Properties

Label 270.2.k.b
Level $270$
Weight $2$
Character orbit 270.k
Analytic conductor $2.156$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(31,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.k (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: 12.0.1952986685049.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{7} q^{2} + ( - \beta_{11} - \beta_{7} - \beta_{5} + 1) q^{3} + \beta_{9} q^{4} + ( - \beta_{9} + \beta_{8}) q^{5} + ( - \beta_{10} + \beta_{9} + \cdots + \beta_{4}) q^{6}+ \cdots + ( - 2 \beta_{10} + \beta_{9} + \cdots - 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{7} q^{2} + ( - \beta_{11} - \beta_{7} - \beta_{5} + 1) q^{3} + \beta_{9} q^{4} + ( - \beta_{9} + \beta_{8}) q^{5} + ( - \beta_{10} + \beta_{9} + \cdots + \beta_{4}) q^{6}+ \cdots + (2 \beta_{11} + 3 \beta_{9} - 3 \beta_{8} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{3} + 3 q^{6} - 12 q^{7} + 6 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 3 q^{3} + 3 q^{6} - 12 q^{7} + 6 q^{8} - 3 q^{9} + 6 q^{10} + 3 q^{11} + 9 q^{12} + 9 q^{13} - 6 q^{14} - 9 q^{17} - 6 q^{18} - 3 q^{19} - 6 q^{21} - 3 q^{22} - 24 q^{23} - 3 q^{24} + 12 q^{26} - 9 q^{27} - 6 q^{28} + 6 q^{29} + 6 q^{30} + 21 q^{31} - 9 q^{33} + 18 q^{34} + 3 q^{35} - 3 q^{36} - 18 q^{38} - 24 q^{41} - 27 q^{42} + 33 q^{43} + 3 q^{44} + 15 q^{45} + 15 q^{46} - 18 q^{47} + 6 q^{48} - 30 q^{49} + 9 q^{51} + 9 q^{52} + 24 q^{53} - 18 q^{54} - 6 q^{55} - 6 q^{56} + 15 q^{57} + 39 q^{58} + 36 q^{59} - 3 q^{60} - 24 q^{61} - 60 q^{63} - 6 q^{64} - 9 q^{66} + 9 q^{67} + 9 q^{68} + 18 q^{69} - 6 q^{70} - 18 q^{71} + 12 q^{72} + 12 q^{73} - 12 q^{74} - 3 q^{75} + 18 q^{76} + 24 q^{77} - 24 q^{78} + 27 q^{79} + 12 q^{80} - 63 q^{81} + 6 q^{82} - 9 q^{83} - 3 q^{84} - 18 q^{85} - 33 q^{86} - 18 q^{87} - 3 q^{88} + 15 q^{89} - 15 q^{90} - 21 q^{91} + 3 q^{92} + 36 q^{93} - 54 q^{94} - 18 q^{95} + 36 q^{97} + 3 q^{98} + 45 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 6 x^{11} + 27 x^{10} - 80 x^{9} + 186 x^{8} - 330 x^{7} + 463 x^{6} - 504 x^{5} + 420 x^{4} + \cdots + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{10} - 5 \nu^{9} + 22 \nu^{8} - 58 \nu^{7} + 127 \nu^{6} - 199 \nu^{5} + 249 \nu^{4} - 224 \nu^{3} + \cdots + 9 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 3 \nu^{11} - 16 \nu^{10} + 71 \nu^{9} - 197 \nu^{8} + 445 \nu^{7} - 747 \nu^{6} + 1006 \nu^{5} + \cdots - 25 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( - 6 \nu^{11} + 32 \nu^{10} - 140 \nu^{9} + 384 \nu^{8} - 849 \nu^{7} + 1390 \nu^{6} - 1805 \nu^{5} + \cdots + 25 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( - 9 \nu^{11} + 49 \nu^{10} - 216 \nu^{9} + 601 \nu^{8} - 1344 \nu^{7} + 2232 \nu^{6} - 2942 \nu^{5} + \cdots + 49 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 9 \nu^{11} - 50 \nu^{10} + 221 \nu^{9} - 623 \nu^{8} + 1402 \nu^{7} - 2360 \nu^{6} + 3144 \nu^{5} + \cdots - 62 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 11 \nu^{11} - 60 \nu^{10} + 265 \nu^{9} - 739 \nu^{8} + 1657 \nu^{7} - 2761 \nu^{6} + 3653 \nu^{5} + \cdots - 61 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( - 16 \nu^{11} + 87 \nu^{10} - 383 \nu^{9} + 1064 \nu^{8} - 2375 \nu^{7} + 3936 \nu^{6} - 5176 \nu^{5} + \cdots + 85 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( - 16 \nu^{11} + 89 \nu^{10} - 393 \nu^{9} + 1108 \nu^{8} - 2491 \nu^{7} + 4191 \nu^{6} - 5577 \nu^{5} + \cdots + 110 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( 36 \nu^{11} - 198 \nu^{10} + 873 \nu^{9} - 2443 \nu^{8} + 5472 \nu^{7} - 9134 \nu^{6} + 12076 \nu^{5} + \cdots - 209 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( - 