Properties

Label 270.3.b.a.269.1
Level $270$
Weight $3$
Character 270.269
Analytic conductor $7.357$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(269,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.269");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.31744.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 14x^{2} + 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 269.1
Root \(1.66053i\) of defining polynomial
Character \(\chi\) \(=\) 270.269
Dual form 270.3.b.a.269.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{2} +2.00000 q^{4} +(-4.41421 - 2.34834i) q^{5} -13.6872i q^{7} -2.82843 q^{8} +O(q^{10})\) \(q-1.41421 q^{2} +2.00000 q^{4} +(-4.41421 - 2.34834i) q^{5} -13.6872i q^{7} -2.82843 q^{8} +(6.24264 + 3.32106i) q^{10} +12.3115i q^{11} +17.0082i q^{13} +19.3566i q^{14} +4.00000 q^{16} -6.89949 q^{17} -7.24264 q^{19} +(-8.82843 - 4.69669i) q^{20} -17.4111i q^{22} -34.7990 q^{23} +(13.9706 + 20.7322i) q^{25} -24.0532i q^{26} -27.3743i q^{28} -21.1351i q^{29} -38.2132 q^{31} -5.65685 q^{32} +9.75736 q^{34} +(-32.1421 + 60.4180i) q^{35} +21.5380i q^{37} +10.2426 q^{38} +(12.4853 + 6.64212i) q^{40} +36.3648i q^{41} -6.23921i q^{43} +24.6230i q^{44} +49.2132 q^{46} +40.2010 q^{47} -138.338 q^{49} +(-19.7574 - 29.3197i) q^{50} +34.0164i q^{52} -38.2721 q^{53} +(28.9117 - 54.3457i) q^{55} +38.7131i q^{56} +29.8895i q^{58} -41.6313i q^{59} -15.0589 q^{61} +54.0416 q^{62} +8.00000 q^{64} +(39.9411 - 75.0779i) q^{65} +128.618i q^{67} -13.7990 q^{68} +(45.4558 - 85.4440i) q^{70} -104.967i q^{71} -2.11232i q^{73} -30.4593i q^{74} -14.4853 q^{76} +168.510 q^{77} -44.0955 q^{79} +(-17.6569 - 9.39338i) q^{80} -51.4275i q^{82} +55.0244 q^{83} +(30.4558 + 16.2024i) q^{85} +8.82357i q^{86} -34.8222i q^{88} +68.1020i q^{89} +232.794 q^{91} -69.5980 q^{92} -56.8528 q^{94} +(31.9706 + 17.0082i) q^{95} -101.243i q^{97} +195.640 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{4} - 12 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{4} - 12 q^{5} + 8 q^{10} + 16 q^{16} + 12 q^{17} - 12 q^{19} - 24 q^{20} - 60 q^{23} - 12 q^{25} - 68 q^{31} + 56 q^{34} - 72 q^{35} + 24 q^{38} + 16 q^{40} + 112 q^{46} + 240 q^{47} - 180 q^{49} - 96 q^{50} - 204 q^{53} - 88 q^{55} - 196 q^{61} + 120 q^{62} + 32 q^{64} + 24 q^{65} + 24 q^{68} + 80 q^{70} - 24 q^{76} + 312 q^{77} + 180 q^{79} - 48 q^{80} - 108 q^{83} + 20 q^{85} + 456 q^{91} - 120 q^{92} + 112 q^{94} + 60 q^{95} + 528 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.41421 −0.707107
\(3\) 0 0
\(4\) 2.00000 0.500000
\(5\) −4.41421 2.34834i −0.882843 0.469669i
\(6\) 0 0
\(7\) 13.6872i 1.95531i −0.210222 0.977654i \(-0.567419\pi\)
0.210222 0.977654i \(-0.432581\pi\)
\(8\) −2.82843 −0.353553
\(9\) 0 0
\(10\) 6.24264 + 3.32106i 0.624264 + 0.332106i
\(11\) 12.3115i 1.11923i 0.828753 + 0.559615i \(0.189051\pi\)
−0.828753 + 0.559615i \(0.810949\pi\)
\(12\) 0 0
\(13\) 17.0082i 1.30832i 0.756355 + 0.654162i \(0.226979\pi\)
−0.756355 + 0.654162i \(0.773021\pi\)
\(14\) 19.3566i 1.38261i
\(15\) 0 0
\(16\) 4.00000 0.250000
\(17\) −6.89949 −0.405853 −0.202926 0.979194i \(-0.565045\pi\)
−0.202926 + 0.979194i \(0.565045\pi\)
\(18\) 0 0
\(19\) −7.24264 −0.381192 −0.190596 0.981669i \(-0.561042\pi\)
−0.190596 + 0.981669i \(0.561042\pi\)
\(20\) −8.82843 4.69669i −0.441421 0.234834i
\(21\) 0 0
\(22\) 17.4111i 0.791415i
\(23\) −34.7990 −1.51300 −0.756500 0.653994i \(-0.773092\pi\)
−0.756500 + 0.653994i \(0.773092\pi\)
\(24\) 0 0
\(25\) 13.9706 + 20.7322i 0.558823 + 0.829287i
\(26\) 24.0532i 0.925125i
\(27\) 0 0
\(28\) 27.3743i 0.977654i
\(29\) 21.1351i 0.728796i −0.931243 0.364398i \(-0.881275\pi\)
0.931243 0.364398i \(-0.118725\pi\)
\(30\) 0 0
\(31\) −38.2132 −1.23268 −0.616342 0.787479i \(-0.711386\pi\)
−0.616342 + 0.787479i \(0.711386\pi\)
\(32\) −5.65685 −0.176777
\(33\) 0 0
\(34\) 9.75736 0.286981
\(35\) −32.1421 + 60.4180i −0.918347 + 1.72623i
\(36\) 0 0
\(37\) 21.5380i 0.582108i 0.956707 + 0.291054i \(0.0940060\pi\)
