Defining parameters
Level: | \( N \) | \(=\) | \( 270 = 2 \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 270.h (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(162\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(270, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 240 | 16 | 224 |
Cusp forms | 192 | 16 | 176 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(270, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
270.3.h.a | $16$ | $7.357$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\beta _{6}q^{2}-2\beta _{10}q^{4}+\beta _{12}q^{5}+(2\beta _{1}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(270, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(270, [\chi]) \cong \) \(S_{3}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)