36 \nu^{11} + 198 \nu^{10} - 873 \nu^{9} + 2444 \nu^{8} - 5476 \nu^{7} + 9150 \nu^{6} - 12110 \nu^{5} + \cdots + 217 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( - 42 \nu^{11} + 231 \nu^{10} - 1019 \nu^{9} + 2853 \nu^{8} - 6396 \nu^{7} + 10689 \nu^{6} - 14157 \nu^{5} + \cdots + 257 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{11} - \beta_{10} + \beta_{9} + \beta_{8} + \beta_{7} - 2 \beta_{6} + \beta_{5} - 2 \beta_{4} + \cdots + 3 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{11} - \beta_{10} + \beta_{9} + 4 \beta_{8} - 2 \beta_{7} - 2 \beta_{6} + 4 \beta_{5} + \beta_{4} + \cdots - 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - 5 \beta_{11} + 5 \beta_{10} - 5 \beta_{9} + \beta_{8} - 8 \beta_{7} + 7 \beta_{6} + 4 \beta_{5} + \cdots - 18 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - 11 \beta_{11} + 17 \beta_{10} - 5 \beta_{9} - 20 \beta_{8} + 4 \beta_{7} + 16 \beta_{6} - 14 \beta_{5} + \cdots + 6 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 19 \beta_{11} - \beta_{10} + 31 \beta_{9} - 32 \beta_{8} + 43 \beta_{7} - 20 \beta_{6} - 41 \beta_{5} + \cdots + 87 ) / 3 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 85 \beta_{11} - 97 \beta_{10} + 55 \beta_{9} + 64 \beta_{8} + 10 \beta_{7} - 101 \beta_{6} + 19 \beta_{5} + \cdots + 60 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 20 \beta_{11} - 118 \beta_{10} - 134 \beta_{9} + 244 \beta_{8} - 218 \beta_{7} + \beta_{6} + \cdots - 357 ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 503 \beta_{11} + 386 \beta_{10} - 440 \beta_{9} - 47 \beta_{8} - 233 \beta_{7} + 514 \beta_{6} + \cdots - 639 ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 425 \beta_{11} + 1076 \beta_{10} + 319 \beta_{9} - 1313 \beta_{8} + 955 \beta_{7} + 502 \beta_{6} + \cdots + 1164 ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 2299 \beta_{11} - 862 \beta_{10} + 2725 \beta_{9} - 1193 \beta_{8} + 2104 \beta_{7} - 2135 \beta_{6} + \cdots + 4356 ) / 3 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 4708 \beta_{11} - 6628 \beta_{10} + 985 \beta_{9} + 5506 \beta_{8} - 3107 \beta_{7} - 4679 \beta_{6} + \cdots - 1698 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(\beta_{9}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1
0.500000 + 1.27297i
0.500000 + 0.0126039i
0.500000 1.27297i
0.500000 0.0126039i
0.500000 1.00210i
0.500000 + 1.68614i
0.500000 0.258654i
0.500000 + 2.22827i
0.500000 + 0.258654i
0.500000 2.22827i
0.500000 + 1.00210i
0.500000 1.68614i
0.939693 + 0.342020i 0.974157 1.43214i 0.766044 + 0.642788i 0.173648 0.984808i 1.40523 1.01259i 0.0147687 0.0123924i 0.500000 + 0.866025i −1.10204 2.79025i 0.500000 0.866025i
31.2 0.939693 + 0.342020i 1.40523 + 1.01259i 0.766044 + 0.642788i 0.173648 0.984808i 0.974157 + 1.43214i −3.12811 + 2.62480i 0.500000 + 0.866025i 0.949332 + 2.84583i 0.500000 0.866025i
61.1 0.939693 0.342020i 0.974157 + 1.43214i 0.766044 0.642788i 0.173648 + 0.984808i 1.40523 + 1.01259i 0.0147687 + 0.0123924i 0.500000 0.866025i −1.10204 + 2.79025i 0.500000 + 0.866025i
61.2 0.939693 0.342020i 1.40523 1.01259i 0.766044 0.642788i 0.173648 + 0.984808i 0.974157 1.43214i −3.12811 2.62480i 0.500000 0.866025i 0.949332 2.84583i 0.500000 + 0.866025i
121.1 −0.173648 0.984808i −1.24735 + 1.20171i −0.939693 + 0.342020i 0.766044 + 0.642788i 1.40006 + 1.01973i −2.05598 0.748314i 0.500000 + 0.866025i 0.111776 2.99792i 0.500000 0.866025i
121.2 −0.173648 0.984808i 1.40006 1.01973i −0.939693 + 0.342020i 0.766044 + 0.642788i −1.24735 1.20171i −0.536421 0.195241i 0.500000 + 0.866025i 0.920313 2.85535i 0.500000 0.866025i
