Properties

Label 270.3.l.a
Level $270$
Weight $3$
Character orbit 270.l
Analytic conductor $7.357$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(37,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 12 q^{2} + 6 q^{7} - 48 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 24 q - 12 q^{2} + 6 q^{7} - 48 q^{8} + 12 q^{10} + 12 q^{11} + 48 q^{16} + 36 q^{17} - 12 q^{20} + 12 q^{22} + 66 q^{23} - 42 q^{25} + 24 q^{28} + 72 q^{31} + 48 q^{32} + 240 q^{35} + 36 q^{37} + 36 q^{38} - 12 q^{40} + 24 q^{41} - 108 q^{43} - 264 q^{46} + 36 q^{47} - 42 q^{50} - 384 q^{53} + 288 q^{55} - 24 q^{56} - 108 q^{58} + 360 q^{61} - 144 q^{62} - 144 q^{65} + 144 q^{67} + 36 q^{68} - 174 q^{70} - 216 q^{71} + 432 q^{73} + 72 q^{76} + 48 q^{77} - 48 q^{82} + 378 q^{83} - 228 q^{85} - 216 q^{86} - 24 q^{88} - 1560 q^{91} + 132 q^{92} - 264 q^{95} - 294 q^{97} - 264 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1 0.366025 1.36603i 0 −1.73205 1.00000i −3.60463 3.46506i 0 −3.02677 + 11.2960i −2.00000 + 2.00000i 0 −6.05274 + 3.65572i
37.2 0.366025 1.36603i 0 −1.73205 1.00000i −3.04798 + 3.96356i 0 0.227789 0.850119i −2.00000 + 2.00000i 0 4.29869 + 5.61438i
37.3 0.366025 1.36603i 0 −1.73205 1.00000i −1.44906 + 4.78542i 0 1.61267 6.01857i −2.00000 + 2.00000i 0 6.00661 + 3.73103i
37.4 0.366025 1.36603i 0 −1.73205 1.00000i 1.38594 4.80408i 0 −0.473946 + 1.76879i −2.00000 + 2.00000i 0 −6.05520 3.65165i
37.5 0.366025 1.36603i 0 −1.73205 1.00000i 4.46665 + 2.24700i 0 −2.16011 + 8.06163i −2.00000 + 2.00000i 0 4.70437 5.27910i
37.6 0.366025 1.36603i 0 −1.73205 1.00000i 4.84715 1.22685i 0 2.72228 10.1597i −2.00000 + 2.00000i 0 0.0982721 7.07038i
73.1 0.366025 + 1.36603i 0 −1.73205 + 1.00000i −3.60463 + 3.46506i 0 −3.02677 11.2960i −2.00000 2.00000i 0 −6.05274 3.65572i
73.2 0.366025 + 1.36603i 0 −1.73205 + 1.00000i −3.04798 3.96356i 0 0.227789 + 0.850119i −2.00000 2.00000i 0 4.29869 5.61438i
73.3 0.366025 + 1.36603i 0 −1.73205 + 1.00000i −1.44906 4.78542i 0 1.61267 + 6.01857i −2.00000 2.00000i 0 6.00661 3.73103i
73.4 0.366025 + 1.36603i 0 −1.73205 + 1.00000i 1.38594 + 4.80408i 0 −0.473946 1.76879i −2.00000 2.00000i 0 −6.05520 + 3.65165i
73.5 0.366025 + 1.36603i 0 −1.73205 + 1.00000i 4.46665 2.24700i 0 −2.16011 8.06163i −2.00000 2.00000i 0 4.70437 + 5.27910i
73.6 0.366025 + 1.36603i 0 −1.73205 + 1.00000i 4.84715 + 1.22685i 0 2.72228 + 10.1597i −2.00000 2.00000i 0 0.0982721 + 7.07038i
127.1 −1.36603 + 0.366025i 0 1.73205 1.00000i −4.17929 + 2.74473i 0 8.06163 2.16011i −2.00000 + 2.00000i 0 4.70437 5.27910i
127.2 −1.36603 + 0.366025i 0 1.73205 1.00000i −3.41977 3.64763i 0 −6.01857 + 1.61267i −2.00000 + 2.00000i 0 6.00661 + 3.73103i
127.3 −1.36603 + 0.366025i 0 1.73205 1.00000i −1.90856 4.62141i 0 −0.850119 + 0.227789i −2.00000 + 2.00000i 0 4.29869 + 5.61438i
127.4 −1.36603 + 0.366025i 0 1.73205 1.00000i −1.36109 + 4.81118i 0 −10.1597 + 2.72228i −2.00000 + 2.00000i 0 0.0982721 7.07038i
127.5 −1.36603 + 0.366025i 0 1.73205 1.00000i 3.46748 + 3.60230i 0 1.76879 0.473946i −2.00000 + 2.00000i 0 −6.05520 3.65165i
127.6 −1.36603 + 0.366025i 0 1.73205 1.00000i 4.80314 1.38918i 0 11.2960 3.02677i −2.00000 + 2.00000i 0 −6.05274 + 3.65572i
253.1 −1.36603 0.366025i 0 1.73205 + 1.00000i −4.17929 2.74473i 0 8.06163 + 2.16011i −2.00000 2.00000i 0 4.70437 + 5.27910i
253.2 −1.36603 0.366025i 0 1.73205 + 1.00000i −3.41977 + 3.64763i 0 −6.01857 1.61267i −2.00000 2.00000i 0 6.00661 3.73103i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
9.c even 3 1 inner
45.k odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.3.l.a 24
3.b odd 2 1 90.3.k.b 24
5.c odd 4 1 inner 270.3.l.a 24
9.c even 3 1 inner 270.3.l.a 24
9.c even 3 1 810.3.g.j 12
9.d odd 6 1 90.3.k.b 24
9.d odd 6 1 810.3.g.h 12
15.e even 4 1 90.3.k.b 24
45.k odd 12 1 inner 270.3.l.a 24
45.k odd 12 1 810.3.g.j 12
45.l even 12 1 90.3.k.b 24
45.l even 12 1 810.3.g.h 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.3.k.b 24 3.b odd 2 1
90.3.k.b 24 9.d odd 6 1
90.3.k.b 24 15.e even 4 1
90.3.k.b 24 45.l even 12 1
270.3.l.a 24 1.a even 1 1 trivial
270.3.l.a 24 5.c odd 4 1 inner
270.3.l.a 24 9.c even 3 1 inner
270.3.l.a 24 45.k odd 12 1 inner
810.3.g.h 12 9.d odd 6 1
810.3.g.h 12 45.l even 12 1
810.3.g.j 12 9.c even 3 1
810.3.g.j 12 45.k odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{24} - 6 T_{7}^{23} + 18 T_{7}^{22} - 772 T_{7}^{21} - 14187 T_{7}^{20} + 132888 T_{7}^{19} + \cdots + 11\!\cdots\!61 \) acting on \(S_{3}^{\mathrm{new}}(270, [\chi])\). Copy content Toggle raw display