# Properties

 Label 2704.2.f.o Level $2704$ Weight $2$ Character orbit 2704.f Analytic conductor $21.592$ Analytic rank $0$ Dimension $6$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2704,2,Mod(337,2704)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2704, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 1]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2704.337");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2704 = 2^{4} \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2704.f (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$21.5915487066$$ Analytic rank: $$0$$ Dimension: $$6$$ Coefficient field: 6.0.153664.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{6} + 5x^{4} + 6x^{2} + 1$$ x^6 + 5*x^4 + 6*x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 169) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta_{4} + \beta_{2}) q^{3} + (\beta_{5} - \beta_{3}) q^{5} + (2 \beta_{5} + \beta_{3} - 2 \beta_1) q^{7} + (\beta_{4} + 2 \beta_{2} - 2) q^{9}+O(q^{10})$$ q + (b4 + b2) * q^3 + (b5 - b3) * q^5 + (2*b5 + b3 - 2*b1) * q^7 + (b4 + 2*b2 - 2) * q^9 $$q + (\beta_{4} + \beta_{2}) q^{3} + (\beta_{5} - \beta_{3}) q^{5} + (2 \beta_{5} + \beta_{3} - 2 \beta_1) q^{7} + (\beta_{4} + 2 \beta_{2} - 2) q^{9} + (3 \beta_{5} + \beta_{3}) q^{11} + ( - \beta_{5} + \beta_1) q^{15} + (\beta_{4} - 2 \beta_{2} + 1) q^{17} + (\beta_{3} - 3 \beta_1) q^{19} + (2 \beta_{5} + 3 \beta_{3} - \beta_1) q^{21} + (2 \beta_{4} + 2 \beta_{2} - 3) q^{23} + (3 \beta_{4} + 2 \beta_{2}) q^{25} + ( - 3 \beta_{4} - \beta_{2} + 1) q^{27} + (5 \beta_{4} + 3 \beta_{2} - 3) q^{29} + ( - 2 \beta_{5} - 3 \beta_{3} - 2 \beta_1) q^{31} + (5 \beta_{5} + 4 \beta_{3} - \beta_1) q^{33} + (4 \beta_{4} + \beta_{2} - 3) q^{35} + (4 \beta_{5} + \beta_{3} + \beta_1) q^{37} + (5 \beta_{5} + 6 \beta_{3} - 2 \beta_1) q^{41} + ( - 2 \beta_{4} - 3 \beta_{2} + 6) q^{43} + ( - 3 \beta_{5} + 2 \beta_{3}) q^{45} + (7 \beta_{5} + \beta_{3} - 2 \beta_1) q^{47} + (\beta_{4} + 1) q^{49} + ( - \beta_{4} - 3 \beta_{2} + 1) q^{51} + ( - 4 \beta_{4} - 7 \beta_{2} + 4) q^{53} + (\beta_{4} + 2 \beta_{2} - 3) q^{55} + ( - \beta_{5} + \beta_{3} - \beta_1) q^{57} + (5 \beta_{5} + 4 \beta_1) q^{59} + (6 \beta_{4} + \beta_{2} - 1) q^{61} + (\beta_{5} + 2 \beta_{3} + 3 \beta_1) q^{63} + (\beta_{5} + 5 \beta_{3} + \beta_1) q^{67} + ( - \beta_{4} + \beta_{2} + 