Properties

Label 270.2.c.c.109.4
Level $270$
Weight $2$
Character 270.109
Analytic conductor $2.156$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(109,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{19})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.4
Root \(2.17945 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 270.109
Dual form 270.2.c.c.109.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(2.17945 - 0.500000i) q^{5} -4.35890i q^{7} -1.00000i q^{8} +O(q^{10})\) \(q+1.00000i q^{2} -1.00000 q^{4} +(2.17945 - 0.500000i) q^{5} -4.35890i q^{7} -1.00000i q^{8} +(0.500000 + 2.17945i) q^{10} +4.35890 q^{11} +4.35890 q^{14} +1.00000 q^{16} +4.00000i q^{17} -6.00000 q^{19} +(-2.17945 + 0.500000i) q^{20} +4.35890i q^{22} +2.00000i q^{23} +(4.50000 - 2.17945i) q^{25} +4.35890i q^{28} +7.00000 q^{31} +1.00000i q^{32} -4.00000 q^{34} +(-2.17945 - 9.50000i) q^{35} +8.71780i q^{37} -6.00000i q^{38} +(-0.500000 - 2.17945i) q^{40} -8.71780 q^{41} -8.71780i q^{43} -4.35890 q^{44} -2.00000 q^{46} +2.00000i q^{47} -12.0000 q^{49} +(2.17945 + 4.50000i) q^{50} +3.00000i q^{53} +(9.50000 - 2.17945i) q^{55} -4.35890 q^{56} -8.71780 q^{59} -4.00000 q^{61} +7.00000i q^{62} -1.00000 q^{64} -8.71780i q^{67} -4.00000i q^{68} +(9.50000 - 2.17945i) q^{70} +4.35890i q^{73} -8.71780 q^{74} +6.00000 q^{76} -19.0000i q^{77} +(2.17945 - 0.500000i) q^{80} -8.71780i q^{82} +5.00000i q^{83} +(2.00000 + 8.71780i) q^{85} +8.71780 q^{86} -4.35890i q^{88} +8.71780 q^{89} -2.00000i q^{92} -2.00000 q^{94} +(-13.0767 + 3.00000i) q^{95} +4.35890i q^{97} -12.0000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} + 2 q^{10} + 4 q^{16} - 24 q^{19} + 18 q^{25} + 28 q^{31} - 16 q^{34} - 2 q^{40} - 8 q^{46} - 48 q^{49} + 38 q^{55} - 16 q^{61} - 4 q^{64} + 38 q^{70} + 24 q^{76} + 8 q^{85} - 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 2.17945 0.500000i 0.974679 0.223607i
\(6\) 0 0
\(7\) 4.35890i 1.64751i −0.566947 0.823754i \(-0.691875\pi\)
0.566947 0.823754i \(-0.308125\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.500000 + 2.17945i 0.158114 + 0.689202i
\(11\) 4.35890 1.31426 0.657129 0.753778i \(-0.271771\pi\)
0.657129 + 0.753778i \(0.271771\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(14\) 4.35890 1.16496
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.00000i 0.970143i 0.874475 + 0.485071i \(0.161206\pi\)
−0.874475 + 0.485071i \(0.838794\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) −2.17945 + 0.500000i −0.487340 + 0.111803i
\(21\) 0 0
\(22\) 4.35890i 0.929320i
\(23\) 2.00000i 0.417029i 0.978019 + 0.208514i \(0.0668628\pi\)
−0.978019 + 0.208514i \(0.933137\pi\)
\(24\) 0 0
\(25\) 4.50000 2.17945i 0.900000 0.435890i
\(26\) 0 0
\(27\) 0 0
\(28\) 4.35890i 0.823754i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 7.00000 1.25724 0.628619 0.777714i \(-0.283621\pi\)
0.628619 + 0.777714i \(0.283621\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −4.00000 −0.685994
\(35\) −2.17945 9.50000i −0.368394 1.60579i
\(36\) 0 0
\(37\) 8.71780i 1.43320i 0.697486 + 0.716599i \(0.254302\pi\)
−0.697486 + 0.716599i \(0.745698\pi\)
\(38\) 6.00000i 0.973329i
\(39\) 0 0
\(40\) −0.500000 2.17945i −0.0790569 0.344601i
\(41\) −8.71780 −1.36149 −0.680746 0.732520i \(-0.738344\pi\)
−0.680746 + 0.732520i \(0.738344\pi\)
\(42\) 0 0
\(43\) 8.71780i 1.32945i −0.747087 0.664726i \(-0.768548\pi\)
0.747087 0.664726i \(-0.231452\pi\)
\(44\) −4.35890 −0.657129
\(45\) 0 0
\(46\) −2.00000 −0.294884
\(47\) 2.00000i 0.291730i 0.989305 + 0.145865i \(0.0465965\pi\)
−0.989305 + 0.145865i \(0.953403\pi\)
