Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [270,2,Mod(23,270)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(270, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([22, 27]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("270.23");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 270 = 2 \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 270.r (of order \(36\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.15596085457\) |
Analytic rank: | \(0\) |
Dimension: | \(216\) |
Relative dimension: | \(18\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
23.1 | −0.422618 | − | 0.906308i | −1.64369 | − | 0.546145i | −0.642788 | + | 0.766044i | 0.0834598 | + | 2.23451i | 0.199679 | + | 1.72050i | 0.151473 | − | 1.73135i | 0.965926 | + | 0.258819i | 2.40345 | + | 1.79539i | 1.98988 | − | 1.01998i |
23.2 | −0.422618 | − | 0.906308i | −1.11741 | + | 1.32341i | −0.642788 | + | 0.766044i | 0.315168 | − | 2.21375i | 1.67165 | + | 0.453419i | −0.161670 | + | 1.84790i | 0.965926 | + | 0.258819i | −0.502804 | − | 2.95756i | −2.13953 | + | 0.649930i |
23.3 | −0.422618 | − | 0.906308i | −0.485244 | + | 1.66269i | −0.642788 | + | 0.766044i | −1.90917 | + | 1.16407i | 1.71198 | − | 0.262903i | 0.141869 | − | 1.62157i | 0.965926 | + | 0.258819i | −2.52908 | − | 1.61362i | 1.86186 | + | 1.23834i |
23.4 | −0.422618 | − | 0.906308i | −0.269916 | − | 1.71089i | −0.642788 | + | 0.766044i | −1.54034 | + | 1.62092i | −1.43652 | + | 0.967680i | −0.313747 | + | 3.58615i | 0.965926 | + | 0.258819i | −2.85429 | + | 0.923593i | 2.12002 | + | 0.710989i |
23.5 | −0.422618 | − | 0.906308i | 0.108126 | − | 1.72867i | −0.642788 | + | 0.766044i | 1.61864 | − | 1.54272i | −1.61241 | + | 0.632573i | 0.128886 | − | 1.47317i | 0.965926 | + | 0.258819i | −2.97662 | − | 0.373831i | −2.08225 | − | 0.815008i |
23.6 | −0.422618 | − | 0.906308i | 0.670666 | + | 1.59694i | −0.642788 | + | 0.766044i | 2.12921 | + | 0.682969i | 1.16388 | − | 1.28272i | −0.276354 | + | 3.15874i | 0.965926 | + | 0.258819i | −2.10041 | + | 2.14202i | −0.280865 | − | 2.21836i |
23.7 | −0.422618 | − | 0.906308i | 1.48032 | + | 0.899255i | −0.642788 | + | 0.766044i | −0.228325 | − | 2.22438i | 0.189392 | − | 1.72167i | 0.448089 | − | 5.12168i | 0.965926 | + | 0.258819i | 1.38268 | + | 2.66237i | −1.91948 | + | 1.14700i |
23.8 | −0.422618 | − | 0.906308i | 1.53677 | − | 0.798965i | −0.642788 | + | 0.766044i | 1.54295 | + | 1.61843i | −1.37357 | − | 1.05513i | 4.48025e−5 | 0 | 0.000512095i | 0.965926 | + | 0.258819i | 1.72331 | − | 2.45565i | 0.814713 | − | 2.08236i |
23.9 | −0.422618 | − | 0.906308i | 1.57567 | + | 0.719210i | −0.642788 | + | 0.766044i | −2.23484 | − | 0.0739999i | −0.0140815 | − | 1.73199i | −0.290253 | + | 3.31761i | 0.965926 | + | 0.258819i | 1.96547 | + | 2.26648i | 0.877419 | + | 2.05673i |
23.10 | 0.422618 | + | 0.906308i | −1.71880 | + | 0.213803i | −0.642788 | + | 0.766044i | 1.33372 | − | 1.79477i | −0.920170 | − | 1.46741i | 0.318607 | − | 3.64169i | −0.965926 | − | 0.258819i | 2.90858 | − | 0.734972i | 2.19027 | + | 0.450258i |
23.11 | 0.422618 | + | 0.906308i | −1.09878 | + | 1.33891i | −0.642788 | + | 0.766044i | −1.53755 | − | 1.62356i | −1.67783 | − | 0.429980i | −0.298488 | + | 3.41173i | −0.965926 | − | 0.258819i | −0.585380 | − | 2.94233i | 0.821648 | − | 2.07964i |
