
\(435\) 0.880163 + 0.880163i 0.0422006 + 0.0422006i
\(436\) −10.9473 + 20.0309i −0.524279 + 0.959305i
\(437\) 0.504023 0.504023i 0.0241107 0.0241107i
\(438\) −18.2935 + 2.62677i −0.874099 + 0.125512i
\(439\) 32.8584i 1.56825i 0.620606 + 0.784123i \(0.286887\pi\)
−0.620606 + 0.784123i \(0.713113\pi\)
\(440\) 3.70300 + 1.38348i 0.176534 + 0.0659549i
\(441\) 16.0979i 0.766568i
\(442\) 0.484599 + 3.37488i 0.0230500 + 0.160527i
\(443\) 9.79263 9.79263i 0.465262 0.465262i −0.435114 0.900375i \(-0.643292\pi\)
0.900375 + 0.435114i \(0.143292\pi\)
\(444\) 5.07049 + 17.2921i 0.240635 + 0.820646i
\(445\) 0.0911933 + 0.0911933i 0.00432298 + 0.00432298i
\(446\) 7.39111 + 5.53504i 0.349979 + 0.262092i
\(447\) −28.2207 −1.33479
\(448\) 22.8115 26.2671i 1.07774 1.24100i
\(449\) −19.2899 −0.910349 −0.455174 0.890402i \(-0.650423\pi\)
−0.455174 + 0.890402i \(0.650423\pi\)
\(450\) −7.50334 5.61909i −0.353711 0.264886i
\(451\) 35.3110 + 35.3110i 1.66273 + 1.66273i
\(452\) 7.83423 + 26.7174i 0.368491 + 1.25668i
\(453\) −10.6343 + 10.6343i −0.499644 + 0.499644i
\(454\) 3.55760 + 24.7761i 0.166966 + 1.16280i
\(455\) 3.23763i 0.151782i
\(456\) 3.03478 + 1.13383i 0.142116 + 0.0530963i
\(457\) 0.0860321i 0.00402441i −0.999998 0.00201221i \(-0.999359\pi\)
0.999998 0.00201221i \(-0.000640505\pi\)
\(458\) −4.01676 + 0.576767i −0.187691 + 0.0269505i
\(459\) −3.95066 + 3.95066i −0.184401 + 0.184401i
\(460\) 0.236664 0.433039i 0.0110345 0.0201905i
\(461\) −10.2169 10.2169i −0.475851 0.475851i 0.427951 0.903802i \(-0.359236\pi\)
−0.903802 + 0.427951i \(0.859236\pi\)
\(462\) −21.4215 + 28.6048i −0.996619 + 1.33082i
\(463\) −31.6625 −1.47148 −0.735741 0.677263i \(-0.763166\pi\)
−0.735741 + 0.677263i \(0.763166\pi\)
\(464\) −12.2684 2.67831i −0.569548 0.124338i
\(465\) 2.40327 0.111449
\(466\) 12.9755 17.3266i 0.601078 0.802638i
\(467\) 4.61581 + 4.61581i 0.213594 + 0.213594i 0.805792 0.592198i \(-0.201740\pi\)
−0.592198 + 0.805792i \(0.701740\pi\)
\(468\) 5.71823 + 3.12513i 0.264325 + 0.144459i
\(469\) 34.5291 34.5291i 1.59441 1.59441i
\(470\) −4.67695 + 0.671564i −0.215732 + 0.0309769i
\(471\) 18.8352i 0.867880i
\(472\) 6.34328 + 13.9102i 0.291973 + 0.640269i
\(473\) 31.0904i 1.42954i
\(474\) −0.307467 2.14128i −0.0141224 0.0983522i
\(475\) −3.09385 + 3.09385i −0.141956 + 0.141956i
\(476\) 8.34603 2.44727i 0.382540 0.112171i
\(477\) 4.50295 + 4.50295i 0.206176 + 0.206176i
\(478\) 7.57765 + 5.67474i 0.346594 + 0.259556i
\(479\) −8.41813 −0.384634 −0.192317 0.981333i \(-0.561600\pi\)
−0.192317 + 0.981333i \(0.561600\pi\)
\(480\) 2.23706 + 0.162070i 0.102107 + 0.00739746i
\(481\) 16.9183 0.771407
\(482\) −31.2963 23.4371i −1.42551 1.06753i
\(483\) 3.15465 + 3.15465i 0.143541 + 0.143541i
\(484\) 18.1987 5.33634i 0.827215 0.242561i
\(485\) 0.280363 0.280363i 0.0127306 0.0127306i
\(486\) 2.56412 + 17.8572i 0.116311 + 0.810021i
\(487\) 39.1242i 1.77289i −0.462836 0.886444i \(-0.653168\pi\)
0.462836 0.886444i \(-0.346832\pi\)
\(488\) −11.5139 + 5.25051i −0.521208 + 0.237679i
\(489\) 15.2475i 0.689516i
\(490\) 5.14915 0.739367i 0.232615 0.0334012i
\(491\) −9.80593 + 9.80593i −0.442536 + 0.442536i −0.892863 0.450328i \(-0.851307\pi\)
0.450328 + 0.892863i \(0.351307\pi\)
\(492\) 24.8633 + 13.5883i 1.12093 + 0.612608i
\(493\) −2.21985 2.21985i −0.0999772 0.0999772i
\(494\) 1.82319 2.43456i 0.0820293 0.109536i
\(495\) 1.88882 0.0848963
\(496\) −20.4059 + 13.0928i −0.916253 + 0.587885i
\(497\) 29.1925 1.30946
\(498\) −0.477746 + 0.637949i −0.0214083 + 0.0285872i
\(499\) 0.119096 + 0.119096i 0.00533148 + 0.00533148i 0.709767 0.704436i \(-0.248800\pi\)
−0.704436 + 0.709767i \(0.748800\pi\)
\(500\) −2.93369 + 5.36794i −0.131199 + 0.240062i
\(501\) 14.1214 14.1214i 0.630898 0.630898i
\(502\) 28.8834 4.14736i 1.28913 0.185106i
\(503\) 20.4936i 0.913763i 0.889527 + 0.456882i \(0.151034\pi\)
