Defining parameters
| Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 8 \) |
| Character orbit: | \([\chi]\) | \(=\) | 27.c (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(24\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(27, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 48 | 16 | 32 |
| Cusp forms | 36 | 12 | 24 |
| Eisenstein series | 12 | 4 | 8 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(27, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 27.8.c.a | $12$ | $8.434$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(9\) | \(0\) | \(180\) | \(-84\) | \(q+(-\beta _{1}+\beta _{6}+\beta _{7})q^{2}+(-52+3\beta _{6}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(27, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)