Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [2700,2,Mod(649,2700)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2700, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("2700.649");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2700.d (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(21.5596085457\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(i)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} + 1 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{17}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 540) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
Embedding invariants
Embedding label | 649.2 | ||
Root | \(1.00000i\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 2700.649 |
Dual form | 2700.2.d.e.649.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).
\(n\) | \(1001\) | \(1351\) | \(2377\) |
\(\chi(n)\) | \(1\) | \(1\) | \(-1\) |
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 2.00000i | 0.755929i | 0.925820 | + | 0.377964i | \(0.123376\pi\) | ||||
−0.925820 | + | 0.377964i | \(0.876624\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | − 2.00000i | − 0.554700i | −0.960769 | − | 0.277350i | \(-0.910544\pi\) | ||||
0.960769 | − | 0.277350i | \(-0.0894562\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 3.00000i | 0.727607i | 0.931476 | + | 0.363803i | \(0.118522\pi\) | ||||
−0.931476 | + | 0.363803i | \(0.881478\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | −5.00000 | −1.14708 | −0.573539 | − | 0.819178i | \(-0.694430\pi\) | ||||
−0.573539 | + | 0.819178i | \(0.694430\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 3.00000i | 0.625543i | 0.949828 | + | 0.312772i | \(0.101257\pi\) | ||||
−0.949828 | + | 0.312772i | \(0.898743\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −6.00000 | −1.11417 | −0.557086 | − | 0.830455i | \(-0.688081\pi\) | ||||
−0.557086 | + | 0.830455i | \(0.688081\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 5.00000 | 0.898027 | 0.449013 | − | 0.893525i | \(-0.351776\pi\) | ||||
0.449013 | + | 0.893525i | \(0.351776\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 2.00000i | 0.328798i | 0.986394 | + | 0.164399i | \(0.0525685\pi\) | ||||
−0.986394 | + | 0.164399i | \(0.947432\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −12.0000 | −1.87409 | −0.937043 | − | 0.349215i | \(-0.886448\pi\) | ||||
−0.937043 | + | 0.349215i | \(0.886448\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | − 8.00000i | − 1.21999i | −0.792406 | − | 0.609994i | \(-0.791172\pi\) | ||||
0.792406 | − | 0.609994i | \(-0.208828\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | 12.0000i | 1.75038i | 0.483779 | + | 0.875190i | \(0.339264\pi\) | ||||
−0.483779 | + | 0.875190i | \(0.660736\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 3.00000 | 0.428571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | − 3.00000i | − 0.412082i | −0.978543 | − | 0.206041i | \(-0.933942\pi\) | ||||
0.978543 | − | 0.206041i | \(-0.0660580\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 6.00000 | 0.781133 | 0.390567 | − | 0.920575i | \(-0.372279\pi\) | ||||
0.390567 | + | 0.920575i | \(0.372279\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −7.00000 | −0.896258 | −0.448129 | − | 0.893969i | \(-0.647910\pi\) | ||||
−0.448129 | + | 0.893969i | \(0.647910\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 2.00000i | 0.244339i | 0.992509 | + | 0.122169i | \(0.0389851\pi\) | ||||
−0.992509 | + | 0.122169i | \(0.961015\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −12.0000 | −1.42414 | −0.712069 | − | 0.702109i | \(-0.752242\pi\) | ||||
−0.712069 | + | 0.702109i | \(0.752242\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 16.0000i | 1.87266i | 0.351123 | + | 0.936329i | \(0.385800\pi\) | ||||
−0.351123 | + | 0.936329i | \(0.614200\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 1.00000 | 0.112509 | 0.0562544 | − | 0.998416i | \(-0.482084\pi\) | ||||
0.0562544 | + | 0.998416i | \(0.482084\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | − 15.0000i | − 1.64646i | −0.567705 | − | 0.823232i | \(-0.692169\pi\) | ||||
0.567705 | − | 0.823232i | \(-0.307831\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −12.0000 | −1.27200 | −0.635999 | − | 0.771690i | \(-0.719412\pi\) | ||||
−0.635999 | + | 0.771690i | \(0.719412\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 4.00000 | 0.419314 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | − 16.0000i | − 1.62455i | −0.583272 | − | 0.812277i | \(-0.698228\pi\) | ||||