−0.889527 + 0.456882i \(0.848966\pi\)
\(504\) 5.81783 15.5719i 0.259147 0.693628i
\(505\) 1.89105i 0.0841505i
\(506\) −0.726870 5.06212i −0.0323133 0.225039i
\(507\) 6.52561 6.52561i 0.289813 0.289813i
\(508\) 9.40965 + 32.0901i 0.417486 + 1.42377i
\(509\) −16.4317 16.4317i −0.728323 0.728323i 0.241963 0.970286i \(-0.422209\pi\)
−0.970286 + 0.241963i \(0.922209\pi\)
\(510\) 0.448825 + 0.336116i 0.0198743 + 0.0148834i
\(511\) 44.2617 1.95802
\(512\) −19.8776 + 10.8112i −0.878473 + 0.477792i
\(513\) 4.98416 0.220056
\(514\) 2.11285 + 1.58227i 0.0931937 + 0.0697907i
\(515\) −2.43050 2.43050i −0.107100 0.107100i
\(516\) −4.96369 16.9279i −0.218514 0.745207i
\(517\) −34.6230 + 34.6230i −1.52272 + 1.52272i
\(518\) −6.13409 42.7195i −0.269517 1.87698i
\(519\) 7.85311i 0.344713i
\(520\) 0.736982 1.97259i 0.0323188 0.0865039i
\(521\) 1.65317i 0.0724268i 0.999344 + 0.0362134i \(0.0115296\pi\)
−0.999344 + 0.0362134i \(0.988470\pi\)
\(522\) −5.93925 + 0.852818i −0.259954 + 0.0373268i
\(523\) −11.5020 + 11.5020i −0.502945 + 0.502945i −0.912352 0.409407i \(-0.865736\pi\)
0.409407 + 0.912352i \(0.365736\pi\)
\(524\) −17.8238 + 32.6133i −0.778637 + 1.42472i
\(525\) −19.3642 19.3642i −0.845125 0.845125i
\(526\) 17.5572 23.4447i 0.765530 1.02224i
\(527\) −6.06127 −0.264033
\(528\) 19.5628 12.5519i 0.851362 0.546251i
\(529\) 22.3616 0.972242
\(530\) 1.23351 1.64715i 0.0535804 0.0715476i
\(531\) 5.16544 + 5.16544i 0.224161 + 0.224161i
\(532\) −6.80843 3.72095i −0.295183 0.161323i
\(533\) 18.8102 18.8102i 0.814760 0.814760i
\(534\) 0.750615 0.107781i 0.0324823 0.00466414i
\(535\) 4.16523i 0.180079i
\(536\) −28.8975 + 13.1777i −1.24818 + 0.569191i
\(537\) 13.6319i 0.588261i
\(538\) 0.415201 + 2.89157i 0.0179006 + 0.124664i
\(539\) 38.1186 38.1186i 1.64189 1.64189i
\(540\) 3.31127 0.970949i 0.142494 0.0417830i
\(541\) −22.1142 22.1142i −0.950762 0.950762i 0.0480817 0.998843i \(-0.484689\pi\)
−0.998843 + 0.0480817i \(0.984689\pi\)
\(542\) −5.80697 4.34872i −0.249431 0.186793i
\(543\) 20.3942 0.875197
\(544\) −5.64207 0.408756i −0.241902 0.0175253i
\(545\) 3.52462 0.150978
\(546\) 15.2378 + 11.4113i 0.652118 + 0.488357i
\(547\) −2.21494 2.21494i −0.0947040 0.0947040i 0.658167 0.752872i \(-0.271332\pi\)
−0.752872 + 0.658167i \(0.771332\pi\)
\(548\) 36.9386 10.8314i 1.57794 0.462693i
\(549\) −4.27557 + 4.27557i −0.182477 + 0.182477i
\(550\) 4.46176 + 31.0729i 0.190250 + 1.32495i
\(551\) 2.80057i 0.119308i
\(552\) −1.20394 2.64013i −0.0512432 0.112371i
\(553\) 5.18088i 0.220314i
\(554\) −20.7203 + 2.97523i −0.880322 + 0.126405i
\(555\) 1.96745 1.96745i 0.0835138 0.0835138i
\(556\) −25.2363 13.7921i −1.07026 0.584917i
\(557\) 31.2307 + 31.2307i 1.32329 + 1.32329i 0.911099 + 0.412188i \(0.135235\pi\)
0.412188 + 0.911099i \(0.364765\pi\)
\(558\) −6.94420 + 9.27280i −0.293972 + 0.392549i
\(559\) −16.5619 −0.700494
\(560\) −5.24810 1.14571i −0.221773 0.0484150i
\(561\) 5.81084 0.245334
\(562\) 16.3678 21.8564i 0.690434 0.921958i
\(563\) −6.90605 6.90605i −0.291055 0.291055i 0.546442 0.837497i \(-0.315982\pi\)
−0.837497 + 0.546442i \(0.815982\pi\)
\(564\) −13.3236 + 24.3789i −0.561023 + 1.02654i
\(565\) 3.03984 3.03984i 0.127887 0.127887i
\(566\) 26.1808 3.75930i 1.10046 0.158015i
\(567\) 13.5640i 0.569634i
\(568\) −17.7862 6.64511i −0.746291 0.278822i
\(569\) 15.2242i 0.638231i −0.947716 0.319116i \(-0.896614\pi\)
0.947716 0.319116i \(-0.103386\pi\)
\(570\) −0.0710975 0.495142i −0.00297795 0.0207392i
\(571\) 12.3088 12.3088i 0.515106 0.515106i −0.400981 0.916087i \(-0.631331\pi\)
0.916087 + 0.400981i \(0.131331\pi\)
\(572\) −6.14027 20.9404i −0.256738 0.875562i
\(573\) −19.5594 19.5594i −0.817108 0.817108i
\(574\) −54.3167 40.6766i −2.26714 1.69781i
\(575\) 3.91890 0.163429
\(576\) −7.08927 + 8.16319i −0.295386 + 0.340133i
\(577\) 17.0577 0.710120 0.355060 0.934844i \(-0.384460\pi\)
