Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [270,3,Mod(37,270)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(270, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([4, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("270.37");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 270 = 2 \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 270.l (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.35696713773\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 90) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | 0.366025 | − | 1.36603i | 0 | −1.73205 | − | 1.00000i | −3.60463 | − | 3.46506i | 0 | −3.02677 | + | 11.2960i | −2.00000 | + | 2.00000i | 0 | −6.05274 | + | 3.65572i | ||||||
37.2 | 0.366025 | − | 1.36603i | 0 | −1.73205 | − | 1.00000i | −3.04798 | + | 3.96356i | 0 | 0.227789 | − | 0.850119i | −2.00000 | + | 2.00000i | 0 | 4.29869 | + | 5.61438i | ||||||
37.3 | 0.366025 | − | 1.36603i | 0 | −1.73205 | − | 1.00000i | −1.44906 | + | 4.78542i | 0 | 1.61267 | − | 6.01857i | −2.00000 | + | 2.00000i | 0 | 6.00661 | + | 3.73103i | ||||||
37.4 | 0.366025 | − | 1.36603i | 0 | −1.73205 | − | 1.00000i | 1.38594 | − | 4.80408i | 0 | −0.473946 | + | 1.76879i | −2.00000 | + | 2.00000i | 0 | −6.05520 | − | 3.65165i | ||||||
37.5 | 0.366025 | − | 1.36603i | 0 | −1.73205 | − | 1.00000i | 4.46665 | + | 2.24700i | 0 | −2.16011 | + | 8.06163i | −2.00000 | + | 2.00000i | 0 | 4.70437 | − | 5.27910i | ||||||
37.6 | 0.366025 | − | 1.36603i | 0 | −1.73205 | − | 1.00000i | 4.84715 | − | 1.22685i | 0 | 2.72228 | − | 10.1597i | −2.00000 | + | 2.00000i | 0 | 0.0982721 | − | 7.07038i | ||||||
73.1 | 0.366025 | + | 1.36603i | 0 | −1.73205 | + | 1.00000i | −3.60463 | + | 3.46506i | 0 | −3.02677 | − | 11.2960i | −2.00000 | − | 2.00000i | 0 | −6.05274 | − | 3.65572i | ||||||
73.2 | 0.366025 | + | 1.36603i | 0 | −1.73205 | + | 1.00000i | −3.04798 | − | 3.96356i | 0 | 0.227789 | + | 0.850119i | −2.00000 | − | 2.00000i | 0 | 4.29869 | − | 5.61438i | ||||||
73.3 | 0.366025 | + | 1.36603i | 0 | −1.73205 | + | 1.00000i | −1.44906 | − | 4.78542i | 0 | 1.61267 | + | 6.01857i | −2.00000 | − | 2.00000i | 0 | 6.00661 | − | 3.73103i | ||||||
73.4 | 0.366025 | + | 1.36603i | 0 | −1.73205 | + | 1.00000i | 1.38594 | + | 4.80408i | 0 | −0.473946 | − | 1.76879i | −2.00000 | − | 2.00000i | 0 | −6.05520 | + | 3.65165i | ||||||
73.5 | 0.366025 | + | 1.36603i | 0 | −1.73205 | + | 1.00000i | 4.46665 | − | 2.24700i | 0 | −2.16011 | − | 8.06163i | −2.00000 | − | 2.00000i | 0 | 4.70437 | + | 5.27910i | ||||||
73.6 | 0.366025 | + | 1.36603i | 0 | −1.73205 | + | 1.00000i | 4.84715 | + | 1.22685i | 0 | 2.72228 | + | 10.1597i | −2.00000 | − | 2.00000i | 0 | 0.0982721 | + | 7.07038i | ||||||