2) q^{69} + ( - 10 \beta_{5} + 3 \beta_1) q^{71} + (7 \beta_{5} + 3 \beta_{3} - 9 \beta_1) q^{73} + (2 \beta_{4} + 4 \beta_{2} + 3) q^{75} + ( - 5 \beta_{2} - 1) q^{77} + (\beta_{4} - 8 \beta_{2} + 4) q^{79} + ( - 3 \beta_{4} - 7 \beta_{2} + 3) q^{81} + ( - 4 \beta_{5} + 2 \beta_{3} + 7 \beta_1) q^{83} + ( - \beta_{3} + 4 \beta_1) q^{85} + (3 \beta_{2} + 5) q^{87} + ( - 6 \beta_{5} + 7 \beta_1) q^{89} + ( - 10 \beta_{5} - 5 \beta_{3} + 3 \beta_1) q^{93} + (4 \beta_{4} - \beta_{2}) q^{95} + (2 \beta_{5} + 7 \beta_{3} - 6 \beta_1) q^{97} + (3 \beta_{5} + 6 \beta_{3} - 4 \beta_1) q^{99}+O(q^{100})$$ q + (b4 + b2) * q^3 + (b5 - b3) * q^5 + (2*b5 + b3 - 2*b1) * q^7 + (b4 + 2*b2 - 2) * q^9 + (3*b5 + b3) * q^11 + (-b5 + b1) * q^15 + (b4 - 2*b2 + 1) * q^17 + (b3 - 3*b1) * q^19 + (2*b5 + 3*b3 - b1) * q^21 + (2*b4 + 2*b2 - 3) * q^23 + (3*b4 + 2*b2) * q^25 + (-3*b4 - b2 + 1) * q^27 + (5*b4 + 3*b2 - 3) * q^29 + (-2*b5 - 3*b3 - 2*b1) * q^31 + (5*b5 + 4*b3 - b1) * q^33 + (4*b4 + b2 - 3) * q^35 + (4*b5 + b3 + b1) * q^37 + (5*b5 + 6*b3 - 2*b1) * q^41 + (-2*b4 - 3*b2 + 6) * q^43 + (-3*b5 + 2*b3) * q^45 + (7*b5 + b3 - 2*b1) * q^47 + (b4 + 1) * q^49 + (-b4 - 3*b2 + 1) * q^51 + (-4*b4 - 7*b2 + 4) * q^53 + (b4 + 2*b2 - 3) * q^55 + (-b5 + b3 - b1) * q^57 + (5*b5 + 4*b1) * q^59 + (6*b4 + b2 - 1) * q^61 + (b5 + 2*b3 + 3*b1) * q^63 + (b5 + 5*b3 + b1) * q^67 + (-b4 + b2 + 2) * q^69 + (-10*b5 + 3*b1) * q^71 + (7*b5 + 3*b3 - 9*b1) * q^73 + (2*b4 + 4*b2 + 3) * q^75 + (-5*b2 - 1) * q^77 + (b4 - 8*b2 + 4) * q^79 + (-3*b4 - 7*b2 + 3) * q^81 + (-4*b5 + 2*b3 + 7*b1) * q^83 + (-b3 + 4*b1) * q^85 + (3*b2 + 5) * q^87 + (-6*b5 + 7*b1) * q^89 + (-10*b5 - 5*b3 + 3*b1) * q^93 + (4*b4 - b2) * q^95 + (2*b5 + 7*b3 - 6*b1) * q^97 + (3*b5 + 6*b3 - 4*b1) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q + 4 q^{3} - 6 q^{9}+O(q^{10})$$ 6 * q + 4 * q^3 - 6 * q^9 $$6 q + 4 q^{3} - 6 q^{9} + 4 q^{17} - 10 q^{23} + 10 q^{25} - 2 q^{27} - 2 q^{29} - 8 q^{35} + 26 q^{43} + 8 q^{49} - 2 q^{51} + 2 q^{53} - 12 q^{55} + 8 q^{61} + 12 q^{69} + 30 q^{75} - 16 q^{77} + 10 q^{79} - 2 q^{81} + 36 q^{87} + 6 q^{95}+O(q^{100})$$ 6 * q + 4 * q^3 - 6 * q^9 + 4 * q^17 - 10 * q^23 + 10 * q^25 - 2 * q^27 - 2 * q^29 - 8 * q^35 + 26 * q^43 + 8 * q^49 - 2 * q^51 + 2 * q^53 - 12 * q^55 + 8 * q^61 + 12 * q^69 + 30 * q^75 - 16 * q^77 + 10 * q^79 - 2 * q^81 + 36 * q^87 + 6 * q^95