0.355060 + 0.934844i \(0.384460\pi\)
\(578\) −1.13198 0.847715i −0.0470842 0.0352603i
\(579\) 6.11694 + 6.11694i 0.254212 + 0.254212i
\(580\) 0.545572 + 1.86058i 0.0226536 + 0.0772566i
\(581\) 1.34973 1.34973i 0.0559961 0.0559961i
\(582\) −0.331359 2.30768i −0.0137353 0.0956562i
\(583\) 21.3253i 0.883202i
\(584\) −26.9674 10.0753i −1.11592 0.416919i
\(585\) 1.00618i 0.0416003i
\(586\) 13.3640 1.91893i 0.552060 0.0792704i
\(587\) 12.0018 12.0018i 0.495368 0.495368i −0.414625 0.909993i \(-0.636087\pi\)
0.909993 + 0.414625i \(0.136087\pi\)
\(588\) 14.6687 26.8402i 0.604928 1.10687i
\(589\) 3.82346 + 3.82346i 0.157543 + 0.157543i
\(590\) 1.41499 1.88948i 0.0582544 0.0777888i
\(591\) −7.79489 −0.320639
\(592\) −5.98691 + 27.4240i −0.246061 + 1.12712i
\(593\) −46.6598 −1.91609 −0.958044 0.286622i \(-0.907468\pi\)
−0.958044 + 0.286622i \(0.907468\pi\)
\(594\) 21.4351 28.6229i 0.879493 1.17441i
\(595\) −0.949593 0.949593i −0.0389295 0.0389295i
\(596\) −38.5743 21.0816i −1.58007 0.863538i
\(597\) −11.0210 + 11.0210i −0.451059 + 0.451059i
\(598\) −2.69659 + 0.387204i −0.110272 + 0.0158340i
\(599\) 1.28453i 0.0524844i −0.999656 0.0262422i \(-0.991646\pi\)
0.999656 0.0262422i \(-0.00835411\pi\)
\(600\) 7.39018 + 16.2060i 0.301703 + 0.661605i
\(601\) 39.8860i 1.62698i 0.581576 + 0.813492i \(0.302436\pi\)
−0.581576 + 0.813492i \(0.697564\pi\)
\(602\) 6.00489 + 41.8196i 0.244741 + 1.70444i
\(603\) −10.7308 + 10.7308i −0.436993 + 0.436993i
\(604\) −22.4800 + 6.59171i −0.914697 + 0.268213i
\(605\) −2.07061 2.07061i −0.0841823 0.0841823i
\(606\) 8.90015 + 6.66513i 0.361544 + 0.270752i
\(607\) −23.5272 −0.954940 −0.477470 0.878648i \(-0.658446\pi\)
−0.477470 + 0.878648i \(0.658446\pi\)
\(608\) 3.30118 + 3.81687i 0.133881 + 0.154794i
\(609\) −17.5286 −0.710296
\(610\) 1.56398 + 1.17123i 0.0633236 + 0.0474216i
\(611\) 18.4437 + 18.4437i 0.746152 + 0.746152i
\(612\) −2.59375 + 0.760554i −0.104846 + 0.0307436i
\(613\) 12.5637 12.5637i 0.507444 0.507444i −0.406297 0.913741i \(-0.633180\pi\)
0.913741 + 0.406297i \(0.133180\pi\)
\(614\) 1.35400 + 9.42962i 0.0546430 + 0.380549i
\(615\) 4.37494i 0.176415i
\(616\) −50.6492 + 23.0969i −2.04072 + 0.930600i
\(617\) 21.4382i 0.863069i 0.902096 + 0.431535i \(0.142028\pi\)
−0.902096 + 0.431535i \(0.857972\pi\)
\(618\) −20.0055 + 2.87259i −0.804740 + 0.115553i
\(619\) −24.6780 + 24.6780i −0.991891 + 0.991891i −0.999967 0.00807682i \(-0.997429\pi\)
0.00807682 + 0.999967i \(0.497429\pi\)
\(620\) 3.28498 + 1.79531i 0.131928 + 0.0721013i
\(621\) −3.15665 3.15665i −0.126672 0.126672i
\(622\) 3.64215 4.86347i 0.146037 0.195008i
\(623\) −1.81613 −0.0727619
\(624\) −6.68640 10.4211i −0.267670 0.417179i
\(625\) −23.5786 −0.943146
\(626\) −3.02094 + 4.03395i −0.120741 + 0.161229i
\(627\) −3.66549 3.66549i −0.146385 0.146385i
\(628\) −14.0704 + 25.7455i −0.561471 + 1.02736i
\(629\) −4.96211 + 4.96211i −0.197852 + 0.197852i
\(630\) −2.54065 + 0.364812i −0.101222 + 0.0145345i
\(631\) 41.8888i 1.66757i −0.552091 0.833784i \(-0.686170\pi\)
0.552091 0.833784i \(-0.313830\pi\)
\(632\) 1.17933 3.15656i 0.0469111 0.125561i
\(633\) 23.8108i 0.946394i
\(634\) −1.13103 7.87680i −0.0449190 0.312828i
\(635\) 3.65114 3.65114i 0.144891 0.144891i
\(636\) −3.40465 11.6110i −0.135003 0.460406i
\(637\) −20.3058 20.3058i −0.804546 0.804546i
\(638\) 16.0831 + 12.0443i 0.636736 + 0.476838i
\(639\) −9.07235 −0.358896
\(640\) 2.93672 + 1.89267i 0.116084 + 0.0748145i
\(641\) −13.0370 −0.514931 −0.257466 0.966287i \(-0.582887\pi\)
−0.257466 + 0.966287i \(0.582887\pi\)
\(642\) −19.6035 14.6807i −0.773690 0.579400i
\(643\) 23.2630 + 23.2630i 0.917403 + 0.917403i 0.996840 0.0794366i \(-0.0253121\pi\)
−0.0794366 + 0.996840i \(0.525312\pi\)
\(644\) 1.95542 + 6.66864i 0.0770543 + 0.262781i
\(645\) −1.92601 + 1.92601i −0.0758367 + 0.0758367i
\(646\) 0.179315 + 1.24879i 0.00705504 + 0.0491332i
