Properties

Label 270.2.c.b
Level $270$
Weight $2$
Character orbit 270.c
Analytic conductor $2.156$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,2,Mod(109,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.15596085457\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} - q^{4} + ( - 2 i + 1) q^{5} + 4 i q^{7} - i q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + i q^{2} - q^{4} + ( - 2 i + 1) q^{5} + 4 i q^{7} - i q^{8} + (i + 2) q^{10} + 5 q^{11} + 3 i q^{13} - 4 q^{14} + q^{16} + i q^{17} + 6 q^{19} + (2 i - 1) q^{20} + 5 i q^{22} - i q^{23} + ( - 4 i - 3) q^{25} - 3 q^{26} - 4 i q^{28} - 9 q^{29} - 5 q^{31} + i q^{32} - q^{34} + (4 i + 8) q^{35} - 2 i q^{37} + 6 i q^{38} + ( - i - 2) q^{40} + 2 q^{41} - i q^{43} - 5 q^{44} + q^{46} - 13 i q^{47} - 9 q^{49} + ( - 3 i + 4) q^{50} - 3 i q^{52} + ( - 10 i + 5) q^{55} + 4 q^{56} - 9 i q^{58} - 4 q^{59} + 8 q^{61} - 5 i q^{62} - q^{64} + (3 i + 6) q^{65} - 4 i q^{67} - i q^{68} + (8 i - 4) q^{70} + 6 q^{71} + 2 i q^{73} + 2 q^{74} - 6 q^{76} + 20 i q^{77} - 9 q^{79} + ( - 2 i + 1) q^{80} + 2 i q^{82} - 4 i q^{83} + (i + 2) q^{85} + q^{86} - 5 i q^{88} - 14 q^{89} - 12 q^{91} + i q^{92} + 13 q^{94} + ( - 12 i + 6) q^{95} - 10 i q^{97} - 9 i q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} + 2 q^{5} + 4 q^{10} + 10 q^{11} - 8 q^{14} + 2 q^{16} + 12 q^{19} - 2 q^{20} - 6 q^{25} - 6 q^{26} - 18 q^{29} - 10 q^{31} - 2 q^{34} + 16 q^{35} - 4 q^{40} + 4 q^{41} - 10 q^{44} + 2 q^{46} - 18 q^{49} + 8 q^{50} + 10 q^{55} + 8 q^{56} - 8 q^{59} + 16 q^{61} - 2 q^{64} + 12 q^{65} - 8 q^{70} + 12 q^{71} + 4 q^{74} - 12 q^{76} - 18 q^{79} + 2 q^{80} + 4 q^{85} + 2 q^{86} - 28 q^{89} - 24 q^{91} + 26 q^{94} + 12 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
1.00000i
1.00000i
1.00000i 0 −1.00000 1.00000 + 2.00000i 0 4.00000i 1.00000i 0 2.00000 1.00000i
109.2 1.00000i 0 −1.00000 1.00000 2.00000i 0 4.00000i 1.00000i 0 2.00000 + 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.2.c.b yes 2
3.b odd 2 1 270.2.c.a 2
4.b odd 2 1 2160.2.f.e 2
5.b even 2 1 inner 270.2.c.b yes 2
5.c odd 4 1 1350.2.a.b 1
5.c odd 4 1 1350.2.a.v 1
9.c even 3 2 810.2.i.c 4
9.d odd 6 2 810.2.i.d 4
12.b even 2 1 2160.2.f.d 2
15.d odd 2 1 270.2.c.a 2
15.e even 4 1 1350.2.a.j 1
15.e even 4 1 1350.2.a.l 1
20.d odd 2 1 2160.2.f.e 2
45.h odd 6 2 810.2.i.d 4
45.j even 6 2 810.2.i.c 4
60.h even 2 1 2160.2.f.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
270.2.c.a 2 3.b odd 2 1
270.2.c.a 2 15.d odd 2 1
270.2.c.b yes 2 1.a even 1 1 trivial
270.2.c.b yes 2 5.b even 2 1 inner
810.2.i.c 4 9.c even 3 2
810.2.i.c 4 45.j even 6 2
810.2.i.d 4 9.d odd 6 2
810.2.i.d 4 45.h odd 6 2
1350.2.a.b 1 5.c odd 4 1
1350.2.a.j 1 15.e even 4 1
1350.2.a.l 1 15.e even 4 1
1350.2.a.v 1 5.c odd 4 1
2160.2.f.d 2 12.b even 2 1
2160.2.f.d 2 60.h even 2 1
2160.2.f.e 2 4.b odd 2 1
2160.2.f.e 2 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(270, [\chi])\):

\( T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11} - 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2T + 5 \) Copy content Toggle raw display
$7$ \( T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T - 5)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 9 \) Copy content Toggle raw display
$17$ \( T^{2} + 1 \) Copy content Toggle raw display
$19$ \( (T - 6)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 1 \) Copy content Toggle raw display
$29$ \( (T + 9)^{2} \) Copy content Toggle raw display
$31$ \( (T + 5)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( (T - 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 1 \) Copy content Toggle raw display
$47$ \( T^{2} + 169 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( (T + 4)^{2} \) Copy content Toggle raw display
$61$ \( (T - 8)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 16 \) Copy content Toggle raw display
$71$ \( (T - 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4 \) Copy content Toggle raw display
$79$ \( (T + 9)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 16 \) Copy content Toggle raw display
$89$ \( (T + 14)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 100 \) Copy content Toggle raw display
show more
show less