23.12 | 0.422618 | + | 0.906308i | −0.931860 | − | 1.46001i | −0.642788 | + | 0.766044i | 1.60755 | + | 1.55428i | 0.929400 | − | 1.46158i | −0.119477 | + | 1.36563i | −0.965926 | − | 0.258819i | −1.26327 | + | 2.72105i | −0.729270 | + | 2.11380i |
23.13 | 0.422618 | + | 0.906308i | −0.572880 | − | 1.63457i | −0.642788 | + | 0.766044i | −2.22872 | + | 0.181179i | 1.23931 | − | 1.21000i | 0.347359 | − | 3.97033i | −0.965926 | − | 0.258819i | −2.34362 | + | 1.87282i | −1.10610 | − | 1.94333i |
23.14 | 0.422618 | + | 0.906308i | −0.384296 | + | 1.68888i | −0.642788 | + | 0.766044i | 2.13029 | + | 0.679602i | −1.69306 | + | 0.365461i | −0.165615 | + | 1.89299i | −0.965926 | − | 0.258819i | −2.70463 | − | 1.29806i | 0.284371 | + | 2.21791i |
23.15 | 0.422618 | + | 0.906308i | 0.931314 | + | 1.46036i | −0.642788 | + | 0.766044i | −1.83318 | + | 1.28042i | −0.929946 | + | 1.46123i | 0.0540957 | − | 0.618317i | −0.965926 | − | 0.258819i | −1.26531 | + | 2.72011i | −1.93519 | − | 1.12029i |
23.16 | 0.422618 | + | 0.906308i | 1.27806 | − | 1.16900i | −0.642788 | + | 0.766044i | −0.954076 | − | 2.02231i | 1.59960 | + | 0.664279i | 0.108110 | − | 1.23570i | −0.965926 | − | 0.258819i | 0.266890 | − | 2.98810i | 1.42963 | − | 1.71935i |
23.17 | 0.422618 | + | 0.906308i | 1.48818 | − | 0.886189i | −0.642788 | + | 0.766044i | −0.781119 | + | 2.09520i | 1.43209 | + | 0.974226i | −0.399506 | + | 4.56637i | −0.965926 | − | 0.258819i | 1.42934 | − | 2.63761i | −2.22901 | + | 0.177535i |
23.18 | 0.422618 | + | 0.906308i | 1.71720 | + | 0.226328i | −0.642788 | + | 0.766044i | 2.03983 | + | 0.916011i | 0.520597 | + | 1.65196i | 0.326578 | − | 3.73281i | −0.965926 | − | 0.258819i | 2.89755 | + | 0.777302i | 0.0318831 | + | 2.23584i |
47.1 | −0.422618 | + | 0.906308i | −1.64369 | + | 0.546145i | −0.642788 | − | 0.766044i | 0.0834598 | − | 2.23451i | 0.199679 | − | 1.72050i | 0.151473 | + | 1.73135i | 0.965926 | − | 0.258819i | 2.40345 | − | 1.79539i | 1.98988 | + | 1.01998i |
47.2 | −0.422618 | + | 0.906308i | −1.11741 | − | 1.32341i | −0.642788 | − | 0.766044i | 0.315168 | + | 2.21375i | 1.67165 | − | 0.453419i | −0.161670 | − | 1.84790i | 0.965926 | − | 0.258819i | −0.502804 | + | 2.95756i | −2.13953 | − | 0.649930i |
See next 80 embeddings (of 216 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
27.f | odd | 18 | 1 | inner |
135.q | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 270.2.r.a | ✓ | 216 |
3.b | odd | 2 | 1 | 810.2.s.a | 216 | ||
5.c | odd | 4 | 1 | inner | 270.2.r.a | ✓ | 216 |
15.e | even | 4 | 1 | 810.2.s.a | 216 | ||
27.e | even | 9 | 1 | 810.2.s.a | 216 | ||
27.f | odd | 18 | 1 | inner | 270.2.r.a | ✓ | 216 |
135.q | even | 36 | 1 | inner | 270.2.r.a | ✓ | 216 |
135.r | odd | 36 | 1 | 810.2.s.a | 216 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
270.2.r.a | ✓ | 216 | 1.a | even | 1 | 1 | trivial |
270.2.r.a | ✓ | 216 | 5.c | odd | 4 | 1 | inner |
270.2.r.a | ✓ | 216 | 27.f | odd | 18 | 1 | inner |
270.2.r.a | ✓ | 216 | 135.q | even | 36 | 1 | inner |
810.2.s.a | 216 | 3.b | odd | 2 | 1 | ||
810.2.s.a | 216 | 15.e | even | 4 | 1 | ||
810.2.s.a | 216 | 27.e | even | 9 | 1 | ||
810.2.s.a | 216 | 135.r | odd | 36 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(270, [\chi])\).