Properties

Label 27.8.a.c.1.1
Level $27$
Weight $8$
Character 27.1
Self dual yes
Analytic conductor $8.434$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,8,Mod(1,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.43439568807\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 27.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-10.3923 q^{2} -20.0000 q^{4} +353.338 q^{5} -559.000 q^{7} +1538.06 q^{8} -3672.00 q^{10} -4718.11 q^{11} -8671.00 q^{13} +5809.30 q^{14} -13424.0 q^{16} -25128.6 q^{17} -32461.0 q^{19} -7066.77 q^{20} +49032.0 q^{22} +82411.0 q^{23} +46723.0 q^{25} +90111.7 q^{26} +11180.0 q^{28} -157797. q^{29} +229892. q^{31} -57365.5 q^{32} +261144. q^{34} -197516. q^{35} -541177. q^{37} +337345. q^{38} +543456. q^{40} -353505. q^{41} -465112. q^{43} +94362.1 q^{44} -856440. q^{46} +830574. q^{47} -511062. q^{49} -485560. q^{50} +173420. q^{52} +1.02622e6 q^{53} -1.66709e6 q^{55} -859776. q^{56} +1.63987e6 q^{58} +785263. q^{59} -137773. q^{61} -2.38911e6 q^{62} +2.31443e6 q^{64} -3.06380e6 q^{65} -314041. q^{67} +502572. q^{68} +2.05265e6 q^{70} +2.80979e6 q^{71} +2.66954e6 q^{73} +5.62408e6 q^{74} +649220. q^{76} +2.63742e6 q^{77} +1.10181e6 q^{79} -4.74321e6 q^{80} +3.67373e6 q^{82} -6.07904e6 q^{83} -8.87890e6 q^{85} +4.83359e6 q^{86} -7.25674e6 q^{88} +3.28636e6 q^{89} +4.84709e6 q^{91} -1.64822e6 q^{92} -8.63158e6 q^{94} -1.14697e7 q^{95} -2.97938e6 q^{97} +5.31111e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 40 q^{4} - 1118 q^{7} - 7344 q^{10} - 17342 q^{13} - 26848 q^{16} - 64922 q^{19} + 98064 q^{22} + 93446 q^{25} + 22360 q^{28} + 459784 q^{31} + 522288 q^{34} - 1082354 q^{37} + 1086912 q^{40} - 930224 q^{43}+ \cdots - 5958758 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −10.3923 −0.918559 −0.459279 0.888292i \(-0.651892\pi\)
−0.459279 + 0.888292i \(0.651892\pi\)
\(3\) 0 0
\(4\) −20.0000 −0.156250
\(5\) 353.338 1.26414 0.632071 0.774911i \(-0.282205\pi\)
0.632071 + 0.774911i \(0.282205\pi\)
\(6\) 0 0
\(7\) −559.000 −0.615983 −0.307991 0.951389i \(-0.599657\pi\)
−0.307991 + 0.951389i \(0.599657\pi\)
\(8\) 1538.06 1.06208
\(9\) 0 0
\(10\) −3672.00 −1.16119
\(11\) −4718.11 −1.06879 −0.534396 0.845234i \(-0.679461\pi\)
−0.534396 + 0.845234i \(0.679461\pi\)
\(12\) 0 0
\(13\) −8671.00 −1.09463 −0.547315 0.836927i \(-0.684350\pi\)
−0.547315 + 0.836927i \(0.684350\pi\)
\(14\) 5809.30 0.565816
\(15\) 0 0
\(16\) −13424.0 −0.819336
\(17\) −25128.6 −1.24050 −0.620250 0.784404i \(-0.712969\pi\)
−0.620250 + 0.784404i \(0.712969\pi\)
\(18\) 0 0
\(19\) −32461.0 −1.08574 −0.542868 0.839818i \(-0.682662\pi\)
−0.542868 + 0.839818i \(0.682662\pi\)
\(20\) −7066.77 −0.197522
\(21\) 0 0
\(22\) 49032.0 0.981748
\(23\) 82411.0 1.41233 0.706167 0.708045i \(-0.250423\pi\)
0.706167 + 0.708045i \(0.250423\pi\)
\(24\) 0 0
\(25\) 46723.0 0.598054
\(26\) 90111.7 1.00548
\(27\) 0 0
\(28\) 11180.0 0.0962473
\(29\) −157797. −1.20145 −0.600724 0.799456i \(-0.705121\pi\)
−0.600724 + 0.799456i \(0.705121\pi\)
\(30\) 0 0
\(31\) 229892. 1.38598 0.692992 0.720946i \(-0.256292\pi\)
0.692992 + 0.720946i \(0.256292\pi\)
\(32\) −57365.5 −0.309475
\(33\) 0 0
\(34\) 261144. 1.13947
\(35\) −197516. −0.778690
\(36\) 0 0
\(37\) −541177. −1.75644 −0.878220 0.478257i \(-0.841269\pi\)
−0.878220 + 0.478257i \(0.841269\pi\)
\(38\) 337345. 0.997312
\(39\) 0 0
\(40\) 543456. 1.34262
\(41\) −353505. −0.801035 −0.400518 0.916289i \(-0.631170\pi\)
−0.400518 + 0.916289i \(0.631170\pi\)
\(42\) 0 0
\(43\) −465112. −0.892109 −0.446055 0.895006i \(-0.647171\pi\)
−0.446055 + 0.895006i \(0.647171\pi\)
\(44\) 94362.1 0.166999
\(45\) 0 0
\(46\) −856440. −1.29731
\(47\) 830574. 1.16691 0.583453 0.812147i \(-0.301701\pi\)
0.583453 + 0.812147i \(0.301701\pi\)
\(48\) 0 0