−0.956707 + 0.291054i \(0.905994\pi\)
\(38\) 10.2426 0.269543
\(39\) 0 0
\(40\) 12.4853 + 6.64212i 0.312132 + 0.166053i
\(41\) 36.3648i 0.886945i 0.896288 + 0.443473i \(0.146254\pi\)
−0.896288 + 0.443473i \(0.853746\pi\)
\(42\) 0 0
\(43\) 6.23921i 0.145098i −0.997365 0.0725489i \(-0.976887\pi\)
0.997365 0.0725489i \(-0.0231133\pi\)
\(44\) 24.6230i 0.559615i
\(45\) 0 0
\(46\) 49.2132 1.06985
\(47\) 40.2010 0.855341 0.427670 0.903935i \(-0.359334\pi\)
0.427670 + 0.903935i \(0.359334\pi\)
\(48\) 0 0
\(49\) −138.338 −2.82323
\(50\) −19.7574 29.3197i −0.395147 0.586395i
\(51\) 0 0
\(52\) 34.0164i 0.654162i
\(53\) −38.2721 −0.722115 −0.361057 0.932544i \(-0.617584\pi\)
−0.361057 + 0.932544i \(0.617584\pi\)
\(54\) 0 0
\(55\) 28.9117 54.3457i 0.525667 0.988103i
\(56\) 38.7131i 0.691306i
\(57\) 0 0
\(58\) 29.8895i 0.515337i
\(59\) 41.6313i 0.705615i −0.935696 0.352807i \(-0.885227\pi\)
0.935696 0.352807i \(-0.114773\pi\)
\(60\) 0 0
\(61\) −15.0589 −0.246867 −0.123433 0.992353i \(-0.539391\pi\)
−0.123433 + 0.992353i \(0.539391\pi\)
\(62\) 54.0416 0.871639
\(63\) 0 0
\(64\) 8.00000 0.125000
\(65\) 39.9411 75.0779i 0.614479 1.15504i
\(66\) 0 0
\(67\) 128.618i 1.91967i 0.280569 + 0.959834i \(0.409477\pi\)
−0.280569 + 0.959834i \(0.590523\pi\)
\(68\) −13.7990 −0.202926
\(69\) 0 0
\(70\) 45.4558 85.4440i 0.649369 1.22063i
\(71\) 104.967i 1.47841i −0.673478 0.739207i \(-0.735200\pi\)
0.673478 0.739207i \(-0.264800\pi\)
\(72\) 0 0
\(73\) 2.11232i 0.0289359i −0.999895 0.0144680i \(-0.995395\pi\)
0.999895 0.0144680i \(-0.00460546\pi\)
\(74\) 30.4593i 0.411613i
\(75\) 0 0
\(76\) −14.4853 −0.190596
\(77\) 168.510 2.18844
\(78\) 0 0
\(79\) −44.0955 −0.558170 −0.279085 0.960266i \(-0.590031\pi\)
−0.279085 + 0.960266i \(0.590031\pi\)
\(80\) −17.6569 9.39338i −0.220711 0.117417i
\(81\) 0 0
\(82\) 51.4275i 0.627165i
\(83\) 55.0244 0.662944 0.331472 0.943465i \(-0.392455\pi\)
0.331472 + 0.943465i \(0.392455\pi\)
\(84\) 0 0
\(85\) 30.4558 + 16.2024i 0.358304 + 0.190616i
\(86\) 8.82357i 0.102600i
\(87\) 0 0
\(88\) 34.8222i 0.395707i
\(89\) 68.1020i 0.765191i 0.923916 + 0.382595i \(0.124970\pi\)
−0.923916 + 0.382595i \(0.875030\pi\)
\(90\) 0 0
\(91\) 232.794 2.55818
\(92\) −69.5980 −0.756500
\(93\) 0 0
\(94\) −56.8528 −0.604817
\(95\) 31.9706 + 17.0082i 0.336532 + 0.179034i
\(96\) 0 0
\(97\) 101.243i 1.04375i −0.853023 0.521873i \(-0.825233\pi\)
0.853023 0.521873i \(-0.174767\pi\)
\(98\) 195.640 1.99632
\(99\) 0 0
\(100\) 27.9411 + 41.4644i 0.279411 + 0.414644i
\(101\) 15.2297i 0.150789i −0.997154 0.0753944i \(-0.975978\pi\)
0.997154 0.0753944i \(-0.0240216\pi\)
\(102\) 0 0
\(103\) 77.0924i 0.748470i −0.927334 0.374235i \(-0.877905\pi\)
0.927334 0.374235i \(-0.122095\pi\)
\(104\) 48.1065i 0.462562i
\(105\) 0 0
\(106\) 54.1249 0.510612
\(107\) 78.4264 0.732957 0.366479 0.930427i \(-0.380563\pi\)
0.366479 + 0.930427i \(0.380563\pi\)
\(108\) 0 0
\(109\) −146.279 −1.34201 −0.671006 0.741452i \(-0.734137\pi\)
−0.671006 + 0.741452i \(0.734137\pi\)
\(110\) −40.8873 + 76.8564i −0.371703 + 0.698695i
\(111\) 0 0
\(112\) 54.7486i 0.488827i
\(113\) −54.4264 −0.481650 −0.240825 0.970569i \(-0.577418\pi\)
−0.240825 + 0.970569i \(0.577418\pi\)
\(114\) 0 0
\(115\) 153.610 + 81.7200i 1.33574 + 0.710609i
\(116\) 42.2702i 0.364398i
\(117\) 0 0
\(118\) 58.8755i 0.498945i
\(119\) 94.4344i 0.793567i
\(120\) 0 0
\(121\) −30.5736 −0.252674
\(122\) 21.2965 0.174561
\(123\) 0 0
\(124\) −76.4264 −0.616342
\(125\) −12.9828 124.324i −0.103862 0.994592i
\(126\) 0 0
\(127\) 159.215i 1.25366i −0.779154 0.626832i \(-0.784351\pi\)
0.779154 0.626832i \(-0.215649\pi\)
\(128\) −11.3137 −0.0883883
\(129\) 0 0
\(130\) −56.4853 + 106.176i −0.434502 + 0.816740i
\(131\) 110.303i 0.842008i −0.907059 0.421004i \(-0.861678\pi\)
0.907059 0.421004i \(-0.138322\pi\)
\(132\) 0 0
\(133\) 99.1311i 0.745347i
\(134\) 181.893i 1.35741i
\(135\) 0 0
\(136\) 19.5147 0.143491
\(137\) −217.919 −1.59065 −0.795324 0.606184i \(-0.792699\pi\)
−0.795324 + 0.606184i \(0.792699\pi\)