0.583272 | − | 0.812277i | \(-0.301772\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −12.0000 | −1.19404 | −0.597022 | − | 0.802225i | \(-0.703650\pi\) | ||||
−0.597022 | + | 0.802225i | \(0.703650\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 4.00000i | 0.394132i | 0.980390 | + | 0.197066i | \(0.0631413\pi\) | ||||
−0.980390 | + | 0.197066i | \(0.936859\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000i | 1.16008i | 0.814587 | + | 0.580042i | \(0.196964\pi\) | ||||
−0.814587 | + | 0.580042i | \(0.803036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | 7.00000 | 0.670478 | 0.335239 | − | 0.942133i | \(-0.391183\pi\) | ||||
0.335239 | + | 0.942133i | \(0.391183\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 6.00000i | 0.564433i | 0.959351 | + | 0.282216i | \(0.0910696\pi\) | ||||
−0.959351 | + | 0.282216i | \(0.908930\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | −6.00000 | −0.550019 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 2.00000i | 0.177471i | 0.996055 | + | 0.0887357i | \(0.0282826\pi\) | ||||
−0.996055 | + | 0.0887357i | \(0.971717\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −18.0000 | −1.57267 | −0.786334 | − | 0.617802i | \(-0.788023\pi\) | ||||
−0.786334 | + | 0.617802i | \(0.788023\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | − 10.0000i | − 0.867110i | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 9.00000i | 0.768922i | 0.923141 | + | 0.384461i | \(0.125613\pi\) | ||||
−0.923141 | + | 0.384461i | \(0.874387\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | 4.00000 | 0.339276 | 0.169638 | − | 0.985506i | \(-0.445740\pi\) | ||||
0.169638 | + | 0.985506i | \(0.445740\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −12.0000 | −0.983078 | −0.491539 | − | 0.870855i | \(-0.663566\pi\) | ||||
−0.491539 | + | 0.870855i | \(0.663566\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −16.0000 | −1.30206 | −0.651031 | − | 0.759051i | \(-0.725663\pi\) | ||||
−0.651031 | + | 0.759051i | \(0.725663\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | − 4.00000i | − 0.319235i | −0.987179 | − | 0.159617i | \(-0.948974\pi\) | ||||
0.987179 | − | 0.159617i | \(-0.0510260\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | −6.00000 | −0.472866 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 10.0000i | 0.783260i | 0.920123 | + | 0.391630i | \(0.128089\pi\) | ||||
−0.920123 | + | 0.391630i | \(0.871911\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | 9.00000i | 0.696441i | 0.937413 | + | 0.348220i | \(0.113214\pi\) | ||||
−0.937413 | + | 0.348220i | \(0.886786\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 9.00000 | 0.692308 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | 15.0000i | 1.14043i | 0.821496 | + | 0.570214i | \(0.193140\pi\) | ||||
−0.821496 | + | 0.570214i | \(0.806860\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 12.0000 | 0.896922 | 0.448461 | − | 0.893802i | \(-0.351972\pi\) | ||||
0.448461 | + | 0.893802i | \(0.351972\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 17.0000 | 1.26360 | 0.631800 | − | 0.775131i | \(-0.282316\pi\) | ||||
0.631800 | + | 0.775131i | \(0.282316\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 6.00000 | 0.434145 | 0.217072 | − | 0.976156i | \(-0.430349\pi\) | ||||
0.217072 | + | 0.976156i | \(0.430349\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 10.0000i | 0.719816i | 0.932988 | + | 0.359908i | \(0.117192\pi\) | ||||
−0.932988 | + | 0.359908i | \(0.882808\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | 9.00000i | 0.641223i | 0.947211 | + | 0.320612i | \(0.103888\pi\) | ||||
−0.947211 | + | 0.320612i | \(0.896112\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −8.00000 | −0.567105 | −0.283552 | − | 0.958957i | \(-0.591513\pi\) | ||||
−0.283552 | + | 0.958957i | \(0.591513\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | − 12.0000i | − 0.842235i | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 11.0000 | 0.757271 | 0.378636 | − | 0.925546i | \(-0.376393\pi\) | ||||
0.378636 | + | 0.925546i | \(0.376393\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 10.0000i | 0.678844i | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 6.00000 | 0.403604 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | − 26.0000i | − 1.74109i | −0.492090 | − | 0.870544i | \(-0.663767\pi\) | ||||