\(49\) −511062. −0.620565
\(50\) −485560. −0.549348
\(51\) 0 0
\(52\) 173420. 0.171036
\(53\) 1.02622e6 0.946836 0.473418 0.880838i \(-0.343020\pi\)
0.473418 + 0.880838i \(0.343020\pi\)
\(54\) 0 0
\(55\) −1.66709e6 −1.35111
\(56\) −859776. −0.654225
\(57\) 0 0
\(58\) 1.63987e6 1.10360
\(59\) 785263. 0.497775 0.248888 0.968532i \(-0.419935\pi\)
0.248888 + 0.968532i \(0.419935\pi\)
\(60\) 0 0
\(61\) −137773. −0.0777159 −0.0388579 0.999245i \(-0.512372\pi\)
−0.0388579 + 0.999245i \(0.512372\pi\)
\(62\) −2.38911e6 −1.27311
\(63\) 0 0
\(64\) 2.31443e6 1.10361
\(65\) −3.06380e6 −1.38377
\(66\) 0 0
\(67\) −314041. −0.127563 −0.0637815 0.997964i \(-0.520316\pi\)
−0.0637815 + 0.997964i \(0.520316\pi\)
\(68\) 502572. 0.193828
\(69\) 0 0
\(70\) 2.05265e6 0.715272
\(71\) 2.80979e6 0.931686 0.465843 0.884868i \(-0.345751\pi\)
0.465843 + 0.884868i \(0.345751\pi\)
\(72\) 0 0
\(73\) 2.66954e6 0.803167 0.401584 0.915822i \(-0.368460\pi\)
0.401584 + 0.915822i \(0.368460\pi\)
\(74\) 5.62408e6 1.61339
\(75\) 0 0
\(76\) 649220. 0.169646
\(77\) 2.63742e6 0.658358
\(78\) 0 0
\(79\) 1.10181e6 0.251428 0.125714 0.992067i \(-0.459878\pi\)
0.125714 + 0.992067i \(0.459878\pi\)
\(80\) −4.74321e6 −1.03576
\(81\) 0 0
\(82\) 3.67373e6 0.735798
\(83\) −6.07904e6 −1.16698 −0.583488 0.812122i \(-0.698312\pi\)
−0.583488 + 0.812122i \(0.698312\pi\)
\(84\) 0 0
\(85\) −8.87890e6 −1.56817
\(86\) 4.83359e6 0.819454
\(87\) 0 0
\(88\) −7.25674e6 −1.13515
\(89\) 3.28636e6 0.494140 0.247070 0.968998i \(-0.420532\pi\)
0.247070 + 0.968998i \(0.420532\pi\)
\(90\) 0 0
\(91\) 4.84709e6 0.674274
\(92\) −1.64822e6 −0.220677
\(93\) 0 0
\(94\) −8.63158e6 −1.07187
\(95\) −1.14697e7 −1.37252
\(96\) 0 0
\(97\) −2.97938e6 −0.331455 −0.165728 0.986172i \(-0.552997\pi\)
−0.165728 + 0.986172i \(0.552997\pi\)
\(98\) 5.31111e6 0.570025
\(99\) 0 0
\(100\) −934460. −0.0934460
\(101\) 2.74739e6 0.265336 0.132668 0.991161i \(-0.457646\pi\)
0.132668 + 0.991161i \(0.457646\pi\)
\(102\) 0 0
\(103\) −5.87109e6 −0.529406 −0.264703 0.964330i \(-0.585274\pi\)
−0.264703 + 0.964330i \(0.585274\pi\)
\(104\) −1.33365e7 −1.16259
\(105\) 0 0
\(106\) −1.06648e7 −0.869724
\(107\) −5.84848e6 −0.461530 −0.230765 0.973010i \(-0.574123\pi\)
−0.230765 + 0.973010i \(0.574123\pi\)
\(108\) 0 0
\(109\) 8.94694e6 0.661731 0.330866 0.943678i \(-0.392659\pi\)
0.330866 + 0.943678i \(0.392659\pi\)
\(110\) 1.73249e7 1.24107
\(111\) 0 0
\(112\) 7.50402e6 0.504697
\(113\) 1.30666e7 0.851899 0.425949 0.904747i \(-0.359940\pi\)
0.425949 + 0.904747i \(0.359940\pi\)
\(114\) 0 0
\(115\) 2.91190e7 1.78539
\(116\) 3.15594e6 0.187726
\(117\) 0 0
\(118\) −8.16070e6 −0.457236
\(119\) 1.40469e7 0.764127
\(120\) 0 0
\(121\) 2.77336e6 0.142317
\(122\) 1.43178e6 0.0713866
\(123\) 0 0
\(124\) −4.59784e6 −0.216560
\(125\) −1.10955e7 −0.508116
\(126\) 0 0
\(127\) 1.96731e7 0.852235 0.426118 0.904668i \(-0.359881\pi\)
0.426118 + 0.904668i \(0.359881\pi\)
\(128\) −1.67095e7 −0.704253
\(129\) 0 0
\(130\) 3.18399e7 1.27107
\(131\) −8.56750e6 −0.332970 −0.166485 0.986044i \(-0.553242\pi\)
−0.166485 + 0.986044i \(0.553242\pi\)
\(132\) 0 0
\(133\) 1.81457e7 0.668795
\(134\) 3.26361e6 0.117174
\(135\) 0 0
\(136\) −3.86493e7 −1.31752
\(137\) −5.56139e7 −1.84783 −0.923913 0.382603i \(-0.875028\pi\)
−0.923913 + 0.382603i \(0.875028\pi\)
\(138\) 0 0
\(139\) 2.77989e7 0.877963 0.438981 0.898496i \(-0.355339\pi\)
0.438981 + 0.898496i \(0.355339\pi\)
\(140\) 3.95032e6 0.121670
\(141\) 0 0
\(142\) −2.92002e7 −0.855808
\(143\) 4.09107e7 1.16993
\(144\) 0 0
\(145\) −5.57556e7 −1.51880
\(146\) −2.77426e7 −0.737756
\(147\) 0 0
\(148\) 1.08235e7 0.274444
\(149\) 7.78371e7 1.92768 0.963839 0.266485i \(-0.0858622\pi\)
0.963839 + 0.266485i \(0.0858622\pi\)
\(150\) 0 0