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{6} + 5x^{4} + 6x^{2} + 1$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} + 2$$ v^2 + 2 $$\beta_{3}$$ $$=$$ $$\nu^{3} + 3\nu$$ v^3 + 3*v $$\beta_{4}$$ $$=$$ $$\nu^{4} + 3\nu^{2} + 1$$ v^4 + 3*v^2 + 1 $$\beta_{5}$$ $$=$$ $$\nu^{5} + 4\nu^{3} + 3\nu$$ v^5 + 4*v^3 + 3*v
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} - 2$$ b2 - 2 $$\nu^{3}$$ $$=$$ $$\beta_{3} - 3\beta_1$$ b3 - 3*b1 $$\nu^{4}$$ $$=$$ $$\beta_{4} - 3\beta_{2} + 5$$ b4 - 3*b2 + 5 $$\nu^{5}$$ $$=$$ $$\beta_{5} - 4\beta_{3} + 9\beta_1$$ b5 - 4*b3 + 9*b1

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/2704\mathbb{Z}\right)^\times$$.

 $$n$$ $$677$$ $$1185$$ $$2367$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
337.1
 1.24698i − 1.24698i − 1.80194i 1.80194i 0.445042i − 0.445042i
0 −0.801938 0 2.80194i 0 2.69202i 0 −2.35690 0
337.2 0 −0.801938 0 2.80194i 0 2.69202i 0 −2.35690 0
337.3 0 0.554958 0 1.44504i 0 2.04892i 0 −2.69202 0
337.4 0 0.554958 0 1.44504i 0 2.04892i 0 −2.69202 0
337.5 0 2.24698 0 0.246980i 0 2.35690i 0 2.04892 0
337.6 0 2.24698 0 0.246980i 0 2.35690i 0 2.04892 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 337.6 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2704.2.f.o 6
4.b odd 2 1 169.2.b.b 6
12.b even 2 1 1521.2.b.l 6
13.b even 2 1 inner 2704.2.f.o 6
13.d odd 4 1 2704.2.a.z 3
13.d odd 4 1 2704.2.a.ba 3
52.b odd 2 1 169.2.b.b 6
52.f even 4 1 169.2.a.b 3
52.f even 4 1 169.2.a.c yes 3
52.i odd 6 2 169.2.e.b 12
52.j odd 6 2 169.2.e.b 12
52.l even 12 2 169.2.c.b 6
52.l even 12 2 169.2.c.c 6
156.h even 2 1 1521.2.b.l 6
156.l odd 4 1 1521.2.a.o 3
156.l odd 4 1 1521.2.a.r 3
260.u even 4 1 4225.2.a.bb 3
260.u even 4 1 4225.2.a.bg 3
364.p odd 4 1 8281.2.a.bf 3
364.p odd 4 1 8281.2.a.bj 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.2.a.b 3 52.f even 4 1
169.2.a.c yes 3 52.f even 4 1
169.2.b.b 6 4.b odd 2 1
169.2.b.b 6 52.b odd 2 1
169.2.c.b 6 52.l even 12 2
169.2.c.c 6 52.l even 12 2
169.2.e.b 12 52.i odd 6 2
169.2.e.b 12 52.j odd 6 2
1521.2.a.o 3 156.l odd 4 1
1521.2.a.r 3 156.l odd 4 1
1521.2.b.l 6 12.b even 2 1
1521.2.b.l 6 156.h even 2 1
2704.2.a.z 3 13.d odd 4 1
2704.2.a.ba 3 13.d odd 4 1
2704.2.f.o 6 1.a even 1 1 trivial
2704.2.f.o 6 13.b even 2 1 inner
4225.2.a.bb 3 260.u even 4 1
4225.2.a.bg 3 260.u even 4 1
8281.2.a.bf 3 364.p odd 4 1
8281.2.a.bj 3 364.p odd 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(2704, [\chi])$$:

 $$T_{3}^{3} - 2T_{3}^{2} - T_{3} + 1$$ T3^3 - 2*T3^2 - T3 + 1 $$T_{5}^{6} + 10T_{5}^{4} + 17T_{5}^{2} + 1$$ T5^6 + 10*T5^4 + 17*T5^2 + 1 $$T_{11}^{6} + 26T_{11}^{4} + 153T_{11}^{2} + 169$$ T11^6 + 26*T11^4 + 153*T11^2 + 169

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{6}$$
$3$ $$(T^{3} - 2 T^{2} - T + 1)^{2}$$
$5$ $$T^{6} + 10 T^{4} + \cdots + 1$$
$7$ $$T^{6} + 17 T^{4} + \cdots + 169$$
$11$ $$T^{6} + 26 T^{4} + \cdots + 169$$
$13$ $$T^{6}$$
$17$ $$(T^{3} - 2 T^{2} - 15 T - 13)^{2}$$
$19$ $$T^{6} + 38 T^{4} + \cdots + 1$$
$23$ $$(T^{3} + 5 T^{2} - T - 13)^{2}$$
$29$ $$(T^{3} + T^{2} - 44 T + 83)^{2}$$
$31$ $$T^{6} + 97 T^{4} + \cdots + 27889$$
$37$ $$T^{6} + 62 T^{4} + \cdots + 841$$
$41$ $$T^{6} + 147 T^{4} + \cdots + 2401$$
$43$ $$(T^{3} - 13 T^{2} + \cdots + 13)^{2}$$
$47$ $$T^{6} + 122 T^{4} + \cdots + 27889$$
$53$ $$(T^{3} - T^{2} - 86 T + 337)^{2}$$
$59$ $$T^{6} + 195 T^{4} + \cdots + 1$$
$61$ $$(T^{3} - 4 T^{2} + \cdots + 239)^{2}$$
$67$ $$T^{6} + 145 T^{4} + \cdots + 1681$$
$71$ $$T^{6} + 285 T^{4} + \cdots + 299209$$
$73$ $$T^{6} + 321 T^{4} + \cdots + 829921$$
$79$ $$(T^{3} - 5 T^{2} + \cdots - 127)^{2}$$
$83$ $$T^{6} + 329 T^{4} + \cdots + 41209$$
$89$ $$T^{6} + 269 T^{4} + \cdots + 78961$$
$97$ $$T^{6} + 217 T^{4} + \cdots + 90601$$