\(48\) 0 0
\(49\) −12.0000 −1.71429
\(50\) 2.17945 + 4.50000i 0.308221 + 0.636396i
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000i 0.412082i 0.978543 + 0.206041i \(0.0660580\pi\)
−0.978543 + 0.206041i \(0.933942\pi\)
\(54\) 0 0
\(55\) 9.50000 2.17945i 1.28098 0.293877i
\(56\) −4.35890 −0.582482
\(57\) 0 0
\(58\) 0 0
\(59\) −8.71780 −1.13496 −0.567480 0.823387i \(-0.692082\pi\)
−0.567480 + 0.823387i \(0.692082\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 7.00000i 0.889001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 8.71780i 1.06505i −0.846415 0.532524i \(-0.821244\pi\)
0.846415 0.532524i \(-0.178756\pi\)
\(68\) 4.00000i 0.485071i
\(69\) 0 0
\(70\) 9.50000 2.17945i 1.13547 0.260494i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 4.35890i 0.510171i 0.966919 + 0.255085i \(0.0821035\pi\)
−0.966919 + 0.255085i \(0.917896\pi\)
\(74\) −8.71780 −1.01342
\(75\) 0 0
\(76\) 6.00000 0.688247
\(77\) 19.0000i 2.16525i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 2.17945 0.500000i 0.243670 0.0559017i
\(81\) 0 0
\(82\) 8.71780i 0.962720i
\(83\) 5.00000i 0.548821i 0.961613 + 0.274411i \(0.0884828\pi\)
−0.961613 + 0.274411i \(0.911517\pi\)
\(84\) 0 0
\(85\) 2.00000 + 8.71780i 0.216930 + 0.945578i
\(86\) 8.71780 0.940064
\(87\) 0 0
\(88\) 4.35890i 0.464660i
\(89\) 8.71780 0.924085 0.462042 0.886858i \(-0.347117\pi\)
0.462042 + 0.886858i \(0.347117\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 2.00000i 0.208514i
\(93\) 0 0
\(94\) −2.00000 −0.206284
\(95\) −13.0767 + 3.00000i −1.34164 + 0.307794i
\(96\) 0 0
\(97\) 4.35890i 0.442579i 0.975208 + 0.221290i \(0.0710266\pi\)
−0.975208 + 0.221290i \(0.928973\pi\)
\(98\) 12.0000i 1.21218i
\(99\) 0 0
\(100\) −4.50000 + 2.17945i −0.450000 + 0.217945i
\(101\) −4.35890 −0.433727 −0.216863 0.976202i \(-0.569583\pi\)
−0.216863 + 0.976202i \(0.569583\pi\)
\(102\) 0 0
\(103\) 8.71780i 0.858990i 0.903069 + 0.429495i \(0.141308\pi\)
−0.903069 + 0.429495i \(0.858692\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −3.00000 −0.291386
\(107\) 15.0000i 1.45010i 0.688694 + 0.725052i \(0.258184\pi\)
−0.688694 + 0.725052i \(0.741816\pi\)
\(108\) 0 0
\(109\) −10.0000 −0.957826 −0.478913 0.877862i \(-0.658969\pi\)
−0.478913 + 0.877862i \(0.658969\pi\)
\(110\) 2.17945 + 9.50000i 0.207802 + 0.905789i
\(111\) 0 0
\(112\) 4.35890i 0.411877i
\(113\) 18.0000i 1.69330i 0.532152 + 0.846649i \(0.321383\pi\)
−0.532152 + 0.846649i \(0.678617\pi\)
\(114\) 0 0
\(115\) 1.00000 + 4.35890i 0.0932505 + 0.406469i
\(116\) 0 0
\(117\) 0 0
\(118\) 8.71780i 0.802538i
\(119\) 17.4356 1.59832
\(120\) 0 0
\(121\) 8.00000 0.727273
\(122\) 4.00000i 0.362143i
\(123\) 0 0
\(124\) −7.00000 −0.628619
\(125\) 8.71780 7.00000i 0.779744 0.626099i
\(126\) 0 0
\(127\) 4.35890i 0.386790i −0.981121 0.193395i \(-0.938050\pi\)
0.981121 0.193395i \(-0.0619498\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 13.0767 1.14252 0.571258 0.820770i \(-0.306456\pi\)
0.571258 + 0.820770i \(0.306456\pi\)
\(132\) 0 0
\(133\) 26.1534i 2.26779i
\(134\) 8.71780 0.753103
\(135\) 0 0
\(136\) 4.00000 0.342997
\(137\) 18.0000i 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 2.17945 + 9.50000i 0.184197 + 0.802897i
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −4.35890 −0.360745
\(147\) 0 0
\(148\) 8.71780i 0.716599i
\(149\) 4.35890 0.357095 0.178547 0.983931i \(-0.442860\pi\)
0.178547 + 0.983931i \(0.442860\pi\)
\(150\) 0 0
\(151\) −11.0000 −0.895167 −0.447584 0.894242i \(-0.647715\pi\)
−0.447584 + 0.894242i \(0.647715\pi\)
\(152\) 6.00000i 0.486664i
\(153\) 0 0