\(138\) 0 0
\(139\) −106.250 −0.764387 −0.382193 0.924082i \(-0.624831\pi\)
−0.382193 + 0.924082i \(0.624831\pi\)
\(140\) −64.2843 + 120.836i −0.459173 + 0.863114i
\(141\) 0 0
\(142\) 148.446i 1.04540i
\(143\) −209.397 −1.46431
\(144\) 0 0
\(145\) −49.6325 + 93.2948i −0.342293 + 0.643413i
\(146\) 2.98728i 0.0204608i
\(147\) 0 0
\(148\) 43.0760i 0.291054i
\(149\) 14.1592i 0.0950281i −0.998871 0.0475141i \(-0.984870\pi\)
0.998871 0.0475141i \(-0.0151299\pi\)
\(150\) 0 0
\(151\) 73.3381 0.485683 0.242841 0.970066i \(-0.421921\pi\)
0.242841 + 0.970066i \(0.421921\pi\)
\(152\) 20.4853 0.134772
\(153\) 0 0
\(154\) −238.309 −1.54746
\(155\) 168.681 + 89.7377i 1.08827 + 0.578953i
\(156\) 0 0
\(157\) 70.1452i 0.446784i −0.974729 0.223392i \(-0.928287\pi\)
0.974729 0.223392i \(-0.0717131\pi\)
\(158\) 62.3604 0.394686
\(159\) 0 0
\(160\) 24.9706 + 13.2842i 0.156066 + 0.0830265i
\(161\) 476.299i 2.95838i
\(162\) 0 0
\(163\) 9.05959i 0.0555803i −0.999614 0.0277902i \(-0.991153\pi\)
0.999614 0.0277902i \(-0.00884702\pi\)
\(164\) 72.7295i 0.443473i
\(165\) 0 0
\(166\) −77.8162 −0.468772
\(167\) 63.8528 0.382352 0.191176 0.981556i \(-0.438770\pi\)
0.191176 + 0.981556i \(0.438770\pi\)
\(168\) 0 0
\(169\) −120.279 −0.711711
\(170\) −43.0711 22.9136i −0.253359 0.134786i
\(171\) 0 0
\(172\) 12.4784i 0.0725489i
\(173\) −27.9878 −0.161779 −0.0808896 0.996723i \(-0.525776\pi\)
−0.0808896 + 0.996723i \(0.525776\pi\)
\(174\) 0 0
\(175\) 283.765 191.217i 1.62151 1.09267i
\(176\) 49.2461i 0.279807i
\(177\) 0 0
\(178\) 96.3107i 0.541072i
\(179\) 21.0660i 0.117687i 0.998267 + 0.0588435i \(0.0187413\pi\)
−0.998267 + 0.0588435i \(0.981259\pi\)
\(180\) 0 0
\(181\) 53.6030 0.296149 0.148075 0.988976i \(-0.452692\pi\)
0.148075 + 0.988976i \(0.452692\pi\)
\(182\) −329.220 −1.80890
\(183\) 0 0
\(184\) 98.4264 0.534926
\(185\) 50.5786 95.0734i 0.273398 0.513910i
\(186\) 0 0
\(187\) 84.9433i 0.454242i
\(188\) 80.4020 0.427670
\(189\) 0 0
\(190\) −45.2132 24.0532i −0.237964 0.126596i
\(191\) 223.024i 1.16766i −0.811875 0.583831i \(-0.801553\pi\)
0.811875 0.583831i \(-0.198447\pi\)
\(192\) 0 0
\(193\) 176.224i 0.913075i 0.889704 + 0.456538i \(0.150911\pi\)
−0.889704 + 0.456538i \(0.849089\pi\)
\(194\) 143.180i 0.738040i
\(195\) 0 0
\(196\) −276.676 −1.41161
\(197\) −277.586 −1.40906 −0.704532 0.709672i \(-0.748843\pi\)
−0.704532 + 0.709672i \(0.748843\pi\)
\(198\) 0 0
\(199\) 71.5736 0.359666 0.179833 0.983697i \(-0.442444\pi\)
0.179833 + 0.983697i \(0.442444\pi\)
\(200\) −39.5147 58.6395i −0.197574 0.293197i
\(201\) 0 0
\(202\) 21.5380i 0.106624i
\(203\) −289.279 −1.42502
\(204\) 0 0
\(205\) 85.3970 160.522i 0.416571 0.783033i
\(206\) 109.025i 0.529248i
\(207\) 0 0
\(208\) 68.0328i 0.327081i
\(209\) 89.1679i 0.426641i
\(210\) 0 0
\(211\) 319.492 1.51418 0.757091 0.653309i \(-0.226620\pi\)
0.757091 + 0.653309i \(0.226620\pi\)
\(212\) −76.5442 −0.361057
\(213\) 0 0
\(214\) −110.912 −0.518279
\(215\) −14.6518 + 27.5412i −0.0681479 + 0.128099i
\(216\) 0 0
\(217\) 523.030i 2.41028i
\(218\) 206.870 0.948945
\(219\) 0 0
\(220\) 57.8234 108.691i 0.262834 0.494052i
\(221\) 117.348i 0.530987i
\(222\) 0 0
\(223\) 162.439i 0.728424i −0.931316 0.364212i \(-0.881338\pi\)
0.931316 0.364212i \(-0.118662\pi\)
\(224\) 77.4262i 0.345653i
\(225\) 0 0
\(226\) 76.9706 0.340578
\(227\) −241.098 −1.06210 −0.531052 0.847339i \(-0.678203\pi\)
−0.531052 + 0.847339i \(0.678203\pi\)
\(228\) 0 0
\(229\) 102.220 0.446377 0.223189 0.974775i \(-0.428353\pi\)
0.223189 + 0.974775i \(0.428353\pi\)
\(230\) −217.238 115.570i −0.944511 0.502476i
\(231\) 0 0
\(232\) 59.7791i 0.257668i
\(233\) −241.966 −1.03848 −0.519239 0.854629i \(-0.673785\pi\)
−0.519239 + 0.854629i \(0.673785\pi\)
\(234\) 0 0
\(235\) −177.456 94.4058i −0.755131 0.401727i
\(236\) 83.2625i 0.352807i
\(237\) 0 0
\(238\) 133.550i 0.561136i
\(239\) 375.458i 1.57096i 0.618890 + 0.785478i \(0.287583\pi\)
−0.618890 + 0.785478i \(0.712417\pi\)
\(240\) 0 0