\(151\) 1.04632e7 0.247312 0.123656 0.992325i \(-0.460538\pi\)
0.123656 + 0.992325i \(0.460538\pi\)
\(152\) −4.99270e7 −1.15314
\(153\) 0 0
\(154\) −2.74089e7 −0.604740
\(155\) 8.12297e7 1.75208
\(156\) 0 0
\(157\) −6.57814e7 −1.35661 −0.678304 0.734781i \(-0.737285\pi\)
−0.678304 + 0.734781i \(0.737285\pi\)
\(158\) −1.14504e7 −0.230951
\(159\) 0 0
\(160\) −2.02694e7 −0.391221
\(161\) −4.60677e7 −0.869974
\(162\) 0 0
\(163\) −3.00965e7 −0.544327 −0.272164 0.962251i \(-0.587739\pi\)
−0.272164 + 0.962251i \(0.587739\pi\)
\(164\) 7.07009e6 0.125162
\(165\) 0 0
\(166\) 6.31752e7 1.07194
\(167\) −7.90997e7 −1.31422 −0.657109 0.753796i \(-0.728221\pi\)
−0.657109 + 0.753796i \(0.728221\pi\)
\(168\) 0 0
\(169\) 1.24377e7 0.198215
\(170\) 9.22722e7 1.44045
\(171\) 0 0
\(172\) 9.30224e6 0.139392
\(173\) 2.81224e7 0.412944 0.206472 0.978453i \(-0.433802\pi\)
0.206472 + 0.978453i \(0.433802\pi\)
\(174\) 0 0
\(175\) −2.61182e7 −0.368391
\(176\) 6.33359e7 0.875700
\(177\) 0 0
\(178\) −3.41528e7 −0.453896
\(179\) −3.04834e7 −0.397263 −0.198631 0.980074i \(-0.563650\pi\)
−0.198631 + 0.980074i \(0.563650\pi\)
\(180\) 0 0
\(181\) 2.98803e6 0.0374550 0.0187275 0.999825i \(-0.494039\pi\)
0.0187275 + 0.999825i \(0.494039\pi\)
\(182\) −5.03724e7 −0.619360
\(183\) 0 0
\(184\) 1.26753e8 1.50002
\(185\) −1.91219e8 −2.22039
\(186\) 0 0
\(187\) 1.18559e8 1.32584
\(188\) −1.66115e7 −0.182329
\(189\) 0 0
\(190\) 1.19197e8 1.26074
\(191\) −3.39428e7 −0.352477 −0.176238 0.984348i \(-0.556393\pi\)
−0.176238 + 0.984348i \(0.556393\pi\)
\(192\) 0 0
\(193\) −1.57244e8 −1.57443 −0.787214 0.616680i \(-0.788477\pi\)
−0.787214 + 0.616680i \(0.788477\pi\)
\(194\) 3.09626e7 0.304461
\(195\) 0 0
\(196\) 1.02212e7 0.0969633
\(197\) 6.30072e7 0.587163 0.293581 0.955934i \(-0.405153\pi\)
0.293581 + 0.955934i \(0.405153\pi\)
\(198\) 0 0
\(199\) 1.92815e8 1.73443 0.867213 0.497937i \(-0.165909\pi\)
0.867213 + 0.497937i \(0.165909\pi\)
\(200\) 7.18628e7 0.635184
\(201\) 0 0
\(202\) −2.85517e7 −0.243727
\(203\) 8.82084e7 0.740072
\(204\) 0 0
\(205\) −1.24907e8 −1.01262
\(206\) 6.10142e7 0.486290
\(207\) 0 0
\(208\) 1.16400e8 0.896870
\(209\) 1.53154e8 1.16043
\(210\) 0 0
\(211\) −1.27805e8 −0.936610 −0.468305 0.883567i \(-0.655135\pi\)
−0.468305 + 0.883567i \(0.655135\pi\)
\(212\) −2.05244e7 −0.147943
\(213\) 0 0
\(214\) 6.07792e7 0.423942
\(215\) −1.64342e8 −1.12775
\(216\) 0 0
\(217\) −1.28510e8 −0.853742
\(218\) −9.29793e7 −0.607839
\(219\) 0 0
\(220\) 3.33418e7 0.211110
\(221\) 2.17890e8 1.35789
\(222\) 0 0
\(223\) −6.65653e7 −0.401958 −0.200979 0.979596i \(-0.564412\pi\)
−0.200979 + 0.979596i \(0.564412\pi\)
\(224\) 3.20673e7 0.190632
\(225\) 0 0
\(226\) −1.35792e8 −0.782519
\(227\) −1.46415e8 −0.830795 −0.415397 0.909640i \(-0.636357\pi\)
−0.415397 + 0.909640i \(0.636357\pi\)
\(228\) 0 0
\(229\) −2.55728e8 −1.40719 −0.703597 0.710599i \(-0.748424\pi\)
−0.703597 + 0.710599i \(0.748424\pi\)
\(230\) −3.02613e8 −1.63999
\(231\) 0 0
\(232\) −2.42701e8 −1.27604
\(233\) −5.51954e7 −0.285862 −0.142931 0.989733i \(-0.545653\pi\)
−0.142931 + 0.989733i \(0.545653\pi\)
\(234\) 0 0
\(235\) 2.93474e8 1.47513
\(236\) −1.57053e7 −0.0777774
\(237\) 0 0
\(238\) −1.45979e8 −0.701896
\(239\) 1.82590e8 0.865134 0.432567 0.901602i \(-0.357608\pi\)
0.432567 + 0.901602i \(0.357608\pi\)
\(240\) 0 0
\(241\) 1.72443e7 0.0793571 0.0396786 0.999212i \(-0.487367\pi\)
0.0396786 + 0.999212i \(0.487367\pi\)
\(242\) −2.88216e7 −0.130727
\(243\) 0 0
\(244\) 2.75546e6 0.0121431
\(245\) −1.80578e8 −0.784482
\(246\) 0 0
\(247\) 2.81469e8 1.18848
\(248\) 3.53588e8 1.47203
\(249\) 0 0
\(250\) 1.15308e8 0.466735
\(251\) 4.88338e7 0.194923 0.0974613 0.995239i \(-0.468928\pi\)
0.0974613 + 0.995239i \(0.468928\pi\)
\(252\) 0 0
\(253\) −3.88824e8 −1.50949