0.492090 | − | 0.870544i | \(-0.336233\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 3.00000i | 0.199117i | 0.995032 | + | 0.0995585i | \(0.0317430\pi\) | ||||
−0.995032 | + | 0.0995585i | \(0.968257\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −23.0000 | −1.51988 | −0.759941 | − | 0.649992i | \(-0.774772\pi\) | ||||
−0.759941 | + | 0.649992i | \(0.774772\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 6.00000i | 0.393073i | 0.980497 | + | 0.196537i | \(0.0629694\pi\) | ||||
−0.980497 | + | 0.196537i | \(0.937031\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | 6.00000 | 0.388108 | 0.194054 | − | 0.980991i | \(-0.437836\pi\) | ||||
0.194054 | + | 0.980991i | \(0.437836\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | −13.0000 | −0.837404 | −0.418702 | − | 0.908124i | \(-0.637515\pi\) | ||||
−0.418702 | + | 0.908124i | \(0.637515\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 10.0000i | 0.636285i | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 21.0000i | 1.30994i | 0.755653 | + | 0.654972i | \(0.227320\pi\) | ||||
−0.755653 | + | 0.654972i | \(0.772680\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −4.00000 | −0.248548 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 0 | 0 | 1.00000 | \(0\) | ||||||
−1.00000 | \(\pi\) | |||||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −18.0000 | −1.09748 | −0.548740 | − | 0.835993i | \(-0.684892\pi\) | ||||
−0.548740 | + | 0.835993i | \(0.684892\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | 29.0000 | 1.76162 | 0.880812 | − | 0.473466i | \(-0.156997\pi\) | ||||
0.880812 | + | 0.473466i | \(0.156997\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | 8.00000i | 0.480673i | 0.970690 | + | 0.240337i | \(0.0772579\pi\) | ||||
−0.970690 | + | 0.240337i | \(0.922742\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | −30.0000 | −1.78965 | −0.894825 | − | 0.446417i | \(-0.852700\pi\) | ||||
−0.894825 | + | 0.446417i | \(0.852700\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | 4.00000i | 0.237775i | 0.992908 | + | 0.118888i | \(0.0379328\pi\) | ||||
−0.992908 | + | 0.118888i | \(0.962067\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | − 24.0000i | − 1.41668i | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | 8.00000 | 0.470588 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 3.00000i | 0.175262i | 0.996153 | + | 0.0876309i | \(0.0279296\pi\) | ||||
−0.996153 | + | 0.0876309i | \(0.972070\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 6.00000 | 0.346989 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 16.0000 | 0.922225 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | 2.00000i | 0.114146i | 0.998370 | + | 0.0570730i | \(0.0181768\pi\) | ||||
−0.998370 | + | 0.0570730i | \(0.981823\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 30.0000 | 1.70114 | 0.850572 | − | 0.525859i | \(-0.176256\pi\) | ||||
0.850572 | + | 0.525859i | \(0.176256\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | − 32.0000i | − 1.80875i | −0.426742 | − | 0.904373i | \(-0.640339\pi\) | ||||
0.426742 | − | 0.904373i | \(-0.359661\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | − 33.0000i | − 1.85346i | −0.375722 | − | 0.926732i | \(-0.622605\pi\) | ||||
0.375722 | − | 0.926732i | \(-0.377395\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | − 15.0000i | − 0.834622i | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −24.0000 | −1.32316 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −28.0000 | −1.53902 | −0.769510 | − | 0.638635i | \(-0.779499\pi\) | ||||
−0.769510 | + | 0.638635i | \(0.779499\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | 2.00000i | 0.108947i | 0.998515 | + | 0.0544735i | \(0.0173480\pi\) | ||||
−0.998515 | + | 0.0544735i | \(0.982652\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 20.0000i | 1.07990i | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | − 12.0000i | − 0.644194i | −0.946707 | − | 0.322097i | \(-0.895612\pi\) | ||||
0.946707 | − | 0.322097i | \(-0.104388\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −17.0000 | −0.909989 | −0.454995 | − | 0.890494i | \(-0.650359\pi\) | ||||
−0.454995 | + | 0.890494i | \(0.650359\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 18.0000i | 0.958043i | 0.877803 | + | 0.479022i | \(0.159008\pi\) | ||||