\(241\) −318.279 −1.32066 −0.660330 0.750975i \(-0.729584\pi\)
−0.660330 + 0.750975i \(0.729584\pi\)
\(242\) 43.2376 0.178668
\(243\) 0 0
\(244\) −30.1177 −0.123433
\(245\) 610.654 + 324.865i 2.49246 + 1.32598i
\(246\) 0 0
\(247\) 123.184i 0.498722i
\(248\) 108.083 0.435820
\(249\) 0 0
\(250\) 18.3604 + 175.821i 0.0734416 + 0.703283i
\(251\) 85.5417i 0.340804i −0.985375 0.170402i \(-0.945493\pi\)
0.985375 0.170402i \(-0.0545066\pi\)
\(252\) 0 0
\(253\) 428.429i 1.69339i
\(254\) 225.164i 0.886474i
\(255\) 0 0
\(256\) 16.0000 0.0625000
\(257\) 214.227 0.833570 0.416785 0.909005i \(-0.363157\pi\)
0.416785 + 0.909005i \(0.363157\pi\)
\(258\) 0 0
\(259\) 294.794 1.13820
\(260\) 79.8823 150.156i 0.307239 0.577522i
\(261\) 0 0
\(262\) 155.992i 0.595389i
\(263\) 106.877 0.406377 0.203189 0.979140i \(-0.434870\pi\)
0.203189 + 0.979140i \(0.434870\pi\)
\(264\) 0 0
\(265\) 168.941 + 89.8760i 0.637514 + 0.339155i
\(266\) 140.193i 0.527040i
\(267\) 0 0
\(268\) 257.235i 0.959834i
\(269\) 365.927i 1.36032i −0.733062 0.680161i \(-0.761910\pi\)
0.733062 0.680161i \(-0.238090\pi\)
\(270\) 0 0
\(271\) −92.8894 −0.342765 −0.171383 0.985205i \(-0.554823\pi\)
−0.171383 + 0.985205i \(0.554823\pi\)
\(272\) −27.5980 −0.101463
\(273\) 0 0
\(274\) 308.184 1.12476
\(275\) −255.245 + 171.999i −0.928163 + 0.625451i
\(276\) 0 0
\(277\) 226.137i 0.816380i 0.912897 + 0.408190i \(0.133840\pi\)
−0.912897 + 0.408190i \(0.866160\pi\)
\(278\) 150.260 0.540503
\(279\) 0 0
\(280\) 90.9117 170.888i 0.324685 0.610314i
\(281\) 63.4053i 0.225642i 0.993615 + 0.112821i \(0.0359886\pi\)
−0.993615 + 0.112821i \(0.964011\pi\)
\(282\) 0 0
\(283\) 363.106i 1.28306i −0.767097 0.641531i \(-0.778300\pi\)
0.767097 0.641531i \(-0.221700\pi\)
\(284\) 209.935i 0.739207i
\(285\) 0 0
\(286\) 296.132 1.03543
\(287\) 497.730 1.73425
\(288\) 0 0
\(289\) −241.397 −0.835284
\(290\) 70.1909 131.939i 0.242038 0.454961i
\(291\) 0 0
\(292\) 4.22465i 0.0144680i
\(293\) 227.434 0.776224 0.388112 0.921612i \(-0.373127\pi\)
0.388112 + 0.921612i \(0.373127\pi\)
\(294\) 0 0
\(295\) −97.7645 + 183.769i −0.331405 + 0.622947i
\(296\) 60.9187i 0.205806i
\(297\) 0 0
\(298\) 20.0241i 0.0671950i
\(299\) 591.869i 1.97949i
\(300\) 0 0
\(301\) −85.3970 −0.283711
\(302\) −103.716 −0.343430
\(303\) 0 0
\(304\) −28.9706 −0.0952979
\(305\) 66.4731 + 35.3634i 0.217945 + 0.115946i
\(306\) 0 0
\(307\) 340.164i 1.10803i −0.832508 0.554013i \(-0.813096\pi\)
0.832508 0.554013i \(-0.186904\pi\)
\(308\) 337.019 1.09422
\(309\) 0 0
\(310\) −238.551 126.908i −0.769520 0.409382i
\(311\) 386.769i 1.24363i 0.783164 + 0.621815i \(0.213604\pi\)
−0.783164 + 0.621815i \(0.786396\pi\)
\(312\) 0 0
\(313\) 376.403i 1.20256i 0.799037 + 0.601282i \(0.205343\pi\)
−0.799037 + 0.601282i \(0.794657\pi\)
\(314\) 99.2002i 0.315924i
\(315\) 0 0
\(316\) −88.1909 −0.279085
\(317\) −355.399 −1.12113 −0.560566 0.828110i \(-0.689417\pi\)
−0.560566 + 0.828110i \(0.689417\pi\)
\(318\) 0 0
\(319\) 260.205 0.815690
\(320\) −35.3137 18.7868i −0.110355 0.0587086i
\(321\) 0 0
\(322\) 673.589i 2.09189i
\(323\) 49.9706 0.154708
\(324\) 0 0
\(325\) −352.617 + 237.614i −1.08498 + 0.731121i
\(326\) 12.8122i 0.0393012i
\(327\) 0 0
\(328\) 102.855i 0.313583i
\(329\) 550.237i 1.67245i
\(330\) 0 0
\(331\) −444.191 −1.34197 −0.670983 0.741473i \(-0.734128\pi\)
−0.670983 + 0.741473i \(0.734128\pi\)
\(332\) 110.049 0.331472
\(333\) 0 0
\(334\) −90.3015 −0.270364
\(335\) 302.039 567.746i 0.901608 1.69476i
\(336\) 0 0
\(337\) 407.086i 1.20797i −0.796995 0.603985i \(-0.793579\pi\)
0.796995 0.603985i \(-0.206421\pi\)
\(338\) 170.101 0.503256
\(339\) 0 0
\(340\) 60.9117 + 32.4048i 0.179152 + 0.0953082i
\(341\) 470.463i 1.37966i
\(342\) 0 0
\(343\) 1222.78i 3.56497i
\(344\) 17.6471i 0.0512998i
\(345\) 0 0
\(346\) 39.5807 0.114395
\(347\) 489.411 1.41041 0.705204 0.709005i \(-0.250856\pi\)
0.705204 + 0.709005i \(0.250856\pi\)
\(348\) 0 0
\(349\) 81.7939 0.234367 0.117183 0.993110i \(-0.462613\pi\)
0.117183 + 0.993110i \(0.462613\pi\)