\(647\) 16.7115i 0.656995i −0.944505 0.328498i \(-0.893458\pi\)
0.944505 0.328498i \(-0.106542\pi\)
\(648\) 3.08757 8.26414i 0.121291 0.324646i
\(649\) 24.4627i 0.960246i
\(650\) 16.5526 2.37678i 0.649245 0.0932251i
\(651\) −23.9308 + 23.9308i −0.937922 + 0.937922i
\(652\) 11.3903 20.8415i 0.446079 0.816218i
\(653\) −29.3006 29.3006i −1.14662 1.14662i −0.987213 0.159410i \(-0.949041\pi\)
−0.159410 0.987213i \(-0.550959\pi\)
\(654\) 12.4228 16.5885i 0.485769 0.648663i
\(655\) 5.73862 0.224226
\(656\) 23.8344 + 37.1472i 0.930576 + 1.45035i
\(657\) −13.7555 −0.536652
\(658\) 39.8841 53.2584i 1.55484 2.07623i
\(659\) −13.1348 13.1348i −0.511658 0.511658i 0.403376 0.915034i \(-0.367837\pi\)
−0.915034 + 0.403376i \(0.867837\pi\)
\(660\) −3.14926 1.72113i −0.122585 0.0669950i
\(661\) 7.62442 7.62442i 0.296556 0.296556i −0.543107 0.839663i \(-0.682752\pi\)
0.839663 + 0.543107i \(0.182752\pi\)
\(662\) 14.1921 2.03785i 0.551592 0.0792032i
\(663\) 3.09544i 0.120217i
\(664\) −1.12959 + 0.515110i −0.0438365 + 0.0199902i
\(665\) 1.19801i 0.0464568i
\(666\) 1.90633 + 13.2762i 0.0738687 + 0.514442i
\(667\) 1.77371 1.77371i 0.0686782 0.0686782i
\(668\) 29.8514 8.75319i 1.15498 0.338671i
\(669\) −5.92793 5.92793i −0.229187 0.229187i
\(670\) 3.92527 + 2.93955i 0.151646 + 0.113565i
\(671\) 20.2485 0.781683
\(672\) −23.8896 + 20.6619i −0.921560 + 0.797050i
\(673\) 22.8894 0.882321 0.441161 0.897428i \(-0.354567\pi\)
0.441161 + 0.897428i \(0.354567\pi\)
\(674\) 12.2635 + 9.18384i 0.472371 + 0.353748i
\(675\) 19.3765 + 19.3765i 0.745803 + 0.745803i
\(676\) 13.7945 4.04492i 0.530560 0.155574i
\(677\) 14.2701 14.2701i 0.548445 0.548445i −0.377546 0.925991i \(-0.623232\pi\)
0.925991 + 0.377546i \(0.123232\pi\)
\(678\) −3.59278 25.0211i −0.137980 0.960928i
\(679\) 5.58348i 0.214274i
\(680\) 0.362403 + 0.794715i 0.0138975 + 0.0304759i
\(681\) 22.7246i 0.870809i
\(682\) 38.4006 5.51395i 1.47044 0.211140i
\(683\) 25.2551 25.2551i 0.966359 0.966359i −0.0330936 0.999452i \(-0.510536\pi\)
0.999452 + 0.0330936i \(0.0105360\pi\)
\(684\) 2.11590 + 1.15638i 0.0809034 + 0.0442153i
\(685\) −4.20279 4.20279i −0.160580 0.160580i
\(686\) −18.1056 + 24.1769i −0.691273 + 0.923078i
\(687\) 3.68417 0.140560
\(688\) 5.86081 26.8464i 0.223441 1.02351i
\(689\) −11.3600 −0.432781
\(690\) −0.268563 + 0.358620i −0.0102240 + 0.0136524i
\(691\) −12.1865 12.1865i −0.463598 0.463598i 0.436235 0.899833i \(-0.356312\pi\)
−0.899833 + 0.436235i \(0.856312\pi\)
\(692\) 5.86649 10.7343i 0.223011 0.408056i
\(693\) −18.8082 + 18.8082i −0.714463 + 0.714463i
\(694\) −23.7745 + 3.41378i −0.902468 + 0.129586i
\(695\) 4.44057i 0.168440i
\(696\) 10.6797 + 3.99005i 0.404812 + 0.151242i
\(697\) 11.0340i 0.417943i
\(698\) 5.66220 + 39.4331i 0.214318 + 1.49257i
\(699\) −13.8965 + 13.8965i −0.525615 + 0.525615i
\(700\) −12.0030 40.9343i −0.453670 1.54717i
\(701\) −9.64948 9.64948i −0.364456 0.364456i 0.500995 0.865450i \(-0.332968\pi\)
−0.865450 + 0.500995i \(0.832968\pi\)
\(702\) −15.2475 11.4185i −0.575479 0.430963i
\(703\) 6.26021 0.236108
\(704\) 36.1167 2.54296i 1.36120 0.0958415i
\(705\) 4.28970 0.161559
\(706\) −20.7836 15.5644i −0.782201 0.585774i
\(707\) −18.8303 18.8303i −0.708186 0.708186i
\(708\) −3.90555 13.3192i −0.146780 0.500568i
\(709\) 8.08220 8.08220i 0.303533 0.303533i −0.538861 0.842395i \(-0.681145\pi\)
0.842395 + 0.538861i \(0.181145\pi\)
\(710\) 0.416687 + 2.90192i 0.0156380 + 0.108907i
\(711\) 1.61009i 0.0603833i
\(712\) 1.10652 + 0.413407i 0.0414685 + 0.0154931i
\(713\) 4.84307i 0.181374i
\(714\) −7.81613 + 1.12232i −0.292511 + 0.0420018i
\(715\) −2.38255 + 2.38255i −0.0891024 + 0.0891024i
\(716\) 10.1834 18.6332i 0.380573 0.696357i
\(717\) −6.07754 6.07754i −0.226970 0.226970i
\(718\) 0.529066 0.706477i 0.0197446 0.0263655i
\(719\) 51.5501 1.92249 0.961246 0.275691i \(-0.0889067\pi\)