−0.877803 | + | 0.479022i | \(0.840992\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 30.0000 | 1.58334 | 0.791670 | − | 0.610949i | \(-0.209212\pi\) | ||||
0.791670 | + | 0.610949i | \(0.209212\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 6.00000 | 0.315789 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | − 22.0000i | − 1.14839i | −0.818718 | − | 0.574195i | \(-0.805315\pi\) | ||||
0.818718 | − | 0.574195i | \(-0.194685\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 6.00000 | 0.311504 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | − 8.00000i | − 0.414224i | −0.978317 | − | 0.207112i | \(-0.933593\pi\) | ||||
0.978317 | − | 0.207112i | \(-0.0664065\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 12.0000i | 0.618031i | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 1.00000 | 0.0513665 | 0.0256833 | − | 0.999670i | \(-0.491824\pi\) | ||||
0.0256833 | + | 0.999670i | \(0.491824\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | − 33.0000i | − 1.68622i | −0.537740 | − | 0.843111i | \(-0.680722\pi\) | ||||
0.537740 | − | 0.843111i | \(-0.319278\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 24.0000 | 1.21685 | 0.608424 | − | 0.793612i | \(-0.291802\pi\) | ||||
0.608424 | + | 0.793612i | \(0.291802\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | −9.00000 | −0.455150 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 38.0000i | 1.90717i | 0.301131 | + | 0.953583i | \(0.402636\pi\) | ||||
−0.301131 | + | 0.953583i | \(0.597364\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 6.00000 | 0.299626 | 0.149813 | − | 0.988714i | \(-0.452133\pi\) | ||||
0.149813 | + | 0.988714i | \(0.452133\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | − 10.0000i | − 0.498135i | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 7.00000 | 0.346128 | 0.173064 | − | 0.984911i | \(-0.444633\pi\) | ||||
0.173064 | + | 0.984911i | \(0.444633\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 12.0000i | 0.590481i | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −1.00000 | −0.0487370 | −0.0243685 | − | 0.999703i | \(-0.507758\pi\) | ||||
−0.0243685 | + | 0.999703i | \(0.507758\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | − 14.0000i | − 0.677507i | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | 18.0000 | 0.867029 | 0.433515 | − | 0.901146i | \(-0.357273\pi\) | ||||
0.433515 | + | 0.901146i | \(0.357273\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 34.0000i | 1.63394i | 0.576683 | + | 0.816968i | \(0.304347\pi\) | ||||
−0.576683 | + | 0.816968i | \(0.695653\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | − 15.0000i | − 0.717547i | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | 19.0000 | 0.906821 | 0.453410 | − | 0.891302i | \(-0.350207\pi\) | ||||
0.453410 | + | 0.891302i | \(0.350207\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | − 15.0000i | − 0.712672i | −0.934358 | − | 0.356336i | \(-0.884026\pi\) | ||||
0.934358 | − | 0.356336i | \(-0.115974\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | −6.00000 | −0.283158 | −0.141579 | − | 0.989927i | \(-0.545218\pi\) | ||||
−0.141579 | + | 0.989927i | \(0.545218\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | − 28.0000i | − 1.30978i | −0.755722 | − | 0.654892i | \(-0.772714\pi\) | ||||
0.755722 | − | 0.654892i | \(-0.227286\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 30.0000 | 1.39724 | 0.698620 | − | 0.715493i | \(-0.253798\pi\) | ||||
0.698620 | + | 0.715493i | \(0.253798\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | 22.0000i | 1.02243i | 0.859454 | + | 0.511213i | \(0.170804\pi\) | ||||
−0.859454 | + | 0.511213i | \(0.829196\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | − 21.0000i | − 0.971764i | −0.874024 | − | 0.485882i | \(-0.838498\pi\) | ||||
0.874024 | − | 0.485882i | \(-0.161502\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −4.00000 | −0.184703 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 24.0000 | 1.09659 | 0.548294 | − | 0.836286i | \(-0.315277\pi\) | ||||
0.548294 | + | 0.836286i | \(0.315277\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 4.00000 | 0.182384 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | − 28.0000i | − 1.26880i | −0.773004 | − | 0.634401i | \(-0.781247\pi\) | ||||
0.773004 | − | 0.634401i | \(-0.218753\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 18.0000 | 0.812329 | 0.406164 | − | 0.913800i | \(-0.366866\pi\) | ||||