\(350\) −401.304 + 270.422i −1.14658 + 0.772634i
\(351\) 0 0
\(352\) 69.6445i 0.197854i
\(353\) 251.387 0.712144 0.356072 0.934459i \(-0.384116\pi\)
0.356072 + 0.934459i \(0.384116\pi\)
\(354\) 0 0
\(355\) −246.500 + 463.349i −0.694365 + 1.30521i
\(356\) 136.204i 0.382595i
\(357\) 0 0
\(358\) 29.7918i 0.0832172i
\(359\) 518.500i 1.44429i 0.691742 + 0.722145i \(0.256844\pi\)
−0.691742 + 0.722145i \(0.743156\pi\)
\(360\) 0 0
\(361\) −308.544 −0.854693
\(362\) −75.8061 −0.209409
\(363\) 0 0
\(364\) 465.588 1.27909
\(365\) −4.96046 + 9.32425i −0.0135903 + 0.0255459i
\(366\) 0 0
\(367\) 341.983i 0.931834i 0.884828 + 0.465917i \(0.154276\pi\)
−0.884828 + 0.465917i \(0.845724\pi\)
\(368\) −139.196 −0.378250
\(369\) 0 0
\(370\) −71.5290 + 134.454i −0.193322 + 0.363389i
\(371\) 523.836i 1.41196i
\(372\) 0 0
\(373\) 110.303i 0.295719i 0.989008 + 0.147859i \(0.0472383\pi\)
−0.989008 + 0.147859i \(0.952762\pi\)
\(374\) 120.128i 0.321198i
\(375\) 0 0
\(376\) −113.706 −0.302409
\(377\) 359.470 0.953502
\(378\) 0 0
\(379\) 324.345 0.855792 0.427896 0.903828i \(-0.359255\pi\)
0.427896 + 0.903828i \(0.359255\pi\)
\(380\) 63.9411 + 34.0164i 0.168266 + 0.0895169i
\(381\) 0 0
\(382\) 315.403i 0.825662i
\(383\) −572.480 −1.49473 −0.747363 0.664416i \(-0.768680\pi\)
−0.747363 + 0.664416i \(0.768680\pi\)
\(384\) 0 0
\(385\) −743.838 395.719i −1.93205 1.02784i
\(386\) 249.218i 0.645642i
\(387\) 0 0
\(388\) 202.487i 0.521873i
\(389\) 721.666i 1.85518i 0.373595 + 0.927592i \(0.378125\pi\)
−0.373595 + 0.927592i \(0.621875\pi\)
\(390\) 0 0
\(391\) 240.095 0.614055
\(392\) 391.279 0.998161
\(393\) 0 0
\(394\) 392.566 0.996359
\(395\) 194.647 + 103.551i 0.492777 + 0.262155i
\(396\) 0 0
\(397\) 379.321i 0.955468i −0.878505 0.477734i \(-0.841458\pi\)
0.878505 0.477734i \(-0.158542\pi\)
\(398\) −101.220 −0.254322
\(399\) 0 0
\(400\) 55.8823 + 82.9287i 0.139706 + 0.207322i
\(401\) 350.974i 0.875246i −0.899159 0.437623i \(-0.855820\pi\)
0.899159 0.437623i \(-0.144180\pi\)
\(402\) 0 0
\(403\) 649.938i 1.61275i
\(404\) 30.4593i 0.0753944i
\(405\) 0 0
\(406\) 409.103 1.00764
\(407\) −265.166 −0.651513
\(408\) 0 0
\(409\) −533.426 −1.30422 −0.652111 0.758124i \(-0.726116\pi\)
−0.652111 + 0.758124i \(0.726116\pi\)
\(410\) −120.770 + 227.012i −0.294560 + 0.553688i
\(411\) 0 0
\(412\) 154.185i 0.374235i
\(413\) −569.813 −1.37969
\(414\) 0 0
\(415\) −242.889 129.216i −0.585276 0.311364i
\(416\) 96.2130i 0.231281i
\(417\) 0 0
\(418\) 126.103i 0.301681i
\(419\) 239.755i 0.572208i −0.958199 0.286104i \(-0.907640\pi\)
0.958199 0.286104i \(-0.0923603\pi\)
\(420\) 0 0
\(421\) 424.941 1.00936 0.504681 0.863306i \(-0.331610\pi\)
0.504681 + 0.863306i \(0.331610\pi\)
\(422\) −451.831 −1.07069
\(423\) 0 0
\(424\) 108.250 0.255306
\(425\) −96.3898 143.042i −0.226800 0.336568i
\(426\) 0 0
\(427\) 206.113i 0.482700i
\(428\) 156.853 0.366479
\(429\) 0 0
\(430\) 20.7208 38.9491i 0.0481879 0.0905794i
\(431\) 544.039i 1.26227i −0.775673 0.631135i \(-0.782589\pi\)
0.775673 0.631135i \(-0.217411\pi\)
\(432\) 0 0
\(433\) 602.735i 1.39200i −0.718043 0.695999i \(-0.754962\pi\)
0.718043 0.695999i \(-0.245038\pi\)
\(434\) 739.676i 1.70432i
\(435\) 0 0
\(436\) −292.558 −0.671006
\(437\) 252.037 0.576743
\(438\) 0 0
\(439\) 402.286 0.916370 0.458185 0.888857i \(-0.348500\pi\)
0.458185 + 0.888857i \(0.348500\pi\)
\(440\) −81.7746 + 153.713i −0.185851 + 0.349347i
\(441\) 0 0
\(442\) 165.955i 0.375464i
\(443\) −438.515 −0.989875 −0.494938 0.868929i \(-0.664809\pi\)
−0.494938 + 0.868929i \(0.664809\pi\)
\(444\) 0 0
\(445\) 159.927 300.617i 0.359386 0.675543i
\(446\) 229.723i 0.515074i
\(447\) 0 0
\(448\) 109.497i 0.244413i
\(449\) 670.866i 1.49413i 0.664749 + 0.747067i \(0.268538\pi\)
−0.664749 + 0.747067i \(0.731462\pi\)
\(450\) 0 0
\(451\) −447.706 −0.992695
\(452\) −108.853 −0.240825
\(453\) 0 0
\(454\) 340.963 0.751021
\(455\) −1027.60 546.680i −2.25847 1.20149i
\(456\) 0 0
\(457\) 695.029i 1.52085i 0.649425 + 0.760425i \(0.275010\pi\)
