# Properties

 Label 2704.2.a.z Level $2704$ Weight $2$ Character orbit 2704.a Self dual yes Analytic conductor $21.592$ Analytic rank $0$ Dimension $3$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [2704,2,Mod(1,2704)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(2704, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("2704.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$2704 = 2^{4} \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 2704.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$21.5915487066$$ Analytic rank: $$0$$ Dimension: $$3$$ Coefficient field: $$\Q(\zeta_{14})^+$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{3} - x^{2} - 2x + 1$$ x^3 - x^2 - 2*x + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 169) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - \beta_1 + 1) q^{3} + ( - \beta_1 - 1) q^{5} + (2 \beta_{2} - \beta_1 + 2) q^{7} + (\beta_{2} - 2 \beta_1) q^{9}+O(q^{10})$$ q + (-b1 + 1) * q^3 + (-b1 - 1) * q^5 + (2*b2 - b1 + 2) * q^7 + (b2 - 2*b1) * q^9 $$q + ( - \beta_1 + 1) q^{3} + ( - \beta_1 - 1) q^{5} + (2 \beta_{2} - \beta_1 + 2) q^{7} + (\beta_{2} - 2 \beta_1) q^{9} + ( - \beta_1 + 3) q^{11} + (\beta_{2} + 1) q^{15} + (3 \beta_{2} - 2 \beta_1 + 1) q^{17} + ( - 3 \beta_{2} + \beta_1) q^{19} + (\beta_{2} - 3 \beta_1 + 2) q^{21} + (2 \beta_1 + 1) q^{23} + (\beta_{2} + 2 \beta_1 - 2) q^{25} + (2 \beta_{2} + \beta_1) q^{27} + ( - 2 \beta_{2} - 3 \beta_1) q^{29} + ( - 2 \beta_{2} - 3 \beta_1 + 2) q^{31} + (\beta_{2} - 4 \beta_1 + 5) q^{33} + ( - 3 \beta_{2} - \beta_1 - 2) q^{35} + ( - \beta_{2} - \beta_1 + 4) q^{37} + ( - 2 \beta_{2} + 6 \beta_1 - 5) q^{41} + (\beta_{2} - 3 \beta_1 - 3) q^{43} + (2 \beta_1 + 3) q^{45} + (2 \beta_{2} - \beta_1 + 7) q^{47} + (\beta_{2} - 1) q^{49} + (2 \beta_{2} - 3 \beta_1 + 2) q^{51} + ( - 3 \beta_{2} + 7 \beta_1 - 3) q^{53} + (\beta_{2} - 2 \beta_1 - 1) q^{55} + ( - \beta_{2} + \beta_1 + 1) q^{57} + ( - 4 \beta_{2} + 5) q^{59} + ( - 5 \beta_{2} - \beta_1) q^{61} + ( - 3 \beta_{2} - 2 \beta_1 + 1) q^{63} + (\beta_{2} + 5 \beta_1 - 1) q^{67} + ( - 2 \beta_{2} + \beta_1 - 3) q^{69} + (3 \beta_{2} + 10) q^{71} + (9 \beta_{2} - 3 \beta_1 + 7) q^{73} + ( - 2 \beta_{2} + 4 \beta_1 - 7) q^{75} + (5 \beta_{2} - 5 \beta_1 + 6) q^{77} + ( - 9 \beta_{2} + 8 \beta_1 - 4) q^{79} + ( - 4 \beta_{2} + 7 \beta_1 - 4) q^{81} + (7 \beta_{2} + 2 \beta_1 + 4) q^{83} + ( - 4 \beta_{2} + \beta_1) q^{85} + (3 \beta_{2} - 3 \beta_1 + 8) q^{87} + ( - 7 \beta_{2} - 6) q^{89} + (3 \beta_{2} - 5 \beta_1 + 10) q^{93} + (5 \beta_{2} - \beta_1 + 1) q^{95} + ( - 6 \beta_{2} + 7 \beta_1 - 2) q^{97} + (4 \beta_{2} - 6 \beta_1 + 3) q^{99}+O(q^{100})$$ q + (-b1 + 1) * q^3 + (-b1 - 1) * q^5 + (2*b2 - b1 + 2) * q^7 + (b2 - 2*b1) * q^9 + (-b1 + 3) * q^11 + (b2 + 1) * q^15 + (3*b2 - 2*b1 + 1) * q^17 + (-3*b2 + b1) * q^19 + (b2 - 3*b1 + 2) * q^21 + (2*b1 + 1) * q^23 + (b2 + 2*b1 - 2) * q^25 + (2*b2 + b1) * q^27 + (-2*b2 - 3*b1) * q^29 + (-2*b2 - 3*b1 + 2) * q^31 + (b2 - 4*b1 + 5) * q^33 + (-3*b2 - b1 - 2) * q^35 + (-b2 - b1 + 4) * q^37 + (-2*b2 + 6*b1 - 5) * q^41 + (b2 - 3*b1 - 3) * q^43 + (2*b1 + 3) * q^45 + (2*b2 - b1 + 7) * q^47 + (b2 - 1) * q^49 + (2*b2 - 3*b1 + 2) * q^51 + (-3*b2 + 7*b1 - 3) * q^53 + (b2 - 2*b1 - 1) * q^55 + (-b2 + b1 + 1) * q^57 + (-4*b2 + 5) * q^59 + (-5*b2 - b1) * q^61 + (-3*b2 - 2*b1 + 1) * q^63 + (b2 + 5*b1 - 1) * q^67 + (-2*b2 + b1 - 3) * q^69 + (3*b2 + 10) * q^71 + (9*b2 - 3*b1 + 7) * q^73 + (-2*b2 + 4*b1 - 7) * q^75 + (5*b2 - 5*b1 + 6) * q^77 + (-9*b2 + 8*b1 - 4) * q^79 + (-4*b2 + 7*b1 - 4) * q^81 + (7*b2 + 2*b1 + 4) * q^83 + (-4*b2 + b1) * q^85 + (3*b2 - 3*b1 + 8) * q^87 + (-7*b2 - 6) * q^89 + (3*b2 - 5*b1 + 10) * q^93 + (5*b2 - b1 + 1) * q^95 + (-6*b2 + 7*b1 - 2) * q^97 + (4*b2 - 6*b1 + 3) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$3 q + 2 q^{3} - 4 q^{5} + 3 q^{7} - 3 q^{9}+O(q^{10})$$ 3 * q + 2 * q^3 - 4 * q^5 + 3 * q^7 - 3 * q^9 $$3 q + 2 q^{3} - 4 q^{5} + 3 q^{7} - 3 q^{9} + 8 q^{11} + 2 q^{15} - 2 q^{17} + 4 q^{19} + 2 q^{21} + 5 q^{23} - 5 q^{25} - q^{27} - q^{29} + 5 q^{31} + 10 q^{33} - 4 q^{35} + 12 q^{37} - 7 q^{41} - 13 q^{43} + 11 q^{45} + 18 q^{47} - 4 q^{49} + q^{51} + q^{53} - 6 q^{55} + 5 q^{57} + 19 q^{59} + 4 q^{61} + 4 q^{63} + q^{67} - 6 q^{69} + 27 q^{71} + 9 q^{73} - 15 q^{75} + 8 q^{77} + 5 q^{79} - q^{81} + 7 q^{83} + 5 q^{85} + 18 q^{87} - 11 q^{89} + 22 q^{93} - 3 q^{95} + 7 q^{97} - q^{99}+O(q^{100})$$ 3 * q + 2 * q^3 - 4 * q^5 + 3 * q^7 - 3 * q^9 + 8 * q^11 + 2 * q^15 - 2 * q^17 + 4 * q^19 + 2 * q^21 + 5 * q^23 - 5 * q^25 - q^27 - q^29 + 5 * q^31 + 10 * q^33 - 4 * q^35 + 12 * q^37 - 7 * q^41 - 13 * q^43 + 11 * q^45 + 18 * q^47 - 4 * q^49 + q^51 + q^53 - 6 * q^55 + 5 * q^57 + 19 * q^59 + 4 * q^61 + 4 * q^63 + q^67 - 6 * q^69 + 27 * q^71 + 9 * q^73 - 15 * q^75 + 8 * q^77 + 5 * q^79 - q^81 + 7 * q^83 + 5 * q^85 + 18 * q^87 - 11 * q^89 + 22 * q^93 - 3 * q^95 + 7 * q^97 - q^99