\(154\) 19.0000 1.53106
\(155\) 15.2561 3.50000i 1.22540 0.281127i
\(156\) 0 0
\(157\) 17.4356i 1.39151i 0.718278 + 0.695756i \(0.244931\pi\)
−0.718278 + 0.695756i \(0.755069\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.500000 + 2.17945i 0.0395285 + 0.172301i
\(161\) 8.71780 0.687059
\(162\) 0 0
\(163\) 17.4356i 1.36566i −0.730577 0.682831i \(-0.760749\pi\)
0.730577 0.682831i \(-0.239251\pi\)
\(164\) 8.71780 0.680746
\(165\) 0 0
\(166\) −5.00000 −0.388075
\(167\) 18.0000i 1.39288i −0.717614 0.696441i \(-0.754766\pi\)
0.717614 0.696441i \(-0.245234\pi\)
\(168\) 0 0
\(169\) 13.0000 1.00000
\(170\) −8.71780 + 2.00000i −0.668625 + 0.153393i
\(171\) 0 0
\(172\) 8.71780i 0.664726i
\(173\) 19.0000i 1.44454i 0.691609 + 0.722272i \(0.256902\pi\)
−0.691609 + 0.722272i \(0.743098\pi\)
\(174\) 0 0
\(175\) −9.50000 19.6150i −0.718132 1.48276i
\(176\) 4.35890 0.328564
\(177\) 0 0
\(178\) 8.71780i 0.653427i
\(179\) −21.7945 −1.62900 −0.814499 0.580166i \(-0.802988\pi\)
−0.814499 + 0.580166i \(0.802988\pi\)
\(180\) 0 0
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 2.00000 0.147442
\(185\) 4.35890 + 19.0000i 0.320473 + 1.39691i
\(186\) 0 0
\(187\) 17.4356i 1.27502i
\(188\) 2.00000i 0.145865i
\(189\) 0 0
\(190\) −3.00000 13.0767i −0.217643 0.948683i
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 21.7945i 1.56880i −0.620254 0.784401i \(-0.712970\pi\)
0.620254 0.784401i \(-0.287030\pi\)
\(194\) −4.35890 −0.312951
\(195\) 0 0
\(196\) 12.0000 0.857143
\(197\) 5.00000i 0.356235i 0.984009 + 0.178118i \(0.0570008\pi\)
−0.984009 + 0.178118i \(0.942999\pi\)
\(198\) 0 0
\(199\) 3.00000 0.212664 0.106332 0.994331i \(-0.466089\pi\)
0.106332 + 0.994331i \(0.466089\pi\)
\(200\) −2.17945 4.50000i −0.154110 0.318198i
\(201\) 0 0
\(202\) 4.35890i 0.306691i
\(203\) 0 0
\(204\) 0 0
\(205\) −19.0000 + 4.35890i −1.32702 + 0.304439i
\(206\) −8.71780 −0.607398
\(207\) 0 0
\(208\) 0 0
\(209\) −26.1534 −1.80907
\(210\) 0 0
\(211\) 6.00000 0.413057 0.206529 0.978441i \(-0.433783\pi\)
0.206529 + 0.978441i \(0.433783\pi\)
\(212\) 3.00000i 0.206041i
\(213\) 0 0
\(214\) −15.0000 −1.02538
\(215\) −4.35890 19.0000i −0.297274 1.29579i
\(216\) 0 0
\(217\) 30.5123i 2.07131i
\(218\) 10.0000i 0.677285i
\(219\) 0 0
\(220\) −9.50000 + 2.17945i −0.640490 + 0.146938i
\(221\) 0 0
\(222\) 0 0
\(223\) 8.71780i 0.583787i −0.956451 0.291893i \(-0.905715\pi\)
0.956451 0.291893i \(-0.0942853\pi\)
\(224\) 4.35890 0.291241
\(225\) 0 0
\(226\) −18.0000 −1.19734
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) 0 0
\(229\) 22.0000 1.45380 0.726900 0.686743i \(-0.240960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) −4.35890 + 1.00000i −0.287417 + 0.0659380i
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000i 0.917170i −0.888650 0.458585i \(-0.848356\pi\)
0.888650 0.458585i \(-0.151644\pi\)
\(234\) 0 0
\(235\) 1.00000 + 4.35890i 0.0652328 + 0.284343i
\(236\) 8.71780 0.567480
\(237\) 0 0
\(238\) 17.4356i 1.13018i
\(239\) 8.71780 0.563907 0.281954 0.959428i \(-0.409018\pi\)
0.281954 + 0.959428i \(0.409018\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) 8.00000i 0.514259i
\(243\) 0 0
\(244\) 4.00000 0.256074
\(245\) −26.1534 + 6.00000i −1.67088 + 0.383326i
\(246\) 0 0
\(247\) 0 0
\(248\) 7.00000i 0.444500i
\(249\) 0 0
\(250\) 7.00000 + 8.71780i 0.442719 + 0.551362i
\(251\) −26.1534 −1.65079 −0.825394 0.564557i \(-0.809047\pi\)
−0.825394 + 0.564557i \(0.809047\pi\)
\(252\) 0 0
\(253\) 8.71780i 0.548083i
\(254\) 4.35890 0.273502
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 12.0000i 0.748539i −0.927320 0.374270i \(-0.877893\pi\)