\(254\) −2.04449e8 −0.782828
\(255\) 0 0
\(256\) −1.22597e8 −0.456710
\(257\) −8.21424e7 −0.301857 −0.150929 0.988545i \(-0.548226\pi\)
−0.150929 + 0.988545i \(0.548226\pi\)
\(258\) 0 0
\(259\) 3.02518e8 1.08194
\(260\) 6.12759e7 0.216214
\(261\) 0 0
\(262\) 8.90361e7 0.305852
\(263\) 2.07617e8 0.703748 0.351874 0.936047i \(-0.385545\pi\)
0.351874 + 0.936047i \(0.385545\pi\)
\(264\) 0 0
\(265\) 3.62603e8 1.19693
\(266\) −1.88576e8 −0.614327
\(267\) 0 0
\(268\) 6.28082e6 0.0199317
\(269\) 3.42054e8 1.07143 0.535713 0.844400i \(-0.320043\pi\)
0.535713 + 0.844400i \(0.320043\pi\)
\(270\) 0 0
\(271\) 6.74035e7 0.205726 0.102863 0.994696i \(-0.467200\pi\)
0.102863 + 0.994696i \(0.467200\pi\)
\(272\) 3.37326e8 1.01639
\(273\) 0 0
\(274\) 5.77956e8 1.69734
\(275\) −2.20444e8 −0.639196
\(276\) 0 0
\(277\) 2.08092e8 0.588270 0.294135 0.955764i \(-0.404968\pi\)
0.294135 + 0.955764i \(0.404968\pi\)
\(278\) −2.88895e8 −0.806460
\(279\) 0 0
\(280\) −3.03792e8 −0.827033
\(281\) 2.54709e8 0.684814 0.342407 0.939552i \(-0.388758\pi\)
0.342407 + 0.939552i \(0.388758\pi\)
\(282\) 0 0
\(283\) 1.82076e8 0.477529 0.238764 0.971078i \(-0.423258\pi\)
0.238764 + 0.971078i \(0.423258\pi\)
\(284\) −5.61958e7 −0.145576
\(285\) 0 0
\(286\) −4.25156e8 −1.07465
\(287\) 1.97609e8 0.493424
\(288\) 0 0
\(289\) 2.21108e8 0.538842
\(290\) 5.79430e8 1.39511
\(291\) 0 0
\(292\) −5.33907e7 −0.125495
\(293\) −5.44321e8 −1.26421 −0.632104 0.774884i \(-0.717808\pi\)
−0.632104 + 0.774884i \(0.717808\pi\)
\(294\) 0 0
\(295\) 2.77464e8 0.629258
\(296\) −8.32363e8 −1.86549
\(297\) 0 0
\(298\) −8.08907e8 −1.77069
\(299\) −7.14586e8 −1.54598
\(300\) 0 0
\(301\) 2.59998e8 0.549524
\(302\) −1.08737e8 −0.227171
\(303\) 0 0
\(304\) 4.35756e8 0.889583
\(305\) −4.86805e7 −0.0982439
\(306\) 0 0
\(307\) −5.34564e8 −1.05442 −0.527212 0.849734i \(-0.676763\pi\)
−0.527212 + 0.849734i \(0.676763\pi\)
\(308\) −5.27484e7 −0.102868
\(309\) 0 0
\(310\) −8.44163e8 −1.60939
\(311\) 3.99687e8 0.753457 0.376729 0.926324i \(-0.377049\pi\)
0.376729 + 0.926324i \(0.377049\pi\)
\(312\) 0 0
\(313\) −9.13258e8 −1.68340 −0.841702 0.539943i \(-0.818446\pi\)
−0.841702 + 0.539943i \(0.818446\pi\)
\(314\) 6.83621e8 1.24612
\(315\) 0 0
\(316\) −2.20363e7 −0.0392856
\(317\) −4.10657e8 −0.724055 −0.362027 0.932167i \(-0.617915\pi\)
−0.362027 + 0.932167i \(0.617915\pi\)
\(318\) 0 0
\(319\) 7.44502e8 1.28410
\(320\) 8.17778e8 1.39512
\(321\) 0 0
\(322\) 4.78750e8 0.799122
\(323\) 8.15699e8 1.34686
\(324\) 0 0
\(325\) −4.05135e8 −0.654648
\(326\) 3.12772e8 0.499996
\(327\) 0 0
\(328\) −5.43712e8 −0.850766
\(329\) −4.64291e8 −0.718794
\(330\) 0 0
\(331\) −9.29745e8 −1.40918 −0.704589 0.709616i \(-0.748869\pi\)
−0.704589 + 0.709616i \(0.748869\pi\)
\(332\) 1.21581e8 0.182340
\(333\) 0 0
\(334\) 8.22028e8 1.20719
\(335\) −1.10963e8 −0.161258
\(336\) 0 0
\(337\) −5.73925e8 −0.816866 −0.408433 0.912788i \(-0.633925\pi\)
−0.408433 + 0.912788i \(0.633925\pi\)
\(338\) −1.29257e8 −0.182072
\(339\) 0 0
\(340\) 1.77578e8 0.245026
\(341\) −1.08465e9 −1.48133
\(342\) 0 0
\(343\) 7.46044e8 0.998240
\(344\) −7.15371e8 −0.947494
\(345\) 0 0
\(346\) −2.92257e8 −0.379313
\(347\) 1.09295e9 1.40427 0.702133 0.712046i \(-0.252231\pi\)
0.702133 + 0.712046i \(0.252231\pi\)
\(348\) 0 0
\(349\) 7.28528e8 0.917397 0.458699 0.888592i \(-0.348316\pi\)
0.458699 + 0.888592i \(0.348316\pi\)
\(350\) 2.71428e8 0.338389
\(351\) 0 0
\(352\) 2.70657e8 0.330765
\(353\) 5.86912e8 0.710169 0.355084 0.934834i \(-0.384452\pi\)
0.355084 + 0.934834i \(0.384452\pi\)
\(354\) 0 0
\(355\) 9.92806e8 1.17778
\(356\) −6.57272e7 −0.0772094
\(357\) 0 0
\(358\) 3.16793e8 0.364909
\(359\) −1.19985e9 −1.36866 −0.684330 0.729173i \(-0.739905\pi\)
−0.684330 + 0.729173i \(0.739905\pi\)
\(360\) 0 0