0.406164 | + | 0.913800i | \(0.366866\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | − 18.0000i | − 0.810679i | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | − 24.0000i | − 1.07655i | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 31.0000 | 1.38775 | 0.693875 | − | 0.720095i | \(-0.255902\pi\) | ||||
0.693875 | + | 0.720095i | \(0.255902\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 27.0000i | 1.20387i | 0.798545 | + | 0.601935i | \(0.205603\pi\) | ||||
−0.798545 | + | 0.601935i | \(0.794397\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 12.0000 | 0.531891 | 0.265945 | − | 0.963988i | \(-0.414316\pi\) | ||||
0.265945 | + | 0.963988i | \(0.414316\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | −32.0000 | −1.41560 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 12.0000 | 0.525730 | 0.262865 | − | 0.964833i | \(-0.415333\pi\) | ||||
0.262865 | + | 0.964833i | \(0.415333\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 22.0000i | 0.961993i | 0.876723 | + | 0.480996i | \(0.159725\pi\) | ||||
−0.876723 | + | 0.480996i | \(0.840275\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 15.0000i | 0.653410i | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 14.0000 | 0.608696 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | 24.0000i | 1.03956i | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 14.0000 | 0.601907 | 0.300954 | − | 0.953639i | \(-0.402695\pi\) | ||||
0.300954 | + | 0.953639i | \(0.402695\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 8.00000i | 0.342055i | 0.985266 | + | 0.171028i | \(0.0547087\pi\) | ||||
−0.985266 | + | 0.171028i | \(0.945291\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 30.0000 | 1.27804 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 2.00000i | 0.0850487i | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | − 30.0000i | − 1.27114i | −0.772043 | − | 0.635570i | \(-0.780765\pi\) | ||||
0.772043 | − | 0.635570i | \(-0.219235\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −16.0000 | −0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | 36.0000i | 1.51722i | 0.651546 | + | 0.758610i | \(0.274121\pi\) | ||||
−0.651546 | + | 0.758610i | \(0.725879\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −30.0000 | −1.25767 | −0.628833 | − | 0.777541i | \(-0.716467\pi\) | ||||
−0.628833 | + | 0.777541i | \(0.716467\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −19.0000 | −0.795125 | −0.397563 | − | 0.917575i | \(-0.630144\pi\) | ||||
−0.397563 | + | 0.917575i | \(0.630144\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | − 4.00000i | − 0.166522i | −0.996528 | − | 0.0832611i | \(-0.973466\pi\) | ||||
0.996528 | − | 0.0832611i | \(-0.0265335\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 30.0000 | 1.24461 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | − 15.0000i | − 0.619116i | −0.950881 | − | 0.309558i | \(-0.899819\pi\) | ||||
0.950881 | − | 0.309558i | \(-0.100181\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | −25.0000 | −1.03011 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | − 9.00000i | − 0.369586i | −0.982777 | − | 0.184793i | \(-0.940839\pi\) | ||||
0.982777 | − | 0.184793i | \(-0.0591614\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 18.0000 | 0.735460 | 0.367730 | − | 0.929933i | \(-0.380135\pi\) | ||||
0.367730 | + | 0.929933i | \(0.380135\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −19.0000 | −0.775026 | −0.387513 | − | 0.921864i | \(-0.626666\pi\) | ||||
−0.387513 | + | 0.921864i | \(0.626666\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 32.0000i | 1.29884i | 0.760430 | + | 0.649420i | \(0.224988\pi\) | ||||
−0.760430 | + | 0.649420i | \(0.775012\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | 24.0000 | 0.970936 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | 16.0000i | 0.646234i | 0.946359 | + | 0.323117i | \(0.104731\pi\) | ||||
−0.946359 | + | 0.323117i | \(0.895269\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | − 33.0000i | − 1.32853i | −0.747497 | − | 0.664265i | \(-0.768745\pi\) | ||||
0.747497 | − | 0.664265i | \(-0.231255\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 16.0000 | 0.643094 | 0.321547 | − | 0.946894i | \(-0.395797\pi\) | ||||
0.321547 | + | 0.946894i | \(0.395797\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | − 24.0000i | − 0.961540i | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | −6.00000 | −0.239236 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −1.00000 | −0.0398094 | −0.0199047 | − | 0.999802i | \(-0.506336\pi\) | ||||
