Properties

Label 27.8.c
Level $27$
Weight $8$
Character orbit 27.c
Rep. character $\chi_{27}(10,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $12$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 27.c (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(27, [\chi])\).

Total New Old
Modular forms 48 16 32
Cusp forms 36 12 24
Eisenstein series 12 4 8

Trace form

\( 12 q + 9 q^{2} - 321 q^{4} + 180 q^{5} - 84 q^{7} - 5922 q^{8} + 252 q^{10} + 8460 q^{11} - 1848 q^{13} + 16272 q^{14} - 12417 q^{16} - 30564 q^{17} + 24432 q^{19} + 40788 q^{20} - 35001 q^{22} + 51588 q^{23}+ \cdots + 95833314 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(27, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
27.8.c.a 27.c 9.c $12$ $8.434$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 9.8.c.a \(9\) \(0\) \(180\) \(-84\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{6}+\beta _{7})q^{2}+(-52+3\beta _{6}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(27, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)