0.961246 + 0.275691i \(0.0889067\pi\)
\(720\) 1.63099 + 0.356059i 0.0607832 + 0.0132695i
\(721\) 48.4039 1.80265
\(722\) −15.4320 + 20.6068i −0.574318 + 0.766904i
\(723\) 25.1008 + 25.1008i 0.933508 + 0.933508i
\(724\) 27.8764 + 15.2350i 1.03602 + 0.566205i
\(725\) −10.8876 + 10.8876i −0.404354 + 0.404354i
\(726\) −17.0433 + 2.44725i −0.632536 + 0.0908259i
\(727\) 38.5213i 1.42868i 0.699801 + 0.714338i \(0.253272\pi\)
−0.699801 + 0.714338i \(0.746728\pi\)
\(728\) 12.3037 + 26.9809i 0.456007 + 0.999979i
\(729\) 25.7359i 0.953181i
\(730\) 0.631780 + 4.39989i 0.0233832 + 0.162847i
\(731\) 4.85759 4.85759i 0.179664 0.179664i
\(732\) 11.0247 3.23273i 0.407485 0.119485i
\(733\) 19.0332 + 19.0332i 0.703006 + 0.703006i 0.965055 0.262049i \(-0.0843981\pi\)
−0.262049 + 0.965055i \(0.584398\pi\)
\(734\) 3.93703 + 2.94835i 0.145318 + 0.108826i
\(735\) −4.72280 −0.174203
\(736\) 0.326604 4.50812i 0.0120388 0.166172i
\(737\) 50.8196 1.87196
\(738\) 16.8803 + 12.6413i 0.621374 + 0.465334i
\(739\) −21.8630 21.8630i −0.804244 0.804244i 0.179512 0.983756i \(-0.442548\pi\)
−0.983756 + 0.179512i \(0.942548\pi\)
\(740\) 4.15902 1.21953i 0.152889 0.0448309i
\(741\) −1.95261 + 1.95261i −0.0717308 + 0.0717308i
\(742\) 4.11882 + 28.6845i 0.151206 + 1.05304i
\(743\) 7.33947i 0.269259i 0.990896 + 0.134629i \(0.0429844\pi\)
−0.990896 + 0.134629i \(0.957016\pi\)
\(744\) 20.0277 9.13296i 0.734251 0.334831i
\(745\) 6.78752i 0.248675i
\(746\) −29.4428 + 4.22770i −1.07798 + 0.154787i
\(747\) −0.419463 + 0.419463i −0.0153473 + 0.0153473i
\(748\) 7.94273 + 4.34086i 0.290415 + 0.158718i
\(749\) 41.4758 + 41.4758i 1.51549 + 1.51549i
\(750\) 3.32910 4.44545i 0.121562 0.162325i
\(751\) −52.9939 −1.93378 −0.966888 0.255201i \(-0.917858\pi\)
−0.966888 + 0.255201i \(0.917858\pi\)
\(752\) −36.4234 + 23.3700i −1.32823 + 0.852216i
\(753\) −26.4918 −0.965415
\(754\) 6.41600 8.56748i 0.233657 0.312009i
\(755\) 2.55772 + 2.55772i 0.0930850 + 0.0930850i
\(756\) −23.3040 + 42.6406i −0.847557 + 1.55082i
\(757\) −24.6626 + 24.6626i −0.896378 + 0.896378i −0.995114 0.0987356i \(-0.968520\pi\)
0.0987356 + 0.995114i \(0.468520\pi\)
\(758\) −24.3066 + 3.49018i −0.882855 + 0.126769i
\(759\) 4.64297i 0.168529i
\(760\) 0.272703 0.729912i 0.00989198 0.0264767i
\(761\) 30.0495i 1.08929i −0.838666 0.544646i \(-0.816664\pi\)
0.838666 0.544646i \(-0.183336\pi\)
\(762\) −4.31526 30.0527i −0.156326 1.08869i
\(763\) −35.0968 + 35.0968i −1.27059 + 1.27059i
\(764\) −12.1240 41.3469i −0.438630 1.49588i
\(765\) 0.295111 + 0.295111i 0.0106697 + 0.0106697i
\(766\) −7.27243 5.44617i −0.262764 0.196778i
\(767\) −13.0313 −0.470533
\(768\) 19.2585 7.15071i 0.694931 0.258029i
\(769\) −33.9419 −1.22398 −0.611988 0.790867i \(-0.709630\pi\)
−0.611988 + 0.790867i \(0.709630\pi\)
\(770\) 6.87991 + 5.15221i 0.247935 + 0.185673i
\(771\) −1.69458 1.69458i −0.0610288 0.0610288i
\(772\) 3.79161 + 12.9307i 0.136463 + 0.465385i
\(773\) −22.2311 + 22.2311i −0.799596 + 0.799596i −0.983032 0.183436i \(-0.941278\pi\)
0.183436 + 0.983032i \(0.441278\pi\)
\(774\) −1.86617 12.9965i −0.0670783 0.467151i
\(775\) 29.7283i 1.06787i
\(776\) 1.27097 3.40185i 0.0456251 0.122119i
\(777\) 39.1823i 1.40566i
\(778\) −5.34850 + 0.767991i −0.191753 + 0.0275338i
\(779\) 6.96028 6.96028i 0.249378 0.249378i
\(780\) −0.916849 + 1.67761i −0.0328284 + 0.0600682i
\(781\) 21.4826 + 21.4826i 0.768708 + 0.768708i
\(782\) 0.677341 0.904474i 0.0242217 0.0323439i
\(783\) 17.5398 0.626820
\(784\) 40.1008 25.7295i 1.43217 0.918910i
\(785\) 4.53016 0.161688
\(786\) 20.2262 27.0086i 0.721444 0.963365i
\(787\) 2.95532 + 2.95532i 0.105346 + 0.105346i 0.757815 0.652469i \(-0.226267\pi\)
−0.652469 + 0.757815i \(0.726267\pi\)
\(788\) −10.6547 5.82300i −0.379557 0.207436i
\(789\) −18.8035 + 18.8035i −0.669421 + 0.669421i
\(790\) −0.515012 + 0.0739506i −0.0183233 + 0.00263104i