−0.649425 + 0.760425i \(0.724990\pi\)
\(458\) −144.561 −0.315636
\(459\) 0 0
\(460\) 307.220 + 163.440i 0.667870 + 0.355304i
\(461\) 13.0887i 0.0283920i 0.999899 + 0.0141960i \(0.00451888\pi\)
−0.999899 + 0.0141960i \(0.995481\pi\)
\(462\) 0 0
\(463\) 234.281i 0.506007i 0.967465 + 0.253004i \(0.0814185\pi\)
−0.967465 + 0.253004i \(0.918582\pi\)
\(464\) 84.5404i 0.182199i
\(465\) 0 0
\(466\) 342.191 0.734315
\(467\) 742.882 1.59075 0.795377 0.606115i \(-0.207273\pi\)
0.795377 + 0.606115i \(0.207273\pi\)
\(468\) 0 0
\(469\) 1760.41 3.75354
\(470\) 250.960 + 133.510i 0.533958 + 0.284064i
\(471\) 0 0
\(472\) 117.751i 0.249472i
\(473\) 76.8141 0.162398
\(474\) 0 0
\(475\) −101.184 150.156i −0.213018 0.316117i
\(476\) 188.869i 0.396783i
\(477\) 0 0
\(478\) 530.978i 1.11083i
\(479\) 447.411i 0.934052i 0.884244 + 0.467026i \(0.154675\pi\)
−0.884244 + 0.467026i \(0.845325\pi\)
\(480\) 0 0
\(481\) −366.323 −0.761586
\(482\) 450.115 0.933848
\(483\) 0 0
\(484\) −61.1472 −0.126337
\(485\) −237.754 + 446.910i −0.490215 + 0.921464i
\(486\) 0 0
\(487\) 50.3166i 0.103319i −0.998665 0.0516597i \(-0.983549\pi\)
0.998665 0.0516597i \(-0.0164511\pi\)
\(488\) 42.5929 0.0872806
\(489\) 0 0
\(490\) −863.595 459.429i −1.76244 0.937610i
\(491\) 790.631i 1.61025i 0.593107 + 0.805124i \(0.297901\pi\)
−0.593107 + 0.805124i \(0.702099\pi\)
\(492\) 0 0
\(493\) 145.821i 0.295784i
\(494\) 174.209i 0.352650i
\(495\) 0 0
\(496\) −152.853 −0.308171
\(497\) −1436.70 −2.89075
\(498\) 0 0
\(499\) −600.390 −1.20319 −0.601593 0.798803i \(-0.705467\pi\)
−0.601593 + 0.798803i \(0.705467\pi\)
\(500\) −25.9655 248.648i −0.0519310 0.497296i
\(501\) 0 0
\(502\) 120.974i 0.240985i
\(503\) 433.368 0.861566 0.430783 0.902456i \(-0.358237\pi\)
0.430783 + 0.902456i \(0.358237\pi\)
\(504\) 0 0
\(505\) −35.7645 + 67.2270i −0.0708208 + 0.133123i
\(506\) 605.889i 1.19741i
\(507\) 0 0
\(508\) 318.431i 0.626832i
\(509\) 961.715i 1.88942i 0.327907 + 0.944710i \(0.393657\pi\)
−0.327907 + 0.944710i \(0.606343\pi\)
\(510\) 0 0
\(511\) −28.9117 −0.0565786
\(512\) −22.6274 −0.0441942
\(513\) 0 0
\(514\) −302.963 −0.589423
\(515\) −181.040 + 340.302i −0.351533 + 0.660781i
\(516\) 0 0
\(517\) 494.936i 0.957322i
\(518\) −416.902 −0.804829
\(519\) 0 0
\(520\) −112.971 + 212.352i −0.217251 + 0.408370i
\(521\) 5.90542i 0.0113348i 0.999984 + 0.00566739i \(0.00180400\pi\)
−0.999984 + 0.00566739i \(0.998196\pi\)
\(522\) 0 0
\(523\) 165.846i 0.317104i −0.987351 0.158552i \(-0.949317\pi\)
0.987351 0.158552i \(-0.0506826\pi\)
\(524\) 220.606i 0.421004i
\(525\) 0 0
\(526\) −151.147 −0.287352
\(527\) 263.652 0.500288
\(528\) 0 0
\(529\) 681.970 1.28917
\(530\) −238.919 127.104i −0.450790 0.239819i
\(531\) 0 0
\(532\) 198.262i 0.372673i
\(533\) −618.500 −1.16041
\(534\) 0 0
\(535\) −346.191 184.172i −0.647086 0.344247i
\(536\) 363.786i 0.678705i
\(537\) 0 0
\(538\) 517.499i 0.961894i
\(539\) 1703.15i 3.15984i
\(540\) 0 0
\(541\) 216.985 0.401081 0.200541 0.979685i \(-0.435730\pi\)
0.200541 + 0.979685i \(0.435730\pi\)
\(542\) 131.365 0.242372
\(543\) 0 0
\(544\) 39.0294 0.0717453
\(545\) 645.708 + 343.514i 1.18478 + 0.630301i
\(546\) 0 0
\(547\) 100.645i 0.183995i −0.995759 0.0919973i \(-0.970675\pi\)
0.995759 0.0919973i \(-0.0293251\pi\)
\(548\) −435.838 −0.795324
\(549\) 0 0
\(550\) 360.971 243.243i 0.656310 0.442260i
\(551\) 153.074i 0.277811i
\(552\) 0 0
\(553\) 603.541i 1.09139i
\(554\) 319.806i 0.577268i
\(555\) 0 0
\(556\) −212.500 −0.382193
\(557\) −116.662 −0.209447 −0.104723 0.994501i \(-0.533396\pi\)
−0.104723 + 0.994501i \(0.533396\pi\)
\(558\) 0 0
\(559\) 106.118 0.189835
\(560\) −128.569 + 241.672i −0.229587 + 0.431557i
\(561\) 0 0
\(562\) 89.6686i 0.159553i
\(563\) −533.907 −0.948324 −0.474162 0.880438i \(-0.657249\pi\)
−0.474162 + 0.880438i \(0.657249\pi\)
\(564\) 0 0
\(565\) 240.250 + 127.812i 0.425221 + 0.226216i
\(566\) 513.510i 0.907262i
\(567\) 0 0
\(568\) 296.893i 0.522698i
\(569\) 112.651i 0.197981i −0.995088 0.0989907i \(-0.968439\pi\)