0.927320 0.374270i \(-0.122107\pi\)
\(258\) 0 0
\(259\) 38.0000 2.36121
\(260\) 0 0
\(261\) 0 0
\(262\) 13.0767i 0.807881i
\(263\) 2.00000i 0.123325i 0.998097 + 0.0616626i \(0.0196403\pi\)
−0.998097 + 0.0616626i \(0.980360\pi\)
\(264\) 0 0
\(265\) 1.50000 + 6.53835i 0.0921443 + 0.401648i
\(266\) −26.1534 −1.60357
\(267\) 0 0
\(268\) 8.71780i 0.532524i
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −5.00000 −0.303728 −0.151864 0.988401i \(-0.548528\pi\)
−0.151864 + 0.988401i \(0.548528\pi\)
\(272\) 4.00000i 0.242536i
\(273\) 0 0
\(274\) 18.0000 1.08742
\(275\) 19.6150 9.50000i 1.18283 0.572872i
\(276\) 0 0
\(277\) 17.4356i 1.04760i −0.851840 0.523802i \(-0.824513\pi\)
0.851840 0.523802i \(-0.175487\pi\)
\(278\) 4.00000i 0.239904i
\(279\) 0 0
\(280\) −9.50000 + 2.17945i −0.567734 + 0.130247i
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 8.71780i 0.518219i 0.965848 + 0.259110i \(0.0834291\pi\)
−0.965848 + 0.259110i \(0.916571\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 38.0000i 2.24307i
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 4.35890i 0.255085i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 0 0
\(295\) −19.0000 + 4.35890i −1.10622 + 0.253785i
\(296\) 8.71780 0.506712
\(297\) 0 0
\(298\) 4.35890i 0.252504i
\(299\) 0 0
\(300\) 0 0
\(301\) −38.0000 −2.19028
\(302\) 11.0000i 0.632979i
\(303\) 0 0
\(304\) −6.00000 −0.344124
\(305\) −8.71780 + 2.00000i −0.499180 + 0.114520i
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 19.0000i 1.08263i
\(309\) 0 0
\(310\) 3.50000 + 15.2561i 0.198787 + 0.866491i
\(311\) −26.1534 −1.48302 −0.741511 0.670940i \(-0.765891\pi\)
−0.741511 + 0.670940i \(0.765891\pi\)
\(312\) 0 0
\(313\) 21.7945i 1.23190i −0.787786 0.615949i \(-0.788773\pi\)
0.787786 0.615949i \(-0.211227\pi\)
\(314\) −17.4356 −0.983948
\(315\) 0 0
\(316\) 0 0
\(317\) 17.0000i 0.954815i −0.878682 0.477408i \(-0.841577\pi\)
0.878682 0.477408i \(-0.158423\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −2.17945 + 0.500000i −0.121835 + 0.0279508i
\(321\) 0 0
\(322\) 8.71780i 0.485824i
\(323\) 24.0000i 1.33540i
\(324\) 0 0
\(325\) 0 0
\(326\) 17.4356 0.965668
\(327\) 0 0
\(328\) 8.71780i 0.481360i
\(329\) 8.71780 0.480628
\(330\) 0 0
\(331\) 10.0000 0.549650 0.274825 0.961494i \(-0.411380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(332\) 5.00000i 0.274411i
\(333\) 0 0
\(334\) 18.0000 0.984916
\(335\) −4.35890 19.0000i −0.238152 1.03808i
\(336\) 0 0
\(337\) 17.4356i 0.949777i −0.880046 0.474889i \(-0.842488\pi\)
0.880046 0.474889i \(-0.157512\pi\)
\(338\) 13.0000i 0.707107i
\(339\) 0 0
\(340\) −2.00000 8.71780i −0.108465 0.472789i
\(341\) 30.5123 1.65233
\(342\) 0 0
\(343\) 21.7945i 1.17679i
\(344\) −8.71780 −0.470032
\(345\) 0 0
\(346\) −19.0000 −1.02145
\(347\) 27.0000i 1.44944i 0.689046 + 0.724718i \(0.258030\pi\)
−0.689046 + 0.724718i \(0.741970\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 19.6150 9.50000i 1.04847 0.507796i
\(351\) 0 0
\(352\) 4.35890i 0.232330i
\(353\) 26.0000i 1.38384i −0.721974 0.691920i \(-0.756765\pi\)
0.721974 0.691920i \(-0.243235\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −8.71780 −0.462042
\(357\) 0 0
\(358\) 21.7945i 1.15187i
\(359\) 26.1534 1.38032 0.690162 0.723655i \(-0.257539\pi\)
0.690162 + 0.723655i \(0.257539\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 8.00000i 0.420471i
\(363\) 0 0
\(364\) 0 0
\(365\) 2.17945 + 9.50000i 0.114078 + 0.497253i
\(366\) 0 0
\(367\) 4.35890i 0.227533i −0.993508 0.113766i \(-0.963708\pi\)
0.993508 0.113766i \(-0.0362915\pi\)