\(791\) 60.5391i 2.15252i
\(792\) 15.7406 7.17796i 0.559317 0.255058i
\(793\) 10.7864i 0.383035i
\(794\) −6.66774 46.4359i −0.236629 1.64795i
\(795\) −1.32107 + 1.32107i −0.0468536 + 0.0468536i
\(796\) −23.2974 + 6.83139i −0.825753 + 0.242132i
\(797\) −34.3544 34.3544i −1.21690 1.21690i −0.968713 0.248183i \(-0.920166\pi\)
−0.248183 0.968713i \(-0.579834\pi\)
\(798\) 5.63839 + 4.22247i 0.199597 + 0.149474i
\(799\) −10.8190 −0.382750
\(800\) −2.00480 + 27.6723i −0.0708804 + 0.978363i
\(801\) 0.564411 0.0199425
\(802\) 2.02036 + 1.51300i 0.0713414 + 0.0534260i
\(803\) 32.5719 + 32.5719i 1.14944 + 1.14944i
\(804\) 27.6698 8.11350i 0.975838 0.286141i
\(805\) 0.758743 0.758743i 0.0267422 0.0267422i
\(806\) −2.93729 20.4560i −0.103461 0.720533i
\(807\) 2.65215i 0.0933600i
\(808\) 7.18641 + 15.7591i 0.252817 + 0.554403i
\(809\) 47.8299i 1.68161i 0.541338 + 0.840805i \(0.317918\pi\)
−0.541338 + 0.840805i \(0.682082\pi\)
\(810\) −1.34834 + 0.193609i −0.0473759 + 0.00680272i
\(811\) 4.34921 4.34921i 0.152721 0.152721i −0.626611 0.779332i \(-0.715558\pi\)
0.779332 + 0.626611i \(0.215558\pi\)
\(812\) −23.9596 13.0944i −0.840816 0.459523i
\(813\) 4.65740 + 4.65740i 0.163342 + 0.163342i
\(814\) 26.9229 35.9510i 0.943649 1.26008i
\(815\) −3.66727 −0.128459
\(816\) 5.01762 + 1.09539i 0.175652 + 0.0383464i
\(817\) −6.12835 −0.214404
\(818\) −26.7250 + 35.6867i −0.934418 + 1.24776i
\(819\) 10.0191 + 10.0191i 0.350097 + 0.350097i
\(820\) 3.26820 5.98003i 0.114131 0.208832i
\(821\) 18.0908 18.0908i 0.631373 0.631373i −0.317040 0.948412i \(-0.602689\pi\)
0.948412 + 0.317040i \(0.102689\pi\)
\(822\) −34.5933 + 4.96726i −1.20658 + 0.173253i
\(823\) 7.20992i 0.251322i 0.992073 + 0.125661i \(0.0401052\pi\)
−0.992073 + 0.125661i \(0.959895\pi\)
\(824\) −29.4911 11.0182i −1.02737 0.383837i
\(825\) 28.5001i 0.992245i
\(826\) 4.72479 + 32.9047i 0.164396 + 1.14490i
\(827\) 22.4550 22.4550i 0.780838 0.780838i −0.199134 0.979972i \(-0.563813\pi\)
0.979972 + 0.199134i \(0.0638129\pi\)
\(828\) −0.607697 2.07245i −0.0211189 0.0720228i
\(829\) 39.3070 + 39.3070i 1.36519 + 1.36519i 0.867164 + 0.498023i \(0.165941\pi\)
0.498023 + 0.867164i \(0.334059\pi\)
\(830\) 0.153437 + 0.114905i 0.00532587 + 0.00398843i
\(831\) 19.0047 0.659265
\(832\) −1.35464 19.2394i −0.0469636 0.667005i
\(833\) 11.9113 0.412704
\(834\) 20.8994 + 15.6511i 0.723686 + 0.541953i
\(835\) −3.39642 3.39642i −0.117538 0.117538i
\(836\) −2.27206 7.74851i −0.0785810 0.267988i
\(837\) 23.9460 23.9460i 0.827694 0.827694i
\(838\) 4.12112 + 28.7006i 0.142362 + 0.991446i
\(839\) 3.29065i 0.113606i 0.998385 + 0.0568030i \(0.0180907\pi\)
−0.998385 + 0.0568030i \(0.981909\pi\)
\(840\) 4.56848 + 1.70683i 0.157627 + 0.0588913i
\(841\) 19.1445i 0.660155i
\(842\) −23.9522 + 3.43931i −0.825449 + 0.118526i
\(843\) −17.5296 + 17.5296i −0.603753 + 0.603753i
\(844\) −17.7873 + 32.5465i −0.612265 + 1.12030i
\(845\) −1.56951 1.56951i −0.0539929 0.0539929i
\(846\) −12.3950 + 16.5514i −0.426149 + 0.569050i
\(847\) 41.2367 1.41691
\(848\) 4.01999 18.4142i 0.138047 0.632347i
\(849\) −24.0130 −0.824125
\(850\) −4.15774 + 5.55195i −0.142609 + 0.190430i
\(851\) −3.96482 3.96482i −0.135912 0.135912i
\(852\) 15.1264 + 8.26690i 0.518223 + 0.283219i
\(853\) −1.60651 + 1.60651i −0.0550057 + 0.0550057i −0.734075 0.679069i \(-0.762384\pi\)
0.679069 + 0.734075i \(0.262384\pi\)
\(854\) −27.2361 + 3.91084i −0.932000 + 0.133826i
\(855\) 0.372313i 0.0127328i
\(856\) −15.8288 34.7111i −0.541019 1.18640i
\(857\) 12.2042i 0.416888i −0.978034 0.208444i \(-0.933160\pi\)
0.978034 0.208444i \(-0.0668399\pi\)
\(858\) 2.81593 + 19.6109i 0.0961342 + 0.669504i
\(859\) 34.5224 34.5224i 1.17789 1.17789i 0.197610 0.980281i \(-0.436682\pi\)
0.980281 0.197610i \(-0.0633179\pi\)
\(860\) −4.07142 + 1.19385i −0.138834 + 0.0407098i
\(861\) 43.5640 + 43.5640i 1.48466 + 1.48466i