−0.0199047 | + | 0.999802i | \(0.506336\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | − 6.00000i | − 0.237729i | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | − 14.0000i | − 0.552106i | −0.961142 | − | 0.276053i | \(-0.910973\pi\) | ||||
0.961142 | − | 0.276053i | \(-0.0890266\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | − 3.00000i | − 0.117942i | −0.998260 | − | 0.0589711i | \(-0.981218\pi\) | ||||
0.998260 | − | 0.0589711i | \(-0.0187820\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 21.0000i | 0.821794i | 0.911682 | + | 0.410897i | \(0.134784\pi\) | ||||
−0.911682 | + | 0.410897i | \(0.865216\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 18.0000 | 0.701180 | 0.350590 | − | 0.936529i | \(-0.385981\pi\) | ||||
0.350590 | + | 0.936529i | \(0.385981\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | 14.0000 | 0.544537 | 0.272268 | − | 0.962221i | \(-0.412226\pi\) | ||||
0.272268 | + | 0.962221i | \(0.412226\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | − 18.0000i | − 0.696963i | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | − 26.0000i | − 1.00223i | −0.865382 | − | 0.501113i | \(-0.832924\pi\) | ||||
0.865382 | − | 0.501113i | \(-0.167076\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 18.0000i | 0.691796i | 0.938272 | + | 0.345898i | \(0.112426\pi\) | ||||
−0.938272 | + | 0.345898i | \(0.887574\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 32.0000 | 1.22805 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | − 39.0000i | − 1.49229i | −0.665782 | − | 0.746147i | \(-0.731902\pi\) | ||||
0.665782 | − | 0.746147i | \(-0.268098\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | −6.00000 | −0.228582 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 35.0000 | 1.33146 | 0.665731 | − | 0.746191i | \(-0.268120\pi\) | ||||
0.665731 | + | 0.746191i | \(0.268120\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | − 36.0000i | − 1.36360i | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 42.0000 | 1.58632 | 0.793159 | − | 0.609015i | \(-0.208435\pi\) | ||||
0.793159 | + | 0.609015i | \(0.208435\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | − 10.0000i | − 0.377157i | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | − 24.0000i | − 0.902613i | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −2.00000 | −0.0751116 | −0.0375558 | − | 0.999295i | \(-0.511957\pi\) | ||||
−0.0375558 | + | 0.999295i | \(0.511957\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 15.0000i | 0.561754i | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 42.0000 | 1.56634 | 0.783168 | − | 0.621810i | \(-0.213603\pi\) | ||||
0.783168 | + | 0.621810i | \(0.213603\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | −8.00000 | −0.297936 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 8.00000i | 0.296704i | 0.988935 | + | 0.148352i | \(0.0473968\pi\) | ||||
−0.988935 | + | 0.148352i | \(0.952603\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 24.0000 | 0.887672 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | − 32.0000i | − 1.18195i | −0.806691 | − | 0.590973i | \(-0.798744\pi\) | ||||
0.806691 | − | 0.590973i | \(-0.201256\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −47.0000 | −1.72892 | −0.864461 | − | 0.502699i | \(-0.832340\pi\) | ||||
−0.864461 | + | 0.502699i | \(0.832340\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | − 24.0000i | − 0.880475i | −0.897881 | − | 0.440237i | \(-0.854894\pi\) | ||||
0.897881 | − | 0.440237i | \(-0.145106\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | −24.0000 | −0.876941 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 23.0000 | 0.839282 | 0.419641 | − | 0.907690i | \(-0.362156\pi\) | ||||
0.419641 | + | 0.907690i | \(0.362156\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 50.0000i | 1.81728i | 0.417579 | + | 0.908640i | \(0.362879\pi\) | ||||
−0.417579 | + | 0.908640i | \(0.637121\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −30.0000 | −1.08750 | −0.543750 | − | 0.839248i | \(-0.682996\pi\) | ||||
−0.543750 | + | 0.839248i | \(0.682996\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 14.0000i | 0.506834i | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | − 12.0000i | − 0.433295i | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −29.0000 | −1.04577 | −0.522883 | − | 0.852404i | \(-0.675144\pi\) | ||||
