Properties

Label 270.2.f.a
Level $270$
Weight $2$
Character orbit 270.f
Analytic conductor $2.156$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(53,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{5} q^{2} - \beta_{3} q^{4} + (\beta_{5} - \beta_{4} + \beta_1) q^{5} + ( - \beta_{3} - 2 \beta_{2} - 1) q^{7} - \beta_1 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{5} q^{2} - \beta_{3} q^{4} + (\beta_{5} - \beta_{4} + \beta_1) q^{5} + ( - \beta_{3} - 2 \beta_{2} - 1) q^{7} - \beta_1 q^{8} + ( - \beta_{3} - \beta_{2} + 1) q^{10} + ( - 2 \beta_{5} + \beta_{4} + 2 \beta_1) q^{11} + (\beta_{7} - 3 \beta_{3} + 3) q^{13} + ( - 2 \beta_{6} - \beta_{5} - \beta_1) q^{14} - q^{16} + (2 \beta_{6} - \beta_{5} - 2 \beta_{4}) q^{17} + (\beta_{7} - 2 \beta_{3} + \beta_{2}) q^{19} + ( - \beta_{6} + \beta_{5} - \beta_1) q^{20} + (2 \beta_{3} + \beta_{2} + 2) q^{22} + (3 \beta_{6} + 3 \beta_{4} + \beta_1) q^{23} + ( - 2 \beta_{7} - 2 \beta_{2} - 1) q^{25} + (3 \beta_{5} + \beta_{4} - 3 \beta_1) q^{26} + (2 \beta_{7} + \beta_{3} - 1) q^{28} + ( - \beta_{6} + \beta_{5} + \beta_1) q^{29} + ( - \beta_{7} + \beta_{2} + 1) q^{31} - \beta_{5} q^{32} + ( - 2 \beta_{7} + \beta_{3} - 2 \beta_{2}) q^{34} + ( - 3 \beta_{6} - 6 \beta_{5} + \cdots - 2 \beta_1) q^{35}+ \cdots + (4 \beta_{6} + 4 \beta_{4} + 7 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{7} + 8 q^{10} + 24 q^{13} - 8 q^{16} + 16 q^{22} - 8 q^{25} - 8 q^{28} + 8 q^{31} - 8 q^{40} - 48 q^{43} + 8 q^{46} - 24 q^{52} + 24 q^{55} + 8 q^{58} - 48 q^{61} + 16 q^{67} - 16 q^{70} - 16 q^{73} - 16 q^{76} - 8 q^{82} - 56 q^{85} + 16 q^{88} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{24}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{5} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{24}^{6} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\zeta_{24}^{4} - 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{24}^{5} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{24}^{6} + 2\zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 2\zeta_{24}^{7} - \zeta_{24}^{3} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{5} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_{6} + \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( ( \beta_{4} + 1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( -\beta_{5} + \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( \beta_{3} \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( \beta_{7} + \beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(-1\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
0.258819 0.965926i
−0.965926 + 0.258819i
−0.258819 + 0.965926i
0.965926 0.258819i
−0.965926 0.258819i
0.258819 + 0.965926i
0.965926 + 0.258819i
−0.258819 0.965926i
−0.707107 0.707107i 0 1.00000i −1.41421 1.73205i 0 −3.44949 + 3.44949i 0.707107 0.707107i 0 −0.224745 + 2.22474i
53.2 −0.707107 0.707107i 0 1.00000i −1.41421 + 1.73205i 0 1.44949 1.44949i 0.707107 0.707107i 0 2.22474 0.224745i
53.3 0.707107 + 0.707107i 0 1.00000i 1.41421 1.73205i 0 1.44949 1.44949i −0.707107 + 0.707107i 0 2.22474 0.224745i
53.4 0.707107 + 0.707107i 0 1.00000i 1.41421 + 1.73205i 0 −3.44949 + 3.44949i −0.707107 + 0.707107i 0 −0.224745 + 2.22474i
107.1 −0.707107 + 0.707107i 0 1.00000i −1.41421 1.73205i 0 1.44949 + 1.44949i 0.707107 + 0.707107i 0 2.22474 + 0.224745i
