Properties

Label 270.3.q.b
Level $270$
Weight $3$
Character orbit 270.q
Analytic conductor $7.357$
Analytic rank $0$
Dimension $216$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(7,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([32, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.7");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.q (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(216\)
Relative dimension: \(18\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 216 q + 12 q^{6} - 18 q^{7} - 216 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 216 q + 12 q^{6} - 18 q^{7} - 216 q^{8} + 36 q^{11} + 18 q^{15} + 72 q^{20} - 288 q^{21} - 36 q^{22} + 36 q^{23} - 90 q^{25} + 66 q^{27} - 168 q^{30} + 432 q^{31} + 18 q^{33} - 162 q^{35} + 48 q^{36} + 108 q^{38} + 36 q^{40} + 216 q^{41} + 144 q^{42} + 216 q^{43} - 78 q^{45} - 108 q^{46} + 108 q^{47} + 24 q^{48} - 126 q^{50} - 108 q^{51} - 540 q^{53} - 324 q^{55} - 72 q^{56} - 234 q^{57} - 72 q^{58} + 96 q^{60} - 216 q^{61} + 108 q^{63} - 144 q^{65} + 144 q^{66} + 864 q^{67} + 108 q^{68} - 72 q^{70} + 144 q^{72} + 216 q^{73} + 588 q^{75} - 216 q^{76} + 576 q^{77} + 216 q^{78} + 1044 q^{81} - 216 q^{83} - 576 q^{85} - 432 q^{86} - 900 q^{87} + 72 q^{88} + 606 q^{90} - 756 q^{91} - 252 q^{92} - 120 q^{93} + 108 q^{95} + 108 q^{97} - 756 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1 1.28171 + 0.597672i −2.99999 0.00740672i 1.28558 + 1.53209i −4.18723 + 2.73261i −3.84070 1.80251i −0.632475 7.22922i 0.732051 + 2.73205i 8.99989 + 0.0444402i −7.00002 + 0.999828i
7.2 1.28171 + 0.597672i −2.97214 + 0.407938i 1.28558 + 1.53209i 4.58478 + 1.99495i −4.05324 1.25350i −0.211565 2.41820i 0.732051 + 2.73205i 8.66717 2.42489i 4.68404 + 5.29715i
7.3 1.28171 + 0.597672i −2.76619 1.16113i 1.28558 + 1.53209i −3.33473 3.72553i −2.85148 3.14151i 0.0905068 + 1.03450i 0.732051 + 2.73205i 6.30356 + 6.42379i −2.04752 6.76814i
7.4 1.28171 + 0.597672i −2.20325 2.03609i 1.28558 + 1.53209i 3.25352 3.79666i −1.60702 3.92651i 1.10476 + 12.6275i 0.732051 + 2.73205i 0.708643 + 8.97206i 6.43923 2.92169i
7.5 1.28171 + 0.597672i −1.95726 + 2.27357i 1.28558 + 1.53209i 1.20247 + 4.85325i −3.86750 + 1.74427i 1.06779 + 12.2049i 0.732051 + 2.73205i −1.33826 8.89995i −1.35943 + 6.93916i
7.6 1.28171 + 0.597672i −1.91925 + 2.30575i 1.28558 + 1.53209i −0.143378 4.99794i −3.83801 + 1.80823i −0.635918 7.26857i 0.732051 + 2.73205i −1.63296 8.85062i 2.80336 6.49162i
7.7 1.28171 + 0.597672i −1.13014 2.77899i 1.28558 + 1.53209i 4.31582 2.52462i 0.212408 4.23732i −1.07967 12.3407i 0.732051 + 2.73205i −6.44556 + 6.28130i 7.04054 0.656398i
7.8 1.28171 + 0.597672i −0.869653 2.87119i 1.28558 + 1.53209i −2.95248 + 4.03520i 0.601383 4.19980i 0.391336 + 4.47299i 0.732051 + 2.73205i −7.48741 + 4.99387i −6.19596 + 3.40736i