−0.522883 | + | 0.852404i | \(0.675144\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 21.0000i | 0.755318i | 0.925945 | + | 0.377659i | \(0.123271\pi\) | ||||
−0.925945 | + | 0.377659i | \(0.876729\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | 60.0000 | 2.14972 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | 44.0000i | 1.56843i | 0.620489 | + | 0.784215i | \(0.286934\pi\) | ||||
−0.620489 | + | 0.784215i | \(0.713066\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | −12.0000 | −0.426671 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | 14.0000i | 0.497155i | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | − 39.0000i | − 1.38145i | −0.723117 | − | 0.690725i | \(-0.757291\pi\) | ||||
0.723117 | − | 0.690725i | \(-0.242709\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −36.0000 | −1.27359 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −12.0000 | −0.421898 | −0.210949 | − | 0.977497i | \(-0.567655\pi\) | ||||
−0.210949 | + | 0.977497i | \(0.567655\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | 20.0000 | 0.702295 | 0.351147 | − | 0.936320i | \(-0.385792\pi\) | ||||
0.351147 | + | 0.936320i | \(0.385792\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 40.0000i | 1.39942i | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | 18.0000 | 0.628204 | 0.314102 | − | 0.949389i | \(-0.398297\pi\) | ||||
0.314102 | + | 0.949389i | \(0.398297\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 16.0000i | 0.557725i | 0.960331 | + | 0.278862i | \(0.0899574\pi\) | ||||
−0.960331 | + | 0.278862i | \(0.910043\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | 33.0000i | 1.14752i | 0.819023 | + | 0.573761i | \(0.194516\pi\) | ||||
−0.819023 | + | 0.573761i | \(0.805484\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | 34.0000 | 1.18087 | 0.590434 | − | 0.807086i | \(-0.298956\pi\) | ||||
0.590434 | + | 0.807086i | \(0.298956\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 9.00000i | 0.311832i | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −24.0000 | −0.828572 | −0.414286 | − | 0.910147i | \(-0.635969\pi\) | ||||
−0.414286 | + | 0.910147i | \(0.635969\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | − 22.0000i | − 0.755929i | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −6.00000 | −0.205677 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 4.00000i | 0.136957i | 0.997653 | + | 0.0684787i | \(0.0218145\pi\) | ||||
−0.997653 | + | 0.0684787i | \(0.978185\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | 27.0000i | 0.922302i | 0.887322 | + | 0.461151i | \(0.152563\pi\) | ||||
−0.887322 | + | 0.461151i | \(0.847437\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −23.0000 | −0.784750 | −0.392375 | − | 0.919805i | \(-0.628346\pi\) | ||||
−0.392375 | + | 0.919805i | \(0.628346\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 3.00000i | 0.102121i | 0.998696 | + | 0.0510606i | \(0.0162602\pi\) | ||||
−0.998696 | + | 0.0510606i | \(0.983740\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 4.00000 | 0.135535 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | − 28.0000i | − 0.945493i | −0.881199 | − | 0.472746i | \(-0.843263\pi\) | ||||
0.881199 | − | 0.472746i | \(-0.156737\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −54.0000 | −1.81931 | −0.909653 | − | 0.415369i | \(-0.863653\pi\) | ||||
−0.909653 | + | 0.415369i | \(0.863653\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | − 50.0000i | − 1.68263i | −0.540542 | − | 0.841317i | \(-0.681781\pi\) | ||||
0.540542 | − | 0.841317i | \(-0.318219\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | − 27.0000i | − 0.906571i | −0.891365 | − | 0.453286i | \(-0.850252\pi\) | ||||
0.891365 | − | 0.453286i | \(-0.149748\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | −4.00000 | −0.134156 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | − 60.0000i | − 2.00782i | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −30.0000 | −1.00056 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 9.00000 | 0.299833 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | − 28.0000i | − 0.929725i | −0.885383 | − | 0.464862i | \(-0.846104\pi\) | ||||
0.885383 | − | 0.464862i | \(-0.153896\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −6.00000 | −0.198789 | −0.0993944 | − | 0.995048i | \(-0.531691\pi\) | ||||