\(368\) 2.00000i 0.104257i
\(369\) 0 0
\(370\) −19.0000 + 4.35890i −0.987763 + 0.226608i
\(371\) 13.0767 0.678908
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) −17.4356 −0.901573
\(375\) 0 0
\(376\) 2.00000 0.103142
\(377\) 0 0
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 13.0767 3.00000i 0.670820 0.153897i
\(381\) 0 0
\(382\) 0 0
\(383\) 4.00000i 0.204390i 0.994764 + 0.102195i \(0.0325866\pi\)
−0.994764 + 0.102195i \(0.967413\pi\)
\(384\) 0 0
\(385\) −9.50000 41.4095i −0.484165 2.11043i
\(386\) 21.7945 1.10931
\(387\) 0 0
\(388\) 4.35890i 0.221290i
\(389\) −4.35890 −0.221005 −0.110502 0.993876i \(-0.535246\pi\)
−0.110502 + 0.993876i \(0.535246\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 12.0000i 0.606092i
\(393\) 0 0
\(394\) −5.00000 −0.251896
\(395\) 0 0
\(396\) 0 0
\(397\) 34.8712i 1.75013i 0.484001 + 0.875067i \(0.339183\pi\)
−0.484001 + 0.875067i \(0.660817\pi\)
\(398\) 3.00000i 0.150376i
\(399\) 0 0
\(400\) 4.50000 2.17945i 0.225000 0.108972i
\(401\) 34.8712 1.74138 0.870692 0.491828i \(-0.163671\pi\)
0.870692 + 0.491828i \(0.163671\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 4.35890 0.216863
\(405\) 0 0
\(406\) 0 0
\(407\) 38.0000i 1.88359i
\(408\) 0 0
\(409\) 31.0000 1.53285 0.766426 0.642333i \(-0.222033\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) −4.35890 19.0000i −0.215271 0.938343i
\(411\) 0 0
\(412\) 8.71780i 0.429495i
\(413\) 38.0000i 1.86986i
\(414\) 0 0
\(415\) 2.50000 + 10.8972i 0.122720 + 0.534925i
\(416\) 0 0
\(417\) 0 0
\(418\) 26.1534i 1.27920i
\(419\) 8.71780 0.425892 0.212946 0.977064i \(-0.431694\pi\)
0.212946 + 0.977064i \(0.431694\pi\)
\(420\) 0 0
\(421\) 16.0000 0.779792 0.389896 0.920859i \(-0.372511\pi\)
0.389896 + 0.920859i \(0.372511\pi\)
\(422\) 6.00000i 0.292075i
\(423\) 0 0
\(424\) 3.00000 0.145693
\(425\) 8.71780 + 18.0000i 0.422875 + 0.873128i
\(426\) 0 0
\(427\) 17.4356i 0.843768i
\(428\) 15.0000i 0.725052i
\(429\) 0 0
\(430\) 19.0000 4.35890i 0.916261 0.210205i
\(431\) −8.71780 −0.419922 −0.209961 0.977710i \(-0.567334\pi\)
−0.209961 + 0.977710i \(0.567334\pi\)
\(432\) 0 0
\(433\) 21.7945i 1.04738i −0.851910 0.523688i \(-0.824556\pi\)
0.851910 0.523688i \(-0.175444\pi\)
\(434\) 30.5123 1.46464
\(435\) 0 0
\(436\) 10.0000 0.478913
\(437\) 12.0000i 0.574038i
\(438\) 0 0
\(439\) −9.00000 −0.429547 −0.214773 0.976664i \(-0.568901\pi\)
−0.214773 + 0.976664i \(0.568901\pi\)
\(440\) −2.17945 9.50000i −0.103901 0.452895i
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000i 0.570137i −0.958507 0.285069i \(-0.907984\pi\)
0.958507 0.285069i \(-0.0920164\pi\)
\(444\) 0 0
\(445\) 19.0000 4.35890i 0.900686 0.206632i
\(446\) 8.71780 0.412800
\(447\) 0 0
\(448\) 4.35890i 0.205939i
\(449\) 26.1534 1.23425 0.617127 0.786863i \(-0.288296\pi\)
0.617127 + 0.786863i \(0.288296\pi\)
\(450\) 0 0
\(451\) −38.0000 −1.78935
\(452\) 18.0000i 0.846649i
\(453\) 0 0
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) 0 0
\(457\) 4.35890i 0.203901i −0.994789 0.101950i \(-0.967492\pi\)
0.994789 0.101950i \(-0.0325083\pi\)
\(458\) 22.0000i 1.02799i
\(459\) 0 0
\(460\) −1.00000 4.35890i −0.0466252 0.203235i
\(461\) −39.2301 −1.82713 −0.913564 0.406696i \(-0.866681\pi\)
−0.913564 + 0.406696i \(0.866681\pi\)
\(462\) 0 0
\(463\) 13.0767i 0.607726i 0.952716 + 0.303863i \(0.0982765\pi\)
−0.952716 + 0.303863i \(0.901724\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 14.0000 0.648537
\(467\) 21.0000i 0.971764i −0.874024 0.485882i \(-0.838498\pi\)
0.874024 0.485882i \(-0.161502\pi\)
\(468\) 0 0
\(469\) −38.0000 −1.75468