0.995088 0.0989907i \(-0.0315614\pi\)
\(570\) 0 0
\(571\) −861.535 −1.50882 −0.754409 0.656404i \(-0.772077\pi\)
−0.754409 + 0.656404i \(0.772077\pi\)
\(572\) −418.794 −0.732157
\(573\) 0 0
\(574\) −703.897 −1.22630
\(575\) −486.161 721.459i −0.845498 1.25471i
\(576\) 0 0
\(577\) 37.3256i 0.0646891i −0.999477 0.0323446i \(-0.989703\pi\)
0.999477 0.0323446i \(-0.0102974\pi\)
\(578\) 341.387 0.590635
\(579\) 0 0
\(580\) −99.2649 + 186.590i −0.171146 + 0.321706i
\(581\) 753.127i 1.29626i
\(582\) 0 0
\(583\) 471.188i 0.808212i
\(584\) 5.97455i 0.0102304i
\(585\) 0 0
\(586\) −321.640 −0.548873
\(587\) 538.103 0.916699 0.458350 0.888772i \(-0.348441\pi\)
0.458350 + 0.888772i \(0.348441\pi\)
\(588\) 0 0
\(589\) 276.765 0.469889
\(590\) 138.260 259.889i 0.234339 0.440490i
\(591\) 0 0
\(592\) 86.1520i 0.145527i
\(593\) 884.169 1.49101 0.745505 0.666500i \(-0.232208\pi\)
0.745505 + 0.666500i \(0.232208\pi\)
\(594\) 0 0
\(595\) 221.765 416.854i 0.372713 0.700595i
\(596\) 28.3184i 0.0475141i
\(597\) 0 0
\(598\) 837.029i 1.39971i
\(599\) 44.7736i 0.0747472i −0.999301 0.0373736i \(-0.988101\pi\)
0.999301 0.0373736i \(-0.0118992\pi\)
\(600\) 0 0
\(601\) 394.574 0.656528 0.328264 0.944586i \(-0.393536\pi\)
0.328264 + 0.944586i \(0.393536\pi\)
\(602\) 120.770 0.200614
\(603\) 0 0
\(604\) 146.676 0.242841
\(605\) 134.958 + 71.7973i 0.223072 + 0.118673i
\(606\) 0 0
\(607\) 215.173i 0.354485i −0.984167 0.177243i \(-0.943282\pi\)
0.984167 0.177243i \(-0.0567178\pi\)
\(608\) 40.9706 0.0673858
\(609\) 0 0
\(610\) −94.0071 50.0114i −0.154110 0.0819859i
\(611\) 683.747i 1.11906i
\(612\) 0 0
\(613\) 333.937i 0.544758i −0.962190 0.272379i \(-0.912189\pi\)
0.962190 0.272379i \(-0.0878105\pi\)
\(614\) 481.065i 0.783493i
\(615\) 0 0
\(616\) −476.617 −0.773729
\(617\) 65.4234 0.106035 0.0530174 0.998594i \(-0.483116\pi\)
0.0530174 + 0.998594i \(0.483116\pi\)
\(618\) 0 0
\(619\) −19.9268 −0.0321920 −0.0160960 0.999870i \(-0.505124\pi\)
−0.0160960 + 0.999870i \(0.505124\pi\)
\(620\) 337.362 + 179.475i 0.544133 + 0.289477i
\(621\) 0 0
\(622\) 546.973i 0.879379i
\(623\) 932.122 1.49618
\(624\) 0 0
\(625\) −234.647 + 579.281i −0.375435 + 0.926849i
\(626\) 532.314i 0.850341i
\(627\) 0 0
\(628\) 140.290i 0.223392i
\(629\) 148.601i 0.236250i
\(630\) 0 0
\(631\) −210.625 −0.333796 −0.166898 0.985974i \(-0.553375\pi\)
−0.166898 + 0.985974i \(0.553375\pi\)
\(632\) 124.721 0.197343
\(633\) 0 0
\(634\) 502.610 0.792761
\(635\) −373.892 + 702.811i −0.588807 + 1.10679i
\(636\) 0 0
\(637\) 2352.88i 3.69369i
\(638\) −367.986 −0.576780
\(639\) 0 0
\(640\) 49.9411 + 26.5685i 0.0780330 + 0.0415132i
\(641\) 1177.76i 1.83738i −0.394976 0.918692i \(-0.629247\pi\)
0.394976 0.918692i \(-0.370753\pi\)
\(642\) 0 0
\(643\) 37.6426i 0.0585422i 0.999572 + 0.0292711i \(0.00931861\pi\)
−0.999572 + 0.0292711i \(0.990681\pi\)
\(644\) 952.598i 1.47919i
\(645\) 0 0
\(646\) −70.6690 −0.109395
\(647\) 695.382 1.07478 0.537389 0.843334i \(-0.319411\pi\)
0.537389 + 0.843334i \(0.319411\pi\)
\(648\) 0 0
\(649\) 512.544 0.789744
\(650\) 498.676 336.037i 0.767194 0.516980i
\(651\) 0 0
\(652\) 18.1192i 0.0277902i
\(653\) 924.296 1.41546 0.707731 0.706482i \(-0.249719\pi\)
0.707731 + 0.706482i \(0.249719\pi\)
\(654\) 0 0
\(655\) −259.029 + 486.901i −0.395465 + 0.743361i
\(656\) 145.459i 0.221736i
\(657\) 0 0
\(658\) 778.153i 1.18260i
\(659\) 67.6704i 0.102687i 0.998681 + 0.0513433i \(0.0163503\pi\)
−0.998681 + 0.0513433i \(0.983650\pi\)
\(660\) 0 0
\(661\) 1032.87 1.56258 0.781291 0.624167i \(-0.214561\pi\)
0.781291 + 0.624167i \(0.214561\pi\)
\(662\) 628.181 0.948914
\(663\) 0 0
\(664\) −155.632 −0.234386
\(665\) 232.794 437.586i 0.350066 0.658024i
\(666\) 0 0
\(667\) 735.480i 1.10267i
\(668\) 127.706 0.191176
\(669\) 0 0
\(670\) −427.147 + 802.914i −0.637533 + 1.19838i
\(671\) 185.398i 0.276301i
\(672\) 0 0
\(673\) 10.1706i 0.0151123i −0.999971 0.00755614i \(-0.997595\pi\)
0.999971 0.00755614i \(-0.00240522\pi\)
\(674\) 575.707i 0.854164i
\(675\) 0 0