\(862\) 29.2949 + 21.9383i 0.997787 + 0.747221i
\(863\) −10.3155 −0.351145 −0.175573 0.984466i \(-0.556178\pi\)
−0.175573 + 0.984466i \(0.556178\pi\)
\(864\) 23.9047 20.6750i 0.813255 0.703378i
\(865\) −1.88880 −0.0642210
\(866\) 21.7625 + 16.2975i 0.739521 + 0.553811i
\(867\) 0.907888 + 0.907888i 0.0308335 + 0.0308335i
\(868\) −50.5875 + 14.8336i −1.71705 + 0.503485i
\(869\) −3.81258 + 3.81258i −0.129333 + 0.129333i
\(870\) −0.250199 1.74245i −0.00848255 0.0590747i
\(871\) 27.0716i 0.917287i
\(872\) 29.3726 13.3944i 0.994681 0.453591i
\(873\) 1.73521i 0.0587280i
\(874\) −0.997811 + 0.143276i −0.0337515 + 0.00484638i
\(875\) −9.40537 + 9.40537i −0.317960 + 0.317960i
\(876\) 22.9347 + 12.5343i 0.774891 + 0.423493i
\(877\) 21.8446 + 21.8446i 0.737640 + 0.737640i 0.972121 0.234481i \(-0.0753390\pi\)
−0.234481 + 0.972121i \(0.575339\pi\)
\(878\) 27.8546 37.1950i 0.940046 1.25527i
\(879\) −12.2574 −0.413433
\(880\) −3.01893 4.70517i −0.101768 0.158611i
\(881\) 16.4331 0.553646 0.276823 0.960921i \(-0.410718\pi\)
0.276823 + 0.960921i \(0.410718\pi\)
\(882\) 13.6465 18.2225i 0.459500 0.613584i
\(883\) −17.9848 17.9848i −0.605237 0.605237i 0.336460 0.941698i \(-0.390770\pi\)
−0.941698 + 0.336460i \(0.890770\pi\)
\(884\) 2.31238 4.23110i 0.0777737 0.142307i
\(885\) −1.51543 + 1.51543i −0.0509407 + 0.0509407i
\(886\) −19.3864 + 2.78370i −0.651299 + 0.0935202i
\(887\) 15.6846i 0.526636i −0.964709 0.263318i \(-0.915183\pi\)
0.964709 0.263318i \(-0.0848169\pi\)
\(888\) 8.91907 23.8726i 0.299304 0.801113i
\(889\) 72.7132i 2.43872i
\(890\) −0.0259230 0.180535i −0.000868942 0.00605154i
\(891\) −9.98165 + 9.98165i −0.334398 + 0.334398i
\(892\) −3.67445 12.5311i −0.123030 0.419572i
\(893\) 6.82466 + 6.82466i 0.228379 + 0.228379i
\(894\) 31.9452 + 23.9231i 1.06841 + 0.800108i
\(895\) −3.27870 −0.109595
\(896\) −48.0892 + 10.3962i −1.60655 + 0.347312i
\(897\) 2.47332 0.0825816
\(898\) 21.8358 + 16.3524i 0.728671 + 0.545686i
\(899\) 13.4551 + 13.4551i 0.448754 + 0.448754i
\(900\) 3.73024 + 12.7214i 0.124341 + 0.424046i
\(901\) 3.33187 3.33187i 0.111001 0.111001i
\(902\) −10.0377 69.9050i −0.334218 2.32758i
\(903\) 38.3570i 1.27644i
\(904\) 13.7805 36.8847i 0.458334 1.22677i
\(905\) 4.90512i 0.163052i
\(906\) 21.0527 3.02296i 0.699429 0.100431i
\(907\) −10.0361 + 10.0361i −0.333243 + 0.333243i −0.853817 0.520574i \(-0.825718\pi\)
0.520574 + 0.853817i \(0.325718\pi\)
\(908\) 16.9759 31.0618i 0.563366 1.03082i
\(909\) 5.85201 + 5.85201i 0.194099 + 0.194099i
\(910\) 2.74459 3.66493i 0.0909822 0.121491i
\(911\) −12.7630 −0.422858 −0.211429 0.977393i \(-0.567812\pi\)
−0.211429 + 0.977393i \(0.567812\pi\)
\(912\) −2.47415 3.85609i −0.0819271 0.127688i
\(913\) 1.98651 0.0657439
\(914\) −0.0729307 + 0.0973866i −0.00241233 + 0.00322126i
\(915\) −1.25437 1.25437i −0.0414680 0.0414680i
\(916\) 5.03582 + 2.75218i 0.166388 + 0.0909345i
\(917\) −57.1429 + 57.1429i −1.88703 + 1.88703i
\(918\) 7.82109 1.12303i 0.258135 0.0370656i
\(919\) 17.9165i 0.591012i −0.955341 0.295506i \(-0.904512\pi\)
0.955341 0.295506i \(-0.0954882\pi\)
\(920\) −0.634993 + 0.289567i −0.0209351 + 0.00954675i
\(921\) 8.64885i 0.284989i
\(922\) 2.90432 + 20.2264i 0.0956486 + 0.666123i
\(923\) 11.4438 11.4438i 0.376678 0.376678i
\(924\) 48.4974 14.2207i 1.59545 0.467827i
\(925\) 24.3373 + 24.3373i 0.800206 + 0.800206i
\(926\) 35.8413 + 26.8408i 1.17782 + 0.882043i
\(927\) −15.0428 −0.494069
\(928\) 11.6172 + 13.4319i 0.381353 + 0.440925i
\(929\) −6.07092 −0.199180 −0.0995902 0.995029i \(-0.531753\pi\)
−0.0995902 + 0.995029i \(0.531753\pi\)
\(930\) −2.72045 2.03729i −0.0892071 0.0668052i
\(931\) −7.51370 7.51370i −0.246251 0.246251i
\(932\) −29.3760 + 8.61381i −0.962243 + 0.282155i
\(933\) −3.90068 + 3.90068i −0.127703 + 0.127703i
\(934\) −1.31211 9.13789i −0.0429336 0.299001i
\(935\) 1.39760i 0.0457064i