\(361\) 1.59845e8 0.178823
\(362\) −3.10525e7 −0.0344046
\(363\) 0 0
\(364\) −9.69418e7 −0.105355
\(365\) 9.43250e8 1.01532
\(366\) 0 0
\(367\) −1.31551e9 −1.38919 −0.694595 0.719401i \(-0.744416\pi\)
−0.694595 + 0.719401i \(0.744416\pi\)
\(368\) −1.10628e9 −1.15718
\(369\) 0 0
\(370\) 1.98720e9 2.03956
\(371\) −5.73657e8 −0.583235
\(372\) 0 0
\(373\) −1.07725e9 −1.07482 −0.537411 0.843321i \(-0.680598\pi\)
−0.537411 + 0.843321i \(0.680598\pi\)
\(374\) −1.23211e9 −1.21786
\(375\) 0 0
\(376\) 1.27747e9 1.23935
\(377\) 1.36826e9 1.31514
\(378\) 0 0
\(379\) 7.73954e8 0.730261 0.365130 0.930956i \(-0.381024\pi\)
0.365130 + 0.930956i \(0.381024\pi\)
\(380\) 2.29394e8 0.214457
\(381\) 0 0
\(382\) 3.52744e8 0.323771
\(383\) −1.27039e9 −1.15542 −0.577710 0.816242i \(-0.696054\pi\)
−0.577710 + 0.816242i \(0.696054\pi\)
\(384\) 0 0
\(385\) 9.31902e8 0.832258
\(386\) 1.63413e9 1.44620
\(387\) 0 0
\(388\) 5.95876e7 0.0517899
\(389\) 1.08638e9 0.935743 0.467871 0.883797i \(-0.345021\pi\)
0.467871 + 0.883797i \(0.345021\pi\)
\(390\) 0 0
\(391\) −2.07087e9 −1.75200
\(392\) −7.86045e8 −0.659092
\(393\) 0 0
\(394\) −6.54790e8 −0.539344
\(395\) 3.89314e8 0.317841
\(396\) 0 0
\(397\) 9.52195e7 0.0763764 0.0381882 0.999271i \(-0.487841\pi\)
0.0381882 + 0.999271i \(0.487841\pi\)
\(398\) −2.00380e9 −1.59317
\(399\) 0 0
\(400\) −6.27210e8 −0.490007
\(401\) 1.44316e9 1.11766 0.558828 0.829284i \(-0.311251\pi\)
0.558828 + 0.829284i \(0.311251\pi\)
\(402\) 0 0
\(403\) −1.99339e9 −1.51714
\(404\) −5.49479e7 −0.0414587
\(405\) 0 0
\(406\) −9.16688e8 −0.679799
\(407\) 2.55333e9 1.87727
\(408\) 0 0
\(409\) 2.38724e9 1.72530 0.862650 0.505801i \(-0.168803\pi\)
0.862650 + 0.505801i \(0.168803\pi\)
\(410\) 1.29807e9 0.930153
\(411\) 0 0
\(412\) 1.17422e8 0.0827196
\(413\) −4.38962e8 −0.306621
\(414\) 0 0
\(415\) −2.14796e9 −1.47522
\(416\) 4.97416e8 0.338761
\(417\) 0 0
\(418\) −1.59163e9 −1.06592
\(419\) −2.30536e9 −1.53105 −0.765527 0.643404i \(-0.777522\pi\)
−0.765527 + 0.643404i \(0.777522\pi\)
\(420\) 0 0
\(421\) −1.20938e9 −0.789904 −0.394952 0.918702i \(-0.629239\pi\)
−0.394952 + 0.918702i \(0.629239\pi\)
\(422\) 1.32819e9 0.860332
\(423\) 0 0
\(424\) 1.57839e9 1.00562
\(425\) −1.17408e9 −0.741887
\(426\) 0 0
\(427\) 7.70151e7 0.0478716
\(428\) 1.16970e8 0.0721140
\(429\) 0 0
\(430\) 1.70789e9 1.03591
\(431\) −2.87283e9 −1.72838 −0.864189 0.503167i \(-0.832168\pi\)
−0.864189 + 0.503167i \(0.832168\pi\)
\(432\) 0 0
\(433\) −1.79302e9 −1.06140 −0.530699 0.847560i \(-0.678070\pi\)
−0.530699 + 0.847560i \(0.678070\pi\)
\(434\) 1.33551e9 0.784212
\(435\) 0 0
\(436\) −1.78939e8 −0.103396
\(437\) −2.67514e9 −1.53342
\(438\) 0 0
\(439\) −3.10244e8 −0.175016 −0.0875081 0.996164i \(-0.527890\pi\)
−0.0875081 + 0.996164i \(0.527890\pi\)
\(440\) −2.56408e9 −1.43499
\(441\) 0 0
\(442\) −2.26438e9 −1.24730
\(443\) 6.12654e8 0.334813 0.167406 0.985888i \(-0.446461\pi\)
0.167406 + 0.985888i \(0.446461\pi\)
\(444\) 0 0
\(445\) 1.16120e9 0.624663
\(446\) 6.91766e8 0.369222
\(447\) 0 0
\(448\) −1.29377e9 −0.679803
\(449\) 8.72232e8 0.454747 0.227374 0.973808i \(-0.426986\pi\)
0.227374 + 0.973808i \(0.426986\pi\)
\(450\) 0 0
\(451\) 1.66787e9 0.856140
\(452\) −2.61332e8 −0.133109
\(453\) 0 0
\(454\) 1.52158e9 0.763134
\(455\) 1.71266e9 0.852377
\(456\) 0 0
\(457\) 3.90056e9 1.91170 0.955851 0.293851i \(-0.0949369\pi\)
0.955851 + 0.293851i \(0.0949369\pi\)
\(458\) 2.65760e9 1.29259
\(459\) 0 0
\(460\) −5.82379e8 −0.278967
\(461\) −2.10841e9 −1.00231 −0.501155 0.865358i \(-0.667091\pi\)
−0.501155 + 0.865358i \(0.667091\pi\)
\(462\) 0 0
\(463\) 1.44349e9 0.675895 0.337948 0.941165i \(-0.390267\pi\)
0.337948 + 0.941165i \(0.390267\pi\)
\(464\) 2.11826e9 0.984390
\(465\) 0 0
\(466\) 5.73607e8 0.262581