151.1 −0.766044 0.642788i −1.31533 1.12691i 0.173648 + 0.984808i −0.939693 0.342020i 0.283238 + 1.70874i −0.720122 + 4.08401i 0.500000 0.866025i 0.460168 + 2.96450i 0.500000 + 0.866025i
151.2 −0.766044 0.642788i 0.283238 1.70874i 0.173648 + 0.984808i −0.939693 0.342020i −1.31533 + 1.12691i 0.425859 2.41517i 0.500000 0.866025i −2.83955 0.967956i 0.500000 + 0.866025i
211.1 −0.766044 + 0.642788i −1.31533 + 1.12691i 0.173648 0.984808i −0.939693 + 0.342020i 0.283238 1.70874i −0.720122 4.08401i 0.500000 + 0.866025i 0.460168 2.96450i 0.500000 0.866025i
211.2 −0.766044 + 0.642788i 0.283238 + 1.70874i 0.173648 0.984808i −0.939693 + 0.342020i −1.31533 1.12691i 0.425859 + 2.41517i 0.500000 + 0.866025i −2.83955 + 0.967956i 0.500000 0.866025i
241.1 −0.173648 + 0.984808i −1.24735 1.20171i −0.939693 0.342020i 0.766044 0.642788i 1.40006 1.01973i −2.05598 + 0.748314i 0.500000 0.866025i 0.111776 + 2.99792i 0.500000 + 0.866025i
241.2 −0.173648 + 0.984808i 1.40006 + 1.01973i −0.939693 0.342020i 0.766044 0.642788i −1.24735 + 1.20171i −0.536421 + 0.195241i 0.500000 0.866025i 0.920313 + 2.85535i 0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.2.k.b 12
3.b odd 2 1 810.2.k.b 12
27.e even 9 1 inner 270.2.k.b 12
27.e even 9 1 7290.2.a.k 6
27.f odd 18 1 810.2.k.b 12
27.f odd 18 1 7290.2.a.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.2.k.b 12 1.a even 1 1 trivial
270.2.k.b 12 27.e even 9 1 inner
810.2.k.b 12 3.b odd 2 1
810.2.k.b 12 27.f odd 18 1
7290.2.a.k 6 27.e even 9 1
7290.2.a.l 6 27.f odd 18 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{12} + 12 T_{7}^{11} + 87 T_{7}^{10} + 430 T_{7}^{9} + 1602 T_{7}^{8} + 4374 T_{7}^{7} + 9534 T_{7}^{6} + \cdots + 1 \) acting on \(S_{2}^{\mathrm{new}}(270, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{6} - T^{3} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{12} - 3 T^{11} + \cdots + 729 \) Copy content Toggle raw display
$5$ \( (T^{6} + T^{3} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{12} + 12 T^{11} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{12} - 3 T^{11} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{12} - 9 T^{11} + \cdots + 375769 \) Copy content Toggle raw display
$17$ \( T^{12} + 9 T^{11} + \cdots + 80838081 \) Copy content Toggle raw display
$19$ \( T^{12} + 3 T^{11} + \cdots + 877969 \) Copy content Toggle raw display
$23$ \( T^{12} + 24 T^{11} + \cdots + 110889 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 583077609 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 377175241 \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 211033729 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 185422689 \) Copy content Toggle raw display
$43$ \( T^{12} - 33 T^{11} + \cdots + 1923769 \) Copy content Toggle raw display
$47$ \( (T^{6} + 9 T^{5} + \cdots + 23409)^{2} \) Copy content Toggle raw display
$53$ \( (T^{6} - 12 T^{5} + \cdots - 477)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} - 36 T^{11} + \cdots + 77951241 \) Copy content Toggle raw display
$61$ \( T^{12} + 24 T^{11} + \cdots + 30151081 \) Copy content Toggle raw display
$67$ \( T^{12} - 9 T^{11} + \cdots + 12581209 \) Copy content Toggle raw display
$71$ \( T^{12} + \cdots + 547981281 \) Copy content Toggle raw display
$73$ \( T^{12} + \cdots + 146637682489 \) Copy content Toggle raw display
$79$ \( T^{12} - 27 T^{11} + \cdots + 201601 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 214740486801 \) Copy content Toggle raw display
$89$ \( T^{12} - 15 T^{11} + \cdots + 81 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 40171784041 \) Copy content Toggle raw display
show more
show less