\(470\) −4.35890 + 1.00000i −0.201061 + 0.0461266i
\(471\) 0 0
\(472\) 8.71780i 0.401269i
\(473\) 38.0000i 1.74724i
\(474\) 0 0
\(475\) −27.0000 + 13.0767i −1.23884 + 0.600000i
\(476\) −17.4356 −0.799159
\(477\) 0 0
\(478\) 8.71780i 0.398743i
\(479\) 8.71780 0.398326 0.199163 0.979966i \(-0.436178\pi\)
0.199163 + 0.979966i \(0.436178\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 14.0000i 0.637683i
\(483\) 0 0
\(484\) −8.00000 −0.363636
\(485\) 2.17945 + 9.50000i 0.0989637 + 0.431373i
\(486\) 0 0
\(487\) 26.1534i 1.18512i 0.805525 + 0.592562i \(0.201883\pi\)
−0.805525 + 0.592562i \(0.798117\pi\)
\(488\) 4.00000i 0.181071i
\(489\) 0 0
\(490\) −6.00000 26.1534i −0.271052 1.18149i
\(491\) 13.0767 0.590143 0.295072 0.955475i \(-0.404657\pi\)
0.295072 + 0.955475i \(0.404657\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 7.00000 0.314309
\(497\) 0 0
\(498\) 0 0
\(499\) −30.0000 −1.34298 −0.671492 0.741012i \(-0.734346\pi\)
−0.671492 + 0.741012i \(0.734346\pi\)
\(500\) −8.71780 + 7.00000i −0.389872 + 0.313050i
\(501\) 0 0
\(502\) 26.1534i 1.16728i
\(503\) 30.0000i 1.33763i −0.743427 0.668817i \(-0.766801\pi\)
0.743427 0.668817i \(-0.233199\pi\)
\(504\) 0 0
\(505\) −9.50000 + 2.17945i −0.422744 + 0.0969842i
\(506\) −8.71780 −0.387553
\(507\) 0 0
\(508\) 4.35890i 0.193395i
\(509\) −13.0767 −0.579614 −0.289807 0.957085i \(-0.593591\pi\)
−0.289807 + 0.957085i \(0.593591\pi\)
\(510\) 0 0
\(511\) 19.0000 0.840511
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 12.0000 0.529297
\(515\) 4.35890 + 19.0000i 0.192076 + 0.837240i
\(516\) 0 0
\(517\) 8.71780i 0.383408i
\(518\) 38.0000i 1.66962i
\(519\) 0 0
\(520\) 0 0
\(521\) −17.4356 −0.763867 −0.381934 0.924190i \(-0.624742\pi\)
−0.381934 + 0.924190i \(0.624742\pi\)
\(522\) 0 0
\(523\) 34.8712i 1.52481i 0.647100 + 0.762405i \(0.275982\pi\)
−0.647100 + 0.762405i \(0.724018\pi\)
\(524\) −13.0767 −0.571258
\(525\) 0 0
\(526\) −2.00000 −0.0872041
\(527\) 28.0000i 1.21970i
\(528\) 0 0
\(529\) 19.0000 0.826087
\(530\) −6.53835 + 1.50000i −0.284008 + 0.0651558i
\(531\) 0 0
\(532\) 26.1534i 1.13389i
\(533\) 0 0
\(534\) 0 0
\(535\) 7.50000 + 32.6917i 0.324253 + 1.41339i
\(536\) −8.71780 −0.376552
\(537\) 0 0
\(538\) 0 0
\(539\) −52.3068 −2.25301
\(540\) 0 0
\(541\) 40.0000 1.71973 0.859867 0.510518i \(-0.170546\pi\)
0.859867 + 0.510518i \(0.170546\pi\)
\(542\) 5.00000i 0.214768i
\(543\) 0 0
\(544\) −4.00000 −0.171499
\(545\) −21.7945 + 5.00000i −0.933574 + 0.214176i
\(546\) 0 0
\(547\) 17.4356i 0.745492i −0.927933 0.372746i \(-0.878416\pi\)
0.927933 0.372746i \(-0.121584\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 0 0
\(550\) 9.50000 + 19.6150i 0.405081 + 0.836388i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 17.4356 0.740767
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) 33.0000i 1.39825i −0.714997 0.699127i \(-0.753572\pi\)
0.714997 0.699127i \(-0.246428\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −2.17945 9.50000i −0.0920985 0.401448i
\(561\) 0 0
\(562\) 0 0
\(563\) 11.0000i 0.463595i −0.972764 0.231797i \(-0.925539\pi\)
0.972764 0.231797i \(-0.0744606\pi\)
\(564\) 0 0
\(565\) 9.00000 + 39.2301i 0.378633 + 1.65042i
\(566\) −8.71780 −0.366436
\(567\) 0 0
\(568\) 0 0
\(569\) −17.4356 −0.730938 −0.365469 0.930823i \(-0.619091\pi\)
−0.365469 + 0.930823i \(0.619091\pi\)
\(570\) 0 0
\(571\) 16.0000 0.669579 0.334790 0.942293i \(-0.391335\pi\)
0.334790 + 0.942293i \(0.391335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −38.0000 −1.58609
\(575\) 4.35890 + 9.00000i 0.181779 + 0.375326i
\(576\) 0 0