Basis of coefficient ring in terms of $$\nu = \zeta_{14} + \zeta_{14}^{-1}$$:

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$\nu^{2} - 2$$ v^2 - 2
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$\beta_{2} + 2$$ b2 + 2

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 1.80194 0.445042 −1.24698
0 −0.801938 0 −2.80194 0 2.69202 0 −2.35690 0
1.2 0 0.554958 0 −1.44504 0 −2.04892 0 −2.69202 0
1.3 0 2.24698 0 0.246980 0 2.35690 0 2.04892 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$13$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2704.2.a.z 3
4.b odd 2 1 169.2.a.b 3
12.b even 2 1 1521.2.a.r 3
13.b even 2 1 2704.2.a.ba 3
13.d odd 4 2 2704.2.f.o 6
20.d odd 2 1 4225.2.a.bg 3
28.d even 2 1 8281.2.a.bf 3
52.b odd 2 1 169.2.a.c yes 3
52.f even 4 2 169.2.b.b 6
52.i odd 6 2 169.2.c.b 6
52.j odd 6 2 169.2.c.c 6
52.l even 12 4 169.2.e.b 12
156.h even 2 1 1521.2.a.o 3
156.l odd 4 2 1521.2.b.l 6
260.g odd 2 1 4225.2.a.bb 3
364.h even 2 1 8281.2.a.bj 3

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
169.2.a.b 3 4.b odd 2 1
169.2.a.c yes 3 52.b odd 2 1
169.2.b.b 6 52.f even 4 2
169.2.c.b 6 52.i odd 6 2
169.2.c.c 6 52.j odd 6 2
169.2.e.b 12 52.l even 12 4
1521.2.a.o 3 156.h even 2 1
1521.2.a.r 3 12.b even 2 1
1521.2.b.l 6 156.l odd 4 2
2704.2.a.z 3 1.a even 1 1 trivial
2704.2.a.ba 3 13.b even 2 1
2704.2.f.o 6 13.d odd 4 2
4225.2.a.bb 3 260.g odd 2 1
4225.2.a.bg 3 20.d odd 2 1
8281.2.a.bf 3 28.d even 2 1
8281.2.a.bj 3 364.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(2704))$$:

 $$T_{3}^{3} - 2T_{3}^{2} - T_{3} + 1$$ T3^3 - 2*T3^2 - T3 + 1 $$T_{5}^{3} + 4T_{5}^{2} + 3T_{5} - 1$$ T5^3 + 4*T5^2 + 3*T5 - 1 $$T_{7}^{3} - 3T_{7}^{2} - 4T_{7} + 13$$ T7^3 - 3*T7^2 - 4*T7 + 13

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{3}$$
$3$ $$T^{3} - 2T^{2} - T + 1$$
$5$ $$T^{3} + 4 T^{2} + \cdots - 1$$
$7$ $$T^{3} - 3 T^{2} + \cdots + 13$$
$11$ $$T^{3} - 8 T^{2} + \cdots - 13$$
$13$ $$T^{3}$$
$17$ $$T^{3} + 2 T^{2} + \cdots + 13$$
$19$ $$T^{3} - 4 T^{2} + \cdots + 1$$
$23$ $$T^{3} - 5T^{2} - T + 13$$
$29$ $$T^{3} + T^{2} + \cdots + 83$$
$31$ $$T^{3} - 5 T^{2} + \cdots + 167$$
$37$ $$T^{3} - 12 T^{2} + \cdots - 29$$
$41$ $$T^{3} + 7 T^{2} + \cdots + 49$$
$43$ $$T^{3} + 13 T^{2} + \cdots - 13$$
$47$ $$T^{3} - 18 T^{2} + \cdots - 167$$
$53$ $$T^{3} - T^{2} + \cdots + 337$$
$59$ $$T^{3} - 19 T^{2} + \cdots - 1$$
$61$ $$T^{3} - 4 T^{2} + \cdots + 239$$
$67$ $$T^{3} - T^{2} + \cdots - 41$$
$71$ $$T^{3} - 27 T^{2} + \cdots - 547$$
$73$ $$T^{3} - 9 T^{2} + \cdots + 911$$
$79$ $$T^{3} - 5 T^{2} + \cdots - 127$$
$83$ $$T^{3} - 7 T^{2} + \cdots - 203$$
$89$ $$T^{3} + 11 T^{2} + \cdots - 281$$
$97$ $$T^{3} - 7 T^{2} + \cdots + 301$$