7.9 1.28171 + 0.597672i −0.839501 + 2.88015i 1.28558 + 1.53209i −2.98442 + 4.01164i −2.79738 + 3.18977i −0.504740 5.76921i 0.732051 + 2.73205i −7.59048 4.83577i −6.22281 + 3.35806i
7.10 1.28171 + 0.597672i 0.407002 + 2.97226i 1.28558 + 1.53209i −2.84689 4.11038i −1.25478 + 4.05284i 0.699763 + 7.99833i 0.732051 + 2.73205i −8.66870 + 2.41943i −1.19224 6.96983i
7.11 1.28171 + 0.597672i 0.944084 2.84758i 1.28558 + 1.53209i −4.16915 2.76010i 2.91196 3.08552i −0.0218821 0.250113i 0.732051 + 2.73205i −7.21741 5.37671i −3.69402 6.02945i
7.12 1.28171 + 0.597672i 1.20867 + 2.74574i 1.28558 + 1.53209i 4.80504 1.38261i −0.0918856 + 4.24165i 0.191946 + 2.19395i 0.732051 + 2.73205i −6.07822 + 6.63741i 6.98503 + 1.09973i
7.13 1.28171 + 0.597672i 1.96334 2.26833i 1.28558 + 1.53209i 4.60406 + 1.95004i 3.87215 1.73391i 0.884450 + 10.1093i 0.732051 + 2.73205i −1.29062 8.90698i 4.73560 + 5.25110i
7.14 1.28171 + 0.597672i 1.96532 2.26661i 1.28558 + 1.53209i 1.47524 + 4.77741i 3.87367 1.73052i −1.10829 12.6678i 0.732051 + 2.73205i −1.27502 8.90923i −0.964496 + 7.00498i
7.15 1.28171 + 0.597672i 2.43594 + 1.75106i 1.28558 + 1.53209i 1.68272 + 4.70834i 2.07562 + 3.70024i −0.269302 3.07814i 0.732051 + 2.73205i 2.86761 + 8.53093i −0.657277 + 7.04045i
7.16 1.28171 + 0.597672i 2.87829 0.845852i 1.28558 + 1.53209i 3.96688 3.04365i 4.19468 + 0.636134i −0.0494272 0.564956i 0.732051 + 2.73205i 7.56907 4.86921i 6.90351 1.53019i
7.17 1.28171 + 0.597672i 2.97808 + 0.361991i 1.28558 + 1.53209i −4.77599 + 1.47984i 3.60069 + 2.24389i 0.640855 + 7.32500i 0.732051 + 2.73205i 8.73793 + 2.15608i −7.00591 0.957743i
7.18 1.28171 + 0.597672i 2.99990 0.0241231i 1.28558 + 1.53209i 0.0301767 4.99991i 3.85943 + 1.76204i −0.429720 4.91172i 0.732051 + 2.73205i 8.99884 0.144734i 3.02699 6.39041i
13.1 −1.15846 0.811160i −2.94887 0.551531i 0.684040 + 1.87939i −4.95020 0.703930i 2.96875 + 3.03093i 9.11142 4.24872i 0.732051 2.73205i 8.39163 + 3.25278i 5.16359 + 4.83087i
13.2 −1.15846 0.811160i −2.92896 0.648982i 0.684040 + 1.87939i −1.26662 + 4.83691i 2.86665 + 3.12767i −9.87590 + 4.60521i 0.732051 2.73205i 8.15764 + 3.80169i 5.39083 4.57591i
See next 80 embeddings (of 216 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 7.18
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
27.e even 9 1 inner
135.r odd 36 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.3.q.b 216
5.c odd 4 1 inner 270.3.q.b 216
27.e even 9 1 inner 270.3.q.b 216
135.r odd 36 1 inner 270.3.q.b 216
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.3.q.b 216 1.a even 1 1 trivial
270.3.q.b 216 5.c odd 4 1 inner
270.3.q.b 216 27.e even 9 1 inner
270.3.q.b 216 135.r odd 36 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{216} + 18 T_{7}^{215} + 162 T_{7}^{214} + 738 T_{7}^{213} - 10485 T_{7}^{212} + \cdots + 87\!\cdots\!81 \) acting on \(S_{3}^{\mathrm{new}}(270, [\chi])\). Copy content Toggle raw display