\(577\) 17.4356i 0.725853i −0.931818 0.362927i \(-0.881778\pi\)
0.931818 0.362927i \(-0.118222\pi\)
\(578\) 1.00000i 0.0415945i
\(579\) 0 0
\(580\) 0 0
\(581\) 21.7945 0.904188
\(582\) 0 0
\(583\) 13.0767i 0.541581i
\(584\) 4.35890 0.180373
\(585\) 0 0
\(586\) −6.00000 −0.247858
\(587\) 3.00000i 0.123823i 0.998082 + 0.0619116i \(0.0197197\pi\)
−0.998082 + 0.0619116i \(0.980280\pi\)
\(588\) 0 0
\(589\) −42.0000 −1.73058
\(590\) −4.35890 19.0000i −0.179453 0.782218i
\(591\) 0 0
\(592\) 8.71780i 0.358299i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) 0 0
\(595\) 38.0000 8.71780i 1.55785 0.357395i
\(596\) −4.35890 −0.178547
\(597\) 0 0
\(598\) 0 0
\(599\) −26.1534 −1.06860 −0.534299 0.845295i \(-0.679424\pi\)
−0.534299 + 0.845295i \(0.679424\pi\)
\(600\) 0 0
\(601\) −13.0000 −0.530281 −0.265141 0.964210i \(-0.585418\pi\)
−0.265141 + 0.964210i \(0.585418\pi\)
\(602\) 38.0000i 1.54876i
\(603\) 0 0
\(604\) 11.0000 0.447584
\(605\) 17.4356 4.00000i 0.708858 0.162623i
\(606\) 0 0
\(607\) 8.71780i 0.353845i −0.984225 0.176922i \(-0.943386\pi\)
0.984225 0.176922i \(-0.0566141\pi\)
\(608\) 6.00000i 0.243332i
\(609\) 0 0
\(610\) −2.00000 8.71780i −0.0809776 0.352973i
\(611\) 0 0
\(612\) 0 0
\(613\) 8.71780i 0.352109i −0.984380 0.176054i \(-0.943667\pi\)
0.984380 0.176054i \(-0.0563334\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −19.0000 −0.765532
\(617\) 2.00000i 0.0805170i −0.999189 0.0402585i \(-0.987182\pi\)
0.999189 0.0402585i \(-0.0128181\pi\)
\(618\) 0 0
\(619\) −32.0000 −1.28619 −0.643094 0.765787i \(-0.722350\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) −15.2561 + 3.50000i −0.612702 + 0.140563i
\(621\) 0 0
\(622\) 26.1534i 1.04866i
\(623\) 38.0000i 1.52244i
\(624\) 0 0
\(625\) 15.5000 19.6150i 0.620000 0.784602i
\(626\) 21.7945 0.871083
\(627\) 0 0
\(628\) 17.4356i 0.695756i
\(629\) −34.8712 −1.39041
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 17.0000 0.675156
\(635\) −2.17945 9.50000i −0.0864888 0.376996i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) −0.500000 2.17945i −0.0197642 0.0861503i
\(641\) −8.71780 −0.344332 −0.172166 0.985068i \(-0.555077\pi\)
−0.172166 + 0.985068i \(0.555077\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) −8.71780 −0.343529
\(645\) 0 0
\(646\) 24.0000 0.944267
\(647\) 12.0000i 0.471769i −0.971781 0.235884i \(-0.924201\pi\)
0.971781 0.235884i \(-0.0757987\pi\)
\(648\) 0 0
\(649\) −38.0000 −1.49163
\(650\) 0 0
\(651\) 0 0
\(652\) 17.4356i 0.682831i
\(653\) 35.0000i 1.36966i 0.728705 + 0.684828i \(0.240123\pi\)
−0.728705 + 0.684828i \(0.759877\pi\)
\(654\) 0 0
\(655\) 28.5000 6.53835i 1.11359 0.255474i
\(656\) −8.71780 −0.340373
\(657\) 0 0
\(658\) 8.71780i 0.339855i
\(659\) 4.35890 0.169799 0.0848993 0.996390i \(-0.472943\pi\)
0.0848993 + 0.996390i \(0.472943\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 10.0000i 0.388661i
\(663\) 0 0
\(664\) 5.00000 0.194038
\(665\) 13.0767 + 57.0000i 0.507093 + 2.21037i
\(666\) 0 0
\(667\) 0 0
\(668\) 18.0000i 0.696441i
\(669\) 0 0
\(670\) 19.0000 4.35890i 0.734034 0.168399i
\(671\) −17.4356 −0.673094
\(672\) 0 0
\(673\) 13.0767i 0.504070i −0.967718 0.252035i \(-0.918900\pi\)
0.967718 0.252035i \(-0.0810997\pi\)
\(674\) 17.4356 0.671594
\(675\) 0 0
\(676\) −13.0000 −0.500000
\(677\) 26.0000i 0.999261i −0.866239 0.499631i \(-0.833469\pi\)
0.866239 0.499631i \(-0.166531\pi\)
\(678\) 0 0
\(679\) 19.0000 0.729153
\(680\) 8.71780 2.00000i 0.334312 0.0766965i
\(681\) 0 0
\(682\) 30.5123i 1.16838i
\(683\) 20.0000i 0.765279i 0.923898 + 0.382639i \(0.124985\pi\)
−0.923898 + 0.382639i \(0.875015\pi\)
