Defining parameters
Level: | \( N \) | \(=\) | \( 270 = 2 \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 270.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(270, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 8 | 58 |
Cusp forms | 42 | 8 | 34 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(270, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
270.2.c.a | $2$ | $2.156$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+iq^{2}-q^{4}+(-1-2i)q^{5}-4iq^{7}+\cdots\) |
270.2.c.b | $2$ | $2.156$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+iq^{2}-q^{4}+(1-2i)q^{5}+4iq^{7}+\cdots\) |
270.2.c.c | $4$ | $2.156$ | \(\Q(i, \sqrt{19})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{2}q^{2}-q^{4}+\beta _{1}q^{5}+(1+2\beta _{3})q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(270, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(270, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 2}\)