\(936\) −3.82371 8.38502i −0.124982 0.274073i
\(937\) 6.43148i 0.210107i −0.994467 0.105054i \(-0.966499\pi\)
0.994467 0.105054i \(-0.0335014\pi\)
\(938\) −68.3572 + 9.81542i −2.23194 + 0.320485i
\(939\) 3.23538 3.23538i 0.105582 0.105582i
\(940\) 5.86351 + 3.20453i 0.191247 + 0.104520i
\(941\) 29.4367 + 29.4367i 0.959609 + 0.959609i 0.999215 0.0396060i \(-0.0126103\pi\)
−0.0396060 + 0.999215i \(0.512610\pi\)
\(942\) 15.9669 21.3211i 0.520229 0.694678i
\(943\) −8.81639 −0.287101
\(944\) 4.61143 21.1234i 0.150089 0.687507i
\(945\) 7.50303 0.244073
\(946\) −26.3559 + 35.1938i −0.856903 + 1.14425i
\(947\) −19.5143 19.5143i −0.634129 0.634129i 0.314972 0.949101i \(-0.398005\pi\)
−0.949101 + 0.314972i \(0.898005\pi\)
\(948\) −1.46715 + 2.68453i −0.0476508 + 0.0871895i
\(949\) 17.3511 17.3511i 0.563240 0.563240i
\(950\) 6.12488 0.879473i 0.198717 0.0285339i
\(951\) 7.22460i 0.234274i
\(952\) −11.5221 4.30479i −0.373434 0.139519i
\(953\) 23.1990i 0.751488i 0.926723 + 0.375744i \(0.122613\pi\)
−0.926723 + 0.375744i \(0.877387\pi\)
\(954\) −1.28003 8.91447i −0.0414425 0.288616i
\(955\) −4.70436 + 4.70436i −0.152229 + 0.152229i
\(956\) −3.76719 12.8474i −0.121839 0.415514i
\(957\) −12.8992 12.8992i −0.416972 0.416972i
\(958\) 9.52916 + 7.13618i 0.307873 + 0.230560i
\(959\) 83.6995 2.70280
\(960\) −2.39491 2.07985i −0.0772955 0.0671268i
\(961\) 5.73897 0.185128
\(962\) −19.1511 14.3419i −0.617458 0.462401i
\(963\) −12.8897 12.8897i −0.415364 0.415364i
\(964\) 15.5588 + 53.0608i 0.501115 + 1.70897i
\(965\) 1.47122 1.47122i 0.0473603 0.0473603i
\(966\) −0.896755 6.24524i −0.0288526 0.200937i
\(967\) 10.6813i 0.343489i −0.985142 0.171744i \(-0.945060\pi\)
0.985142 0.171744i \(-0.0549403\pi\)
\(968\) −25.1243 9.38672i −0.807526 0.301700i
\(969\) 1.14539i 0.0367954i
\(970\) −0.555032 + 0.0796972i −0.0178210 + 0.00255892i
\(971\) −15.7703 + 15.7703i −0.506093 + 0.506093i −0.913325 0.407232i \(-0.866494\pi\)
0.407232 + 0.913325i \(0.366494\pi\)
\(972\) 12.2353 22.3877i 0.392448 0.718085i
\(973\) −44.2174 44.2174i −1.41755 1.41755i
\(974\) −33.1662 + 44.2878i −1.06271 + 1.41907i
\(975\) −15.1820 −0.486213
\(976\) 17.4844 + 3.81700i 0.559662 + 0.122179i
\(977\) 11.7332 0.375378 0.187689 0.982229i \(-0.439900\pi\)
0.187689 + 0.982229i \(0.439900\pi\)
\(978\) −12.9255 + 17.2599i −0.413313 + 0.551910i
\(979\) −1.33648 1.33648i −0.0427141 0.0427141i
\(980\) −6.45551 3.52806i −0.206214 0.112700i
\(981\) 10.9073 10.9073i 0.348242 0.348242i
\(982\) 19.4128 2.78748i 0.619486 0.0889521i
\(983\) 3.41187i 0.108822i 0.998519 + 0.0544108i \(0.0173281\pi\)
−0.998519 + 0.0544108i \(0.982672\pi\)
\(984\) −16.6258 36.4587i −0.530010 1.16226i
\(985\) 1.87479i 0.0597359i
\(986\) 0.631026 + 4.39463i 0.0200960 + 0.139954i
\(987\) −42.7152 + 42.7152i −1.35964 + 1.35964i
\(988\) −4.12764 + 1.21033i −0.131318 + 0.0385057i
\(989\) 3.88131 + 3.88131i 0.123418 + 0.123418i
\(990\) −2.13811 1.60118i −0.0679536 0.0508890i
\(991\) −12.5692 −0.399272 −0.199636 0.979870i \(-0.563976\pi\)
−0.199636 + 0.979870i \(0.563976\pi\)
\(992\) 34.1981 + 2.47758i 1.08579 + 0.0786633i
\(993\) −13.0170 −0.413082
\(994\) −33.0454 24.7470i −1.04814 0.784926i
\(995\) 2.65072 + 2.65072i 0.0840335 + 0.0840335i
\(996\) 1.08160 0.317153i 0.0342717 0.0100494i
\(997\) −22.4744 + 22.4744i −0.711773 + 0.711773i −0.966906 0.255133i \(-0.917881\pi\)
0.255133 + 0.966906i \(0.417881\pi\)
\(998\) −0.0338548 0.235774i −0.00107166 0.00746330i
\(999\) 39.2071i 1.24046i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 272.2.l.b.205.3 yes 30
4.3 odd 2 1088.2.l.b.273.5 30
16.5 even 4 inner 272.2.l.b.69.3 30
16.11 odd 4 1088.2.l.b.817.5 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
272.2.l.b.69.3 30 16.5 even 4 inner
272.2.l.b.205.3 yes 30 1.1 even 1 trivial
1088.2.l.b.273.5 30 4.3 odd 2
1088.2.l.b.817.5 30 16.11 odd 4