−0.0993944 | + | 0.995048i | \(0.531691\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | − 36.0000i | − 1.18882i | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 16.0000 | 0.527791 | 0.263896 | − | 0.964551i | \(-0.414993\pi\) | ||||
0.263896 | + | 0.964551i | \(0.414993\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | 24.0000i | 0.789970i | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −12.0000 | −0.393707 | −0.196854 | − | 0.980433i | \(-0.563072\pi\) | ||||
−0.196854 | + | 0.980433i | \(0.563072\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | −15.0000 | −0.491605 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 32.0000i | 1.04539i | 0.852518 | + | 0.522697i | \(0.175074\pi\) | ||||
−0.852518 | + | 0.522697i | \(0.824926\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −18.0000 | −0.586783 | −0.293392 | − | 0.955992i | \(-0.594784\pi\) | ||||
−0.293392 | + | 0.955992i | \(0.594784\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | − 36.0000i | − 1.17232i | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 27.0000i | 0.877382i | 0.898638 | + | 0.438691i | \(0.144558\pi\) | ||||
−0.898638 | + | 0.438691i | \(0.855442\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 32.0000 | 1.03876 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 6.00000i | 0.194359i | 0.995267 | + | 0.0971795i | \(0.0309821\pi\) | ||||
−0.995267 | + | 0.0971795i | \(0.969018\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | −18.0000 | −0.581250 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −6.00000 | −0.193548 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 14.0000i | 0.450210i | 0.974335 | + | 0.225105i | \(0.0722725\pi\) | ||||
−0.974335 | + | 0.225105i | \(0.927728\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 30.0000 | 0.962746 | 0.481373 | − | 0.876516i | \(-0.340138\pi\) | ||||
0.481373 | + | 0.876516i | \(0.340138\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 8.00000i | 0.256468i | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 54.0000i | 1.72761i | 0.503824 | + | 0.863807i | \(0.331926\pi\) | ||||
−0.503824 | + | 0.863807i | \(0.668074\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | − 9.00000i | − 0.287055i | −0.989646 | − | 0.143528i | \(-0.954155\pi\) | ||||
0.989646 | − | 0.143528i | \(-0.0458446\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 24.0000 | 0.763156 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −13.0000 | −0.412959 | −0.206479 | − | 0.978451i | \(-0.566201\pi\) | ||||
−0.206479 | + | 0.978451i | \(0.566201\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | − 28.0000i | − 0.886769i | −0.896332 | − | 0.443384i | \(-0.853778\pi\) | ||||
0.896332 | − | 0.443384i | \(-0.146222\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 2700.2.d.e.649.2 | 2 | ||
3.2 | odd | 2 | 2700.2.d.f.649.2 | 2 | |||
5.2 | odd | 4 | 2700.2.a.f.1.1 | 1 | |||
5.3 | odd | 4 | 540.2.a.c.1.1 | ✓ | 1 | ||
5.4 | even | 2 | inner | 2700.2.d.e.649.1 | 2 | ||
15.2 | even | 4 | 2700.2.a.g.1.1 | 1 | |||
15.8 | even | 4 | 540.2.a.f.1.1 | yes | 1 | ||
15.14 | odd | 2 | 2700.2.d.f.649.1 | 2 | |||
20.3 | even | 4 | 2160.2.a.c.1.1 | 1 | |||
40.3 | even | 4 | 8640.2.a.bl.1.1 | 1 | |||
40.13 | odd | 4 | 8640.2.a.bz.1.1 | 1 | |||
45.13 | odd | 12 | 1620.2.i.i.541.1 | 2 | |||
45.23 | even | 12 | 1620.2.i.a.541.1 | 2 | |||
45.38 | even | 12 | 1620.2.i.a.1081.1 | 2 | |||
45.43 | odd | 12 | 1620.2.i.i.1081.1 | 2 | |||
60.23 | odd | 4 | 2160.2.a.o.1.1 | 1 | |||
120.53 | even | 4 | 8640.2.a.w.1.1 | 1 | |||
120.83 | odd | 4 | 8640.2.a.g.1.1 | 1 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
540.2.a.c.1.1 | ✓ | 1 | 5.3 | odd | 4 | ||
540.2.a.f.1.1 | yes | 1 | 15.8 | even | 4 | ||
1620.2.i.a.541.1 | 2 | 45.23 | even | 12 | |||
1620.2.i.a.1081.1 | 2 | 45.38 | even | 12 | |||
1620.2.i.i.541.1 | 2 | 45.13 | odd | 12 | |||
1620.2.i.i.1081.1 | 2 | 45.43 | odd | 12 | |||
2160.2.a.c.1.1 | 1 | 20.3 | even | 4 | |||
2160.2.a.o.1.1 | 1 | 60.23 | odd | 4 | |||
2700.2.a.f.1.1 | 1 | 5.2 | odd | 4 | |||
2700.2.a.g.1.1 | 1 | 15.2 | even | 4 | |||
2700.2.d.e.649.1 | 2 | 5.4 | even | 2 | inner | ||
2700.2.d.e.649.2 | 2 | 1.1 | even | 1 | trivial | ||
2700.2.d.f.649.1 | 2 | 15.14 | odd | 2 | |||
2700.2.d.f.649.2 | 2 | 3.2 | odd | 2 | |||
8640.2.a.g.1.1 | 1 | 120.83 | odd | 4 | |||
8640.2.a.w.1.1 | 1 | 120.53 | even | 4 | |||
8640.2.a.bl.1.1 | 1 | 40.3 | even | 4 | |||
8640.2.a.bz.1.1 | 1 | 40.13 | odd | 4 |