\(467\) 2.03696e9 0.925493 0.462746 0.886491i \(-0.346864\pi\)
0.462746 + 0.886491i \(0.346864\pi\)
\(468\) 0 0
\(469\) 1.75549e8 0.0785766
\(470\) −3.04987e9 −1.35500
\(471\) 0 0
\(472\) 1.20778e9 0.528679
\(473\) 2.19445e9 0.953479
\(474\) 0 0
\(475\) −1.51668e9 −0.649329
\(476\) −2.80938e8 −0.119395
\(477\) 0 0
\(478\) −1.89753e9 −0.794676
\(479\) 7.00832e8 0.291367 0.145683 0.989331i \(-0.453462\pi\)
0.145683 + 0.989331i \(0.453462\pi\)
\(480\) 0 0
\(481\) 4.69255e9 1.92265
\(482\) −1.79208e8 −0.0728942
\(483\) 0 0
\(484\) −5.54671e7 −0.0222370
\(485\) −1.05273e9 −0.419006
\(486\) 0 0
\(487\) −2.15479e8 −0.0845384 −0.0422692 0.999106i \(-0.513459\pi\)
−0.0422692 + 0.999106i \(0.513459\pi\)
\(488\) −2.11903e8 −0.0825407
\(489\) 0 0
\(490\) 1.87662e9 0.720593
\(491\) 1.15709e9 0.441146 0.220573 0.975370i \(-0.429207\pi\)
0.220573 + 0.975370i \(0.429207\pi\)
\(492\) 0 0
\(493\) 3.96521e9 1.49040
\(494\) −2.92512e9 −1.09169
\(495\) 0 0
\(496\) −3.08607e9 −1.13559
\(497\) −1.57067e9 −0.573902
\(498\) 0 0
\(499\) −3.24480e9 −1.16906 −0.584529 0.811373i \(-0.698721\pi\)
−0.584529 + 0.811373i \(0.698721\pi\)
\(500\) 2.21911e8 0.0793932
\(501\) 0 0
\(502\) −5.07495e8 −0.179048
\(503\) 1.71289e9 0.600125 0.300062 0.953920i \(-0.402992\pi\)
0.300062 + 0.953920i \(0.402992\pi\)
\(504\) 0 0
\(505\) 9.70759e8 0.335422
\(506\) 4.04078e9 1.38656
\(507\) 0 0
\(508\) −3.93462e8 −0.133162
\(509\) 2.27447e8 0.0764485 0.0382242 0.999269i \(-0.487830\pi\)
0.0382242 + 0.999269i \(0.487830\pi\)
\(510\) 0 0
\(511\) −1.49227e9 −0.494737
\(512\) 3.41288e9 1.12377
\(513\) 0 0
\(514\) 8.53649e8 0.277273
\(515\) −2.07448e9 −0.669244
\(516\) 0 0
\(517\) −3.91874e9 −1.24718
\(518\) −3.14386e9 −0.993823
\(519\) 0 0
\(520\) −4.71231e9 −1.46968
\(521\) −4.19551e9 −1.29973 −0.649864 0.760050i \(-0.725174\pi\)
−0.649864 + 0.760050i \(0.725174\pi\)
\(522\) 0 0
\(523\) 1.77394e9 0.542228 0.271114 0.962547i \(-0.412608\pi\)
0.271114 + 0.962547i \(0.412608\pi\)
\(524\) 1.71350e8 0.0520265
\(525\) 0 0
\(526\) −2.15762e9 −0.646434
\(527\) −5.77686e9 −1.71931
\(528\) 0 0
\(529\) 3.38674e9 0.994689
\(530\) −3.76828e9 −1.09945
\(531\) 0 0
\(532\) −3.62914e8 −0.104499
\(533\) 3.06524e9 0.876837
\(534\) 0 0
\(535\) −2.06649e9 −0.583439
\(536\) −4.83014e8 −0.135482
\(537\) 0 0
\(538\) −3.55473e9 −0.984168
\(539\) 2.41124e9 0.663255
\(540\) 0 0
\(541\) −3.74560e9 −1.01702 −0.508511 0.861055i \(-0.669804\pi\)
−0.508511 + 0.861055i \(0.669804\pi\)
\(542\) −7.00478e8 −0.188972
\(543\) 0 0
\(544\) 1.44151e9 0.383904
\(545\) 3.16130e9 0.836522
\(546\) 0 0
\(547\) −2.14352e9 −0.559980 −0.279990 0.960003i \(-0.590331\pi\)
−0.279990 + 0.960003i \(0.590331\pi\)
\(548\) 1.11228e9 0.288723
\(549\) 0 0
\(550\) 2.29092e9 0.587139
\(551\) 5.12224e9 1.30446
\(552\) 0 0
\(553\) −6.15915e8 −0.154875
\(554\) −2.16256e9 −0.540360
\(555\) 0 0
\(556\) −5.55978e8 −0.137182
\(557\) 3.54423e9 0.869019 0.434509 0.900667i \(-0.356922\pi\)
0.434509 + 0.900667i \(0.356922\pi\)
\(558\) 0 0
\(559\) 4.03299e9 0.976530
\(560\) 2.65146e9 0.638008
\(561\) 0 0
\(562\) −2.64702e9 −0.629042
\(563\) 1.35364e9 0.319686 0.159843 0.987142i \(-0.448901\pi\)
0.159843 + 0.987142i \(0.448901\pi\)
\(564\) 0 0
\(565\) 4.61693e9 1.07692
\(566\) −1.89219e9 −0.438638
\(567\) 0 0
\(568\) 4.32163e9 0.989528
\(569\) −1.11107e9 −0.252843 −0.126421 0.991977i \(-0.540349\pi\)
−0.126421 + 0.991977i \(0.540349\pi\)
\(570\) 0 0
\(571\) −1.85765e9 −0.417578 −0.208789 0.977961i \(-0.566952\pi\)
−0.208789 + 0.977961i \(0.566952\pi\)
\(572\) −8.18214e8 −0.182802
\(573\) 0 0
\(574\) −2.05361e9 −0.453239
\(575\) 3.85049e9 0.844653
\(576\) 0 0
\(577\) 3.26056e9 0.706606 0.353303 0.935509i \(-0.385059\pi\)
0.353303 + 0.935509i \(0.385059\pi\)
\(578\) −2.29782e9 −0.494958
\(579\) 0 0