\(684\) 0 0
\(685\) −9.00000 39.2301i −0.343872 1.49890i
\(686\) −21.7945 −0.832118
\(687\) 0 0
\(688\) 8.71780i 0.332363i
\(689\) 0 0
\(690\) 0 0
\(691\) −20.0000 −0.760836 −0.380418 0.924815i \(-0.624220\pi\)
−0.380418 + 0.924815i \(0.624220\pi\)
\(692\) 19.0000i 0.722272i
\(693\) 0 0
\(694\) −27.0000 −1.02491
\(695\) −8.71780 + 2.00000i −0.330685 + 0.0758643i
\(696\) 0 0
\(697\) 34.8712i 1.32084i
\(698\) 14.0000i 0.529908i
\(699\) 0 0
\(700\) 9.50000 + 19.6150i 0.359066 + 0.741379i
\(701\) −21.7945 −0.823167 −0.411583 0.911372i \(-0.635024\pi\)
−0.411583 + 0.911372i \(0.635024\pi\)
\(702\) 0 0
\(703\) 52.3068i 1.97279i
\(704\) −4.35890 −0.164282
\(705\) 0 0
\(706\) 26.0000 0.978523
\(707\) 19.0000i 0.714569i
\(708\) 0 0
\(709\) −12.0000 −0.450669 −0.225335 0.974281i \(-0.572348\pi\)
−0.225335 + 0.974281i \(0.572348\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 8.71780i 0.326713i
\(713\) 14.0000i 0.524304i
\(714\) 0 0
\(715\) 0 0
\(716\) 21.7945 0.814499
\(717\) 0 0
\(718\) 26.1534i 0.976036i
\(719\) 34.8712 1.30048 0.650238 0.759731i \(-0.274669\pi\)
0.650238 + 0.759731i \(0.274669\pi\)
\(720\) 0 0
\(721\) 38.0000 1.41519
\(722\) 17.0000i 0.632674i
\(723\) 0 0
\(724\) −8.00000 −0.297318
\(725\) 0 0
\(726\) 0 0
\(727\) 39.2301i 1.45496i 0.686127 + 0.727482i \(0.259309\pi\)
−0.686127 + 0.727482i \(0.740691\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −9.50000 + 2.17945i −0.351611 + 0.0806650i
\(731\) 34.8712 1.28976
\(732\) 0 0
\(733\) 8.71780i 0.321999i 0.986954 + 0.161000i \(0.0514718\pi\)
−0.986954 + 0.161000i \(0.948528\pi\)
\(734\) 4.35890 0.160890
\(735\) 0 0
\(736\) −2.00000 −0.0737210
\(737\) 38.0000i 1.39975i
\(738\) 0 0
\(739\) −16.0000 −0.588570 −0.294285 0.955718i \(-0.595081\pi\)
−0.294285 + 0.955718i \(0.595081\pi\)
\(740\) −4.35890 19.0000i −0.160236 0.698454i
\(741\) 0 0
\(742\) 13.0767i 0.480061i
\(743\) 48.0000i 1.76095i −0.474093 0.880475i \(-0.657224\pi\)
0.474093 0.880475i \(-0.342776\pi\)
\(744\) 0 0
\(745\) 9.50000 2.17945i 0.348053 0.0798489i
\(746\) 0 0
\(747\) 0 0
\(748\) 17.4356i 0.637509i
\(749\) 65.3835 2.38906
\(750\) 0 0
\(751\) 35.0000 1.27717 0.638584 0.769552i \(-0.279520\pi\)
0.638584 + 0.769552i \(0.279520\pi\)
\(752\) 2.00000i 0.0729325i
\(753\) 0 0
\(754\) 0 0
\(755\) −23.9739 + 5.50000i −0.872501 + 0.200165i
\(756\) 0 0
\(757\) 8.71780i 0.316854i 0.987371 + 0.158427i \(0.0506422\pi\)
−0.987371 + 0.158427i \(0.949358\pi\)
\(758\) 4.00000i 0.145287i
\(759\) 0 0
\(760\) 3.00000 + 13.0767i 0.108821 + 0.474342i
\(761\) −52.3068 −1.89612 −0.948060 0.318092i \(-0.896958\pi\)
−0.948060 + 0.318092i \(0.896958\pi\)
\(762\) 0 0
\(763\) 43.5890i 1.57803i
\(764\) 0 0
\(765\) 0 0
\(766\) −4.00000 −0.144526
\(767\) 0 0
\(768\) 0 0
\(769\) −9.00000 −0.324548 −0.162274 0.986746i \(-0.551883\pi\)
−0.162274 + 0.986746i \(0.551883\pi\)
\(770\) 41.4095 9.50000i 1.49230 0.342356i
\(771\) 0 0
\(772\) 21.7945i 0.784401i
\(773\) 18.0000i 0.647415i −0.946157 0.323708i \(-0.895071\pi\)
0.946157 0.323708i \(-0.104929\pi\)
\(774\) 0 0
\(775\) 31.5000 15.2561i 1.13151 0.548017i
\(776\) 4.35890 0.156475
\(777\) 0 0
\(778\) 4.35890i 0.156274i
\(779\) 52.3068 1.87409
\(780\) 0 0
\(781\) 0 0
\(782\) 8.00000i 0.286079i
\(783\) 0 0
\(784\) −12.0000 −0.428571
\(785\) 8.71780 + 38.0000i 0.311152 + 1.35628i
\(786\) 0 0
\(787\) 17.4356i 0.621512i −0.950490 0.310756i \(-0.899418\pi\)
0.950490 0.310756i \(-0.100582\pi\)
\(788\) 5.00000i 0.178118i
\(789\) 0 0
\(790\) 0 0
\(791\) 78.4602 2.78972
\(792\) 0 0
\(793\) 0 0
\(794\) −34.8712 −1.23753
\(795\) 0