Properties

Label 270.2.e
Level $270$
Weight $2$
Character orbit 270.e
Rep. character $\chi_{270}(91,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $3$
Sturm bound $108$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 3 \)
Sturm bound: \(108\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(270, [\chi])\).

Total New Old
Modular forms 132 8 124
Cusp forms 84 8 76
Eisenstein series 48 0 48

Trace form

\( 8 q - 2 q^{2} - 4 q^{4} - 2 q^{5} + 4 q^{7} + 4 q^{8} + 6 q^{11} + 4 q^{13} + 2 q^{14} - 4 q^{16} + 12 q^{17} + 4 q^{19} - 2 q^{20} - 6 q^{22} + 12 q^{23} - 4 q^{25} - 16 q^{26} - 8 q^{28} + 6 q^{29} + 4 q^{31}+ \cdots + 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(270, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
270.2.e.a 270.e 9.c $2$ $2.156$ \(\Q(\sqrt{-3}) \) None 90.2.e.b \(-1\) \(0\) \(1\) \(4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\zeta_{6})q^{2}-\zeta_{6}q^{4}+\zeta_{6}q^{5}+(4+\cdots)q^{7}+\cdots\)
270.2.e.b 270.e 9.c $2$ $2.156$ \(\Q(\sqrt{-3}) \) None 90.2.e.a \(1\) \(0\) \(-1\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}-\zeta_{6}q^{4}-\zeta_{6}q^{5}+(1-\zeta_{6})q^{7}+\cdots\)
270.2.e.c 270.e 9.c $4$ $2.156$ \(\Q(\sqrt{-3}, \sqrt{-11})\) None 90.2.e.c \(-2\) \(0\) \(-2\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q-\beta _{1}q^{2}+(-1+\beta _{1})q^{4}+(-1+\beta _{1}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(270, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(270, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)