Properties

Label 270.2.c
Level $270$
Weight $2$
Character orbit 270.c
Rep. character $\chi_{270}(109,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $3$
Sturm bound $108$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 270.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(108\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(270, [\chi])\).

Total New Old
Modular forms 66 8 58
Cusp forms 42 8 34
Eisenstein series 24 0 24

Trace form

\( 8 q - 8 q^{4} + O(q^{10}) \) \( 8 q - 8 q^{4} + 10 q^{10} + 8 q^{16} + 6 q^{25} + 8 q^{31} - 20 q^{34} - 10 q^{40} - 4 q^{46} - 84 q^{49} + 58 q^{55} + 16 q^{61} - 8 q^{64} + 22 q^{70} - 36 q^{79} + 16 q^{85} - 48 q^{91} + 44 q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(270, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
270.2.c.a 270.c 5.b $2$ $2.156$ \(\Q(\sqrt{-1}) \) None 270.2.c.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-q^{4}+(-1-2i)q^{5}-4iq^{7}+\cdots\)
270.2.c.b 270.c 5.b $2$ $2.156$ \(\Q(\sqrt{-1}) \) None 270.2.c.a \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-q^{4}+(1-2i)q^{5}+4iq^{7}+\cdots\)
270.2.c.c 270.c 5.b $4$ $2.156$ \(\Q(i, \sqrt{19})\) None 270.2.c.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-q^{4}+\beta _{1}q^{5}+(1+2\beta _{3})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(270, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(270, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)