\(676\) −240.558 −0.355856
\(677\) −576.936 −0.852195 −0.426098 0.904677i \(-0.640112\pi\)
−0.426098 + 0.904677i \(0.640112\pi\)
\(678\) 0 0
\(679\) −1385.73 −2.04085
\(680\) −86.1421 45.8273i −0.126680 0.0673930i
\(681\) 0 0
\(682\) 665.335i 0.975564i
\(683\) 526.009 0.770145 0.385073 0.922886i \(-0.374176\pi\)
0.385073 + 0.922886i \(0.374176\pi\)
\(684\) 0 0
\(685\) 961.940 + 511.748i 1.40429 + 0.747078i
\(686\) 1729.28i 2.52081i
\(687\) 0 0
\(688\) 24.9568i 0.0362745i
\(689\) 650.940i 0.944760i
\(690\) 0 0
\(691\) 422.904 0.612017 0.306008 0.952029i \(-0.401006\pi\)
0.306008 + 0.952029i \(0.401006\pi\)
\(692\) −55.9756 −0.0808896
\(693\) 0 0
\(694\) −692.132 −0.997308
\(695\) 469.009 + 249.511i 0.674833 + 0.359009i
\(696\) 0 0
\(697\) 250.899i 0.359969i
\(698\) −115.674 −0.165722
\(699\) 0 0
\(700\) 567.529 382.434i 0.810756 0.546335i
\(701\) 881.146i 1.25698i 0.777816 + 0.628492i \(0.216328\pi\)
−0.777816 + 0.628492i \(0.783672\pi\)
\(702\) 0 0
\(703\) 155.992i 0.221895i
\(704\) 98.4922i 0.139904i
\(705\) 0 0
\(706\) −355.515 −0.503562
\(707\) −208.451 −0.294838
\(708\) 0 0
\(709\) 101.427 0.143057 0.0715284 0.997439i \(-0.477212\pi\)
0.0715284 + 0.997439i \(0.477212\pi\)
\(710\) 348.603 655.274i 0.490990 0.922921i
\(711\) 0 0
\(712\) 192.621i 0.270536i
\(713\) 1329.78 1.86505
\(714\) 0 0
\(715\) 924.323 + 491.736i 1.29276 + 0.687743i
\(716\) 42.1319i 0.0588435i
\(717\) 0 0
\(718\) 733.270i 1.02127i
\(719\) 36.2956i 0.0504807i 0.999681 + 0.0252404i \(0.00803511\pi\)
−0.999681 + 0.0252404i \(0.991965\pi\)
\(720\) 0 0
\(721\) −1055.18 −1.46349
\(722\) 436.347 0.604359
\(723\) 0 0
\(724\) 107.206 0.148075
\(725\) 438.177 295.269i 0.604382 0.407268i
\(726\) 0 0
\(727\) 527.755i 0.725936i 0.931802 + 0.362968i \(0.118237\pi\)
−0.931802 + 0.362968i \(0.881763\pi\)
\(728\) −658.441 −0.904452
\(729\) 0 0
\(730\) 7.01515 13.1865i 0.00960980 0.0180637i
\(731\) 43.0474i 0.0588883i
\(732\) 0 0
\(733\) 1305.93i 1.78163i −0.454370 0.890813i \(-0.650136\pi\)
0.454370 0.890813i \(-0.349864\pi\)
\(734\) 483.637i 0.658906i
\(735\) 0 0
\(736\) 196.853 0.267463
\(737\) −1583.48 −2.14855
\(738\) 0 0
\(739\) 754.875 1.02148 0.510741 0.859735i \(-0.329371\pi\)
0.510741 + 0.859735i \(0.329371\pi\)
\(740\) 101.157 190.147i 0.136699 0.256955i
\(741\) 0 0
\(742\) 740.816i 0.998404i
\(743\) −1312.59 −1.76660 −0.883302 0.468804i \(-0.844685\pi\)
−0.883302 + 0.468804i \(0.844685\pi\)
\(744\) 0 0
\(745\) −33.2506 + 62.5017i −0.0446317 + 0.0838949i
\(746\) 155.992i 0.209105i
\(747\) 0 0
\(748\) 169.887i 0.227121i
\(749\) 1073.43i 1.43316i
\(750\) 0 0
\(751\) 1232.43 1.64106 0.820528 0.571607i \(-0.193680\pi\)
0.820528 + 0.571607i \(0.193680\pi\)
\(752\) 160.804 0.213835
\(753\) 0 0
\(754\) −508.368 −0.674227
\(755\) −323.730 172.223i −0.428781 0.228110i
\(756\) 0 0
\(757\) 401.164i 0.529939i −0.964257 0.264970i \(-0.914638\pi\)
0.964257 0.264970i \(-0.0853619\pi\)
\(758\) −458.693 −0.605136
\(759\) 0 0
\(760\) −90.4264 48.1065i −0.118982 0.0632980i
\(761\) 525.130i 0.690053i 0.938593 + 0.345027i \(0.112130\pi\)
−0.938593 + 0.345027i \(0.887870\pi\)
\(762\) 0 0
\(763\) 2002.15i 2.62404i
\(764\) 446.047i 0.583831i
\(765\) 0 0
\(766\) 809.609 1.05693
\(767\) 708.073 0.923172
\(768\) 0 0
\(769\) −542.750 −0.705787 −0.352894 0.935663i \(-0.614802\pi\)
−0.352894 + 0.935663i \(0.614802\pi\)
\(770\) 1051.95 + 559.631i 1.36616 + 0.726793i
\(771\) 0 0
\(772\) 352.447i 0.456538i
\(773\) 522.640 0.676119 0.338059 0.941125i \(-0.390230\pi\)
0.338059 + 0.941125i \(0.390230\pi\)
\(774\) 0 0
\(775\) −533.860 792.243i −0.688852 1.02225i
\(776\) 286.360i 0.369020i
\(777\) 0 0
\(778\) 1020.59i 1.31181i
\(779\) 263.377i 0.338096i
\(780\) 0 0
\(781\) 1292.31 1.65468
\(782\) −339.546 −0.434202
\(783\) 0 0
\(784\) −553.352 −0.705807
\(785\) −164.725 + 309.636i −0.209841 + 0.394440i
\(786\) 0 0
\(787\) 828.884i 1.05322i 0.850107 + 0.526610i \(0.176537\pi\)
−0.850107 + 0.526610i \(0.823463\pi\)
\(788\) −555.172 −0.704532
\(789\)