107.2 −0.707107 + 0.707107i 0 1.00000i −1.41421 + 1.73205i 0 −3.44949 3.44949i 0.707107 + 0.707107i 0 −0.224745 2.22474i
107.3 0.707107 0.707107i 0 1.00000i 1.41421 1.73205i 0 −3.44949 3.44949i −0.707107 0.707107i 0 −0.224745 2.22474i
107.4 0.707107 0.707107i 0 1.00000i 1.41421 + 1.73205i 0 1.44949 + 1.44949i −0.707107 0.707107i 0 2.22474 + 0.224745i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 53.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.c odd 4 1 inner
15.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.2.f.a 8
3.b odd 2 1 inner 270.2.f.a 8
4.b odd 2 1 2160.2.w.f 8
5.b even 2 1 1350.2.f.f 8
5.c odd 4 1 inner 270.2.f.a 8
5.c odd 4 1 1350.2.f.f 8
9.c even 3 1 810.2.m.a 8
9.c even 3 1 810.2.m.h 8
9.d odd 6 1 810.2.m.a 8
9.d odd 6 1 810.2.m.h 8
12.b even 2 1 2160.2.w.f 8
15.d odd 2 1 1350.2.f.f 8
15.e even 4 1 inner 270.2.f.a 8
15.e even 4 1 1350.2.f.f 8
20.e even 4 1 2160.2.w.f 8
45.k odd 12 1 810.2.m.a 8
45.k odd 12 1 810.2.m.h 8
45.l even 12 1 810.2.m.a 8
45.l even 12 1 810.2.m.h 8
60.l odd 4 1 2160.2.w.f 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.2.f.a 8 1.a even 1 1 trivial
270.2.f.a 8 3.b odd 2 1 inner
270.2.f.a 8 5.c odd 4 1 inner
270.2.f.a 8 15.e even 4 1 inner
810.2.m.a 8 9.c even 3 1
810.2.m.a 8 9.d odd 6 1
810.2.m.a 8 45.k odd 12 1
810.2.m.a 8 45.l even 12 1
810.2.m.h 8 9.c even 3 1
810.2.m.h 8 9.d odd 6 1
810.2.m.h 8 45.k odd 12 1
810.2.m.h 8 45.l even 12 1
1350.2.f.f 8 5.b even 2 1
1350.2.f.f 8 5.c odd 4 1
1350.2.f.f 8 15.d odd 2 1
1350.2.f.f 8 15.e even 4 1
2160.2.w.f 8 4.b odd 2 1
2160.2.w.f 8 12.b even 2 1
2160.2.w.f 8 20.e even 4 1
2160.2.w.f 8 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 4T_{7}^{3} + 8T_{7}^{2} - 40T_{7} + 100 \) acting on \(S_{2}^{\mathrm{new}}(270, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 2 T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 4 T^{3} + \cdots + 100)^{2} \) Copy content Toggle raw display
$11$ \( (T^{4} + 22 T^{2} + 25)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 12 T^{3} + \cdots + 225)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} + 1442 T^{4} + 279841 \) Copy content Toggle raw display
$19$ \( (T^{4} + 20 T^{2} + 4)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 6482 T^{4} + 7890481 \) Copy content Toggle raw display
$29$ \( (T^{4} - 10 T^{2} + 1)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 2 T - 5)^{4} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( (T^{4} + 28 T^{2} + 100)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 24 T^{3} + \cdots + 4761)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 11826 T^{4} + 4100625 \) Copy content Toggle raw display
$53$ \( (T^{4} + 4096)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 8)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 12 T + 30)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 4 T + 8)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 196 T^{2} + 4)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 8 T^{3} + 32 T^{2} + \cdots + 16)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 30 T^{2} + 9)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 51912 T^{4} + 362673936 \) Copy content Toggle raw display
$89$ \( (T^{4} - 316 T^{2} + 3364)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} - 24 T^{3} + \cdots + 3600)^{2} \) Copy content Toggle raw display
show more
show less