Properties

Label 2704.2.a.h
Level $2704$
Weight $2$
Character orbit 2704.a
Self dual yes
Analytic conductor $21.592$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2704,2,Mod(1,2704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2704.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2704 = 2^{4} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.5915487066\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{5} - 4 q^{7} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{5} - 4 q^{7} - 3 q^{9} - 4 q^{11} + 3 q^{17} + 4 q^{23} - 4 q^{25} - q^{29} - 4 q^{31} + 4 q^{35} + 3 q^{37} - 9 q^{41} + 8 q^{43} + 3 q^{45} + 8 q^{47} + 9 q^{49} - 9 q^{53} + 4 q^{55} + 4 q^{59} + 7 q^{61} + 12 q^{63} - 4 q^{67} + 8 q^{71} + 11 q^{73} + 16 q^{77} + 4 q^{79} + 9 q^{81} - 3 q^{85} - 6 q^{89} + 2 q^{97} + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −1.00000 0 −4.00000 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2704.2.a.h 1
4.b odd 2 1 338.2.a.e 1
12.b even 2 1 3042.2.a.e 1
13.b even 2 1 2704.2.a.i 1
13.c even 3 2 208.2.i.b 2
13.d odd 4 2 2704.2.f.g 2
20.d odd 2 1 8450.2.a.f 1
39.i odd 6 2 1872.2.t.k 2
52.b odd 2 1 338.2.a.c 1
52.f even 4 2 338.2.b.b 2
52.i odd 6 2 338.2.c.e 2
52.j odd 6 2 26.2.c.a 2
52.l even 12 4 338.2.e.b 4
104.n odd 6 2 832.2.i.e 2
104.r even 6 2 832.2.i.f 2
156.h even 2 1 3042.2.a.k 1
156.l odd 4 2 3042.2.b.e 2
156.p even 6 2 234.2.h.c 2
260.g odd 2 1 8450.2.a.s 1
260.v odd 6 2 650.2.e.c 2
260.bj even 12 4 650.2.o.c 4
364.q odd 6 2 1274.2.h.b 2
364.v even 6 2 1274.2.g.a 2
364.ba even 6 2 1274.2.e.m 2
364.bi odd 6 2 1274.2.e.n 2
364.br even 6 2 1274.2.h.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.2.c.a 2 52.j odd 6 2
208.2.i.b 2 13.c even 3 2
234.2.h.c 2 156.p even 6 2
338.2.a.c 1 52.b odd 2 1
338.2.a.e 1 4.b odd 2 1
338.2.b.b 2 52.f even 4 2
338.2.c.e 2 52.i odd 6 2
338.2.e.b 4 52.l even 12 4
650.2.e.c 2 260.v odd 6 2
650.2.o.c 4 260.bj even 12 4
832.2.i.e 2 104.n odd 6 2
832.2.i.f 2 104.r even 6 2
1274.2.e.m 2 364.ba even 6 2
1274.2.e.n 2 364.bi odd 6 2
1274.2.g.a 2 364.v even 6 2
1274.2.h.a 2 364.br even 6 2
1274.2.h.b 2 364.q odd 6 2
1872.2.t.k 2 39.i odd 6 2
2704.2.a.h 1 1.a even 1 1 trivial
2704.2.a.i 1 13.b even 2 1
2704.2.f.g 2 13.d odd 4 2
3042.2.a.e 1 12.b even 2 1
3042.2.a.k 1 156.h even 2 1
3042.2.b.e 2 156.l odd 4 2
8450.2.a.f 1 20.d odd 2 1
8450.2.a.s 1 260.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(2704))\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5} + 1 \) Copy content Toggle raw display
\( T_{7} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T + 4 \) Copy content Toggle raw display
$11$ \( T + 4 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 3 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 4 \) Copy content Toggle raw display
$29$ \( T + 1 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 3 \) Copy content Toggle raw display
$41$ \( T + 9 \) Copy content Toggle raw display
$43$ \( T - 8 \) Copy content Toggle raw display
$47$ \( T - 8 \) Copy content Toggle raw display
$53$ \( T + 9 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T - 7 \) Copy content Toggle raw display
$67$ \( T + 4 \) Copy content Toggle raw display
$71$ \( T - 8 \) Copy content Toggle raw display
$73$ \( T - 11 \) Copy content Toggle raw display
$79$ \( T - 4 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T - 2 \) Copy content Toggle raw display
show more
show less