\(580\) 1.11511e9 0.237313
\(581\) 3.39818e9 0.718837
\(582\) 0 0
\(583\) −4.84181e9 −1.01197
\(584\) 4.10591e9 0.853031
\(585\) 0 0
\(586\) 5.65675e9 1.16125
\(587\) −8.49773e9 −1.73408 −0.867041 0.498237i \(-0.833981\pi\)
−0.867041 + 0.498237i \(0.833981\pi\)
\(588\) 0 0
\(589\) −7.46252e9 −1.50481
\(590\) −2.88349e9 −0.578011
\(591\) 0 0
\(592\) 7.26476e9 1.43911
\(593\) −4.65379e9 −0.916464 −0.458232 0.888832i \(-0.651517\pi\)
−0.458232 + 0.888832i \(0.651517\pi\)
\(594\) 0 0
\(595\) 4.96330e9 0.965965
\(596\) −1.55674e9 −0.301200
\(597\) 0 0
\(598\) 7.42619e9 1.42008
\(599\) 1.19483e9 0.227149 0.113575 0.993529i \(-0.463770\pi\)
0.113575 + 0.993529i \(0.463770\pi\)
\(600\) 0 0
\(601\) 7.18932e9 1.35091 0.675457 0.737400i \(-0.263947\pi\)
0.675457 + 0.737400i \(0.263947\pi\)
\(602\) −2.70197e9 −0.504770
\(603\) 0 0
\(604\) −2.09264e8 −0.0386426
\(605\) 9.79933e8 0.179909
\(606\) 0 0
\(607\) −3.73407e8 −0.0677676 −0.0338838 0.999426i \(-0.510788\pi\)
−0.0338838 + 0.999426i \(0.510788\pi\)
\(608\) 1.86214e9 0.336009
\(609\) 0 0
\(610\) 5.05902e8 0.0902428
\(611\) −7.20191e9 −1.27733
\(612\) 0 0
\(613\) −2.57761e9 −0.451965 −0.225982 0.974131i \(-0.572559\pi\)
−0.225982 + 0.974131i \(0.572559\pi\)
\(614\) 5.55535e9 0.968551
\(615\) 0 0
\(616\) 4.05652e9 0.699231
\(617\) −8.58580e9 −1.47158 −0.735788 0.677212i \(-0.763188\pi\)
−0.735788 + 0.677212i \(0.763188\pi\)
\(618\) 0 0
\(619\) −7.91264e9 −1.34092 −0.670462 0.741944i \(-0.733904\pi\)
−0.670462 + 0.741944i \(0.733904\pi\)
\(620\) −1.62459e9 −0.273762
\(621\) 0 0
\(622\) −4.15367e9 −0.692095
\(623\) −1.83707e9 −0.304382
\(624\) 0 0
\(625\) −7.57071e9 −1.24039
\(626\) 9.49086e9 1.54631
\(627\) 0 0
\(628\) 1.31563e9 0.211970
\(629\) 1.35990e10 2.17886
\(630\) 0 0
\(631\) 1.12326e9 0.177983 0.0889916 0.996032i \(-0.471636\pi\)
0.0889916 + 0.996032i \(0.471636\pi\)
\(632\) 1.69466e9 0.267038
\(633\) 0 0
\(634\) 4.26767e9 0.665087
\(635\) 6.95126e9 1.07735
\(636\) 0 0
\(637\) 4.43142e9 0.679289
\(638\) −7.73709e9 −1.17952
\(639\) 0 0
\(640\) −5.90411e9 −0.890275
\(641\) −4.61389e9 −0.691933 −0.345967 0.938247i \(-0.612449\pi\)
−0.345967 + 0.938247i \(0.612449\pi\)
\(642\) 0 0
\(643\) −2.82326e8 −0.0418805 −0.0209402 0.999781i \(-0.506666\pi\)
−0.0209402 + 0.999781i \(0.506666\pi\)
\(644\) 9.21355e8 0.135933
\(645\) 0 0
\(646\) −8.47700e9 −1.23717
\(647\) −1.09978e10 −1.59639 −0.798197 0.602396i \(-0.794213\pi\)
−0.798197 + 0.602396i \(0.794213\pi\)
\(648\) 0 0
\(649\) −3.70496e9 −0.532018
\(650\) 4.21029e9 0.601333
\(651\) 0 0
\(652\) 6.01931e8 0.0850511
\(653\) −1.55218e9 −0.218145 −0.109073 0.994034i \(-0.534788\pi\)
−0.109073 + 0.994034i \(0.534788\pi\)
\(654\) 0 0
\(655\) −3.02723e9 −0.420921
\(656\) 4.74545e9 0.656317
\(657\) 0 0
\(658\) 4.82505e9 0.660254
\(659\) −8.20063e9 −1.11622 −0.558108 0.829768i \(-0.688473\pi\)
−0.558108 + 0.829768i \(0.688473\pi\)
\(660\) 0 0
\(661\) −8.23211e8 −0.110868 −0.0554340 0.998462i \(-0.517654\pi\)
−0.0554340 + 0.998462i \(0.517654\pi\)
\(662\) 9.66219e9 1.29441
\(663\) 0 0
\(664\) −9.34994e9 −1.23943
\(665\) 6.41157e9 0.845452
\(666\) 0 0
\(667\) −1.30042e10 −1.69685
\(668\) 1.58199e9 0.205347
\(669\) 0 0
\(670\) 1.15316e9 0.148125
\(671\) 6.50028e8 0.0830621
\(672\) 0 0
\(673\) 1.46721e9 0.185541 0.0927707 0.995688i \(-0.470428\pi\)
0.0927707 + 0.995688i \(0.470428\pi\)
\(674\) 5.96440e9 0.750339
\(675\) 0 0
\(676\) −2.48754e8 −0.0309712
\(677\) 3.49168e9 0.432487 0.216244 0.976339i \(-0.430619\pi\)
0.216244 + 0.976339i \(0.430619\pi\)
\(678\) 0 0
\(679\) 1.66547e9 0.204171
\(680\) −1.36563e10 −1.66553
\(681\) 0 0
\(682\) 1.12721e10 1.36069
\(683\) 1.51044e10 1.81398 0.906988 0.421156i \(-0.138376\pi\)
0.906988 + 0.421156i \(0.138376\pi\)
\(684\) 0 0
