Properties

Label 270.3.n
Level 270270
Weight 33
Character orbit 270.n
Rep. character χ270(29,)\chi_{270}(29,\cdot)
Character field Q(ζ18)\Q(\zeta_{18})
Dimension 216216
Newform subspaces 11
Sturm bound 162162
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 270=2335 270 = 2 \cdot 3^{3} \cdot 5
Weight: k k == 3 3
Character orbit: [χ][\chi] == 270.n (of order 1818 and degree 66)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 135 135
Character field: Q(ζ18)\Q(\zeta_{18})
Newform subspaces: 1 1
Sturm bound: 162162
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M3(270,[χ])M_{3}(270, [\chi]).

Total New Old
Modular forms 672 216 456
Cusp forms 624 216 408
Eisenstein series 48 0 48

Trace form

216q18q5+12q6+12q936q11+36q14+18q1572q20+360q21+18q2536q29+144q30+180q31+486q35192q36+348q3972q41+258q45+1008q99+O(q100) 216 q - 18 q^{5} + 12 q^{6} + 12 q^{9} - 36 q^{11} + 36 q^{14} + 18 q^{15} - 72 q^{20} + 360 q^{21} + 18 q^{25} - 36 q^{29} + 144 q^{30} + 180 q^{31} + 486 q^{35} - 192 q^{36} + 348 q^{39} - 72 q^{41} + 258 q^{45}+ \cdots - 1008 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(270,[χ])S_{3}^{\mathrm{new}}(270, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
270.3.n.a 270.n 135.n 216216 7.3577.357 None 270.3.n.a 00 00 18-18 00 SU(2)[C18]\mathrm{SU}(2)[C_{18}]

Decomposition of S3old(270,[χ])S_{3}^{\mathrm{old}}(270, [\chi]) into lower level spaces

S3old(270,[χ]) S_{3}^{\mathrm{old}}(270, [\chi]) \simeq S3new(135,[χ])S_{3}^{\mathrm{new}}(135, [\chi])2^{\oplus 2}