127.1 | −1.36603 | + | 0.366025i | 0 | 1.73205 | − | 1.00000i | −4.17929 | + | 2.74473i | 0 | 8.06163 | − | 2.16011i | −2.00000 | + | 2.00000i | 0 | 4.70437 | − | 5.27910i | ||||||
127.2 | −1.36603 | + | 0.366025i | 0 | 1.73205 | − | 1.00000i | −3.41977 | − | 3.64763i | 0 | −6.01857 | + | 1.61267i | −2.00000 | + | 2.00000i | 0 | 6.00661 | + | 3.73103i | ||||||
127.3 | −1.36603 | + | 0.366025i | 0 | 1.73205 | − | 1.00000i | −1.90856 | − | 4.62141i | 0 | −0.850119 | + | 0.227789i | −2.00000 | + | 2.00000i | 0 | 4.29869 | + | 5.61438i | ||||||
127.4 | −1.36603 | + | 0.366025i | 0 | 1.73205 | − | 1.00000i | −1.36109 | + | 4.81118i | 0 | −10.1597 | + | 2.72228i | −2.00000 | + | 2.00000i | 0 | 0.0982721 | − | 7.07038i | ||||||
127.5 | −1.36603 | + | 0.366025i | 0 | 1.73205 | − | 1.00000i | 3.46748 | + | 3.60230i | 0 | 1.76879 | − | 0.473946i | −2.00000 | + | 2.00000i | 0 | −6.05520 | − | 3.65165i | ||||||
127.6 | −1.36603 | + | 0.366025i | 0 | 1.73205 | − | 1.00000i | 4.80314 | − | 1.38918i | 0 | 11.2960 | − | 3.02677i | −2.00000 | + | 2.00000i | 0 | −6.05274 | + | 3.65572i | ||||||
253.1 | −1.36603 | − | 0.366025i | 0 | 1.73205 | + | 1.00000i | −4.17929 | − | 2.74473i | 0 | 8.06163 | + | 2.16011i | −2.00000 | − | 2.00000i | 0 | 4.70437 | + | 5.27910i | ||||||
253.2 | −1.36603 | − | 0.366025i | 0 | 1.73205 | + | 1.00000i | −3.41977 | + | 3.64763i | 0 | −6.01857 | − | 1.61267i | −2.00000 | − | 2.00000i | 0 | 6.00661 | − | 3.73103i | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
9.c | even | 3 | 1 | inner |
45.k | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 270.3.l.a | 24 | |
3.b | odd | 2 | 1 | 90.3.k.b | ✓ | 24 | |
5.c | odd | 4 | 1 | inner | 270.3.l.a | 24 | |
9.c | even | 3 | 1 | inner | 270.3.l.a | 24 | |
9.c | even | 3 | 1 | 810.3.g.j | 12 | ||
9.d | odd | 6 | 1 | 90.3.k.b | ✓ | 24 | |
9.d | odd | 6 | 1 | 810.3.g.h | 12 | ||
15.e | even | 4 | 1 | 90.3.k.b | ✓ | 24 | |
45.k | odd | 12 | 1 | inner | 270.3.l.a | 24 | |
45.k | odd | 12 | 1 | 810.3.g.j | 12 | ||
45.l | even | 12 | 1 | 90.3.k.b | ✓ | 24 | |
45.l | even | 12 | 1 | 810.3.g.h | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
90.3.k.b | ✓ | 24 | 3.b | odd | 2 | 1 | |
90.3.k.b | ✓ | 24 | 9.d | odd | 6 | 1 | |
90.3.k.b | ✓ | 24 | 15.e | even | 4 | 1 | |
90.3.k.b | ✓ | 24 | 45.l | even | 12 | 1 | |
270.3.l.a | 24 | 1.a | even | 1 | 1 | trivial | |
270.3.l.a | 24 | 5.c | odd | 4 | 1 | inner | |
270.3.l.a | 24 | 9.c | even | 3 | 1 | inner | |
270.3.l.a | 24 | 45.k | odd | 12 | 1 | inner | |
810.3.g.h | 12 | 9.d | odd | 6 | 1 | ||
810.3.g.h | 12 | 45.l | even | 12 | 1 | ||
810.3.g.j | 12 | 9.c | even | 3 | 1 | ||
810.3.g.j | 12 | 45.k | odd | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{24} - 6 T_{7}^{23} + 18 T_{7}^{22} - 772 T_{7}^{21} - 14187 T_{7}^{20} + 132888 T_{7}^{19} + \cdots + 11\!\cdots\!61 \) acting on \(S_{3}^{\mathrm{new}}(270, [\chi])\).