\(685\) −1.96505e10 −2.33591
\(686\) −7.75312e9 −0.916942
\(687\) 0 0
\(688\) 6.24366e9 0.730937
\(689\) −8.89835e9 −1.03644
\(690\) 0 0
\(691\) 1.26280e10 1.45601 0.728003 0.685574i \(-0.240449\pi\)
0.728003 + 0.685574i \(0.240449\pi\)
\(692\) −5.62448e8 −0.0645225
\(693\) 0 0
\(694\) −1.13583e10 −1.28990
\(695\) 9.82242e9 1.10987
\(696\) 0 0
\(697\) 8.88307e9 0.993685
\(698\) −7.57109e9 −0.842683
\(699\) 0 0
\(700\) 5.22363e8 0.0575611
\(701\) −1.52554e10 −1.67267 −0.836336 0.548217i \(-0.815307\pi\)
−0.836336 + 0.548217i \(0.815307\pi\)
\(702\) 0 0
\(703\) 1.75671e10 1.90703
\(704\) −1.09197e10 −1.17953
\(705\) 0 0
\(706\) −6.09937e9 −0.652331
\(707\) −1.53579e9 −0.163442
\(708\) 0 0
\(709\) −1.75998e10 −1.85458 −0.927292 0.374339i \(-0.877870\pi\)
−0.927292 + 0.374339i \(0.877870\pi\)
\(710\) −1.03175e10 −1.08186
\(711\) 0 0
\(712\) 5.05462e9 0.524818
\(713\) 1.89456e10 1.95747
\(714\) 0 0
\(715\) 1.44553e10 1.47896
\(716\) 6.09668e8 0.0620723
\(717\) 0 0
\(718\) 1.24692e10 1.25719
\(719\) −1.01872e10 −1.02212 −0.511061 0.859544i \(-0.670747\pi\)
−0.511061 + 0.859544i \(0.670747\pi\)
\(720\) 0 0
\(721\) 3.28194e9 0.326105
\(722\) −1.66116e9 −0.164259
\(723\) 0 0
\(724\) −5.97606e7 −0.00585234
\(725\) −7.37274e9 −0.718531
\(726\) 0 0
\(727\) 7.36507e8 0.0710896 0.0355448 0.999368i \(-0.488683\pi\)
0.0355448 + 0.999368i \(0.488683\pi\)
\(728\) 7.45512e9 0.716135
\(729\) 0 0
\(730\) −9.80254e9 −0.932628
\(731\) 1.16876e10 1.10666
\(732\) 0 0
\(733\) 1.65404e9 0.155125 0.0775625 0.996987i \(-0.475286\pi\)
0.0775625 + 0.996987i \(0.475286\pi\)
\(734\) 1.36711e10 1.27605
\(735\) 0 0
\(736\) −4.72755e9 −0.437083
\(737\) 1.48168e9 0.136338
\(738\) 0 0
\(739\) 1.56333e10 1.42493 0.712467 0.701706i \(-0.247578\pi\)
0.712467 + 0.701706i \(0.247578\pi\)
\(740\) 3.82437e9 0.346936
\(741\) 0 0
\(742\) 5.96161e9 0.535735
\(743\) 1.15063e10 1.02914 0.514571 0.857448i \(-0.327951\pi\)
0.514571 + 0.857448i \(0.327951\pi\)
\(744\) 0 0
\(745\) 2.75028e10 2.43686
\(746\) 1.11951e10 0.987287
\(747\) 0 0
\(748\) −2.37119e9 −0.207162
\(749\) 3.26930e9 0.284294
\(750\) 0 0
\(751\) 1.12163e10 0.966294 0.483147 0.875539i \(-0.339494\pi\)
0.483147 + 0.875539i \(0.339494\pi\)
\(752\) −1.11496e10 −0.956088
\(753\) 0 0
\(754\) −1.42193e10 −1.20803
\(755\) 3.69706e9 0.312638
\(756\) 0 0
\(757\) −1.70722e10 −1.43039 −0.715194 0.698926i \(-0.753661\pi\)
−0.715194 + 0.698926i \(0.753661\pi\)
\(758\) −8.04316e9 −0.670787
\(759\) 0 0
\(760\) −1.76411e10 −1.45774
\(761\) 2.70766e9 0.222714 0.111357 0.993780i \(-0.464480\pi\)
0.111357 + 0.993780i \(0.464480\pi\)
\(762\) 0 0
\(763\) −5.00134e9 −0.407615
\(764\) 6.78856e8 0.0550745
\(765\) 0 0
\(766\) 1.32022e10 1.06132
\(767\) −6.80902e9 −0.544880
\(768\) 0 0
\(769\) −8.21338e9 −0.651298 −0.325649 0.945491i \(-0.605583\pi\)
−0.325649 + 0.945491i \(0.605583\pi\)
\(770\) −9.68461e9 −0.764477
\(771\) 0 0
\(772\) 3.14488e9 0.246004
\(773\) −1.01337e10 −0.789115 −0.394557 0.918871i \(-0.629102\pi\)
−0.394557 + 0.918871i \(0.629102\pi\)
\(774\) 0 0
\(775\) 1.07412e10 0.828893
\(776\) −4.58247e9 −0.352033
\(777\) 0 0
\(778\) −1.12899e10 −0.859535
\(779\) 1.14751e10 0.869713
\(780\) 0 0
\(781\) −1.32569e10 −0.995778
\(782\) 2.15211e10 1.60932
\(783\) 0 0
\(784\) 6.86050e9 0.508451
\(785\) −2.32431e10 −1.71495
\(786\) 0 0
\(787\) −7.90806e9 −0.578307 −0.289153 0.957283i \(-0.593374\pi\)
−0.289153 + 0.957283i \(0.593374\pi\)
\(788\) −1.26014e9 −0.0917442
\(789\) 0 0
\(790\) −4.04586e9 −0.291955
\(791\) −7.30423e9 −0.524755
\(792\) 0 0
\(793\) 1.19463e9 0.0850701
\(794\) −9.89550e8 −0.0701562
\(795\) 0 0
\(796\) −3.85631e9 −0.271004
\(797\) 1.36876e10 0.957686 0.478843 0.877900i \(-0.341056\pi\)
0.478843 + 0.877900i \(0.341056\pi\)
\(798\) 0 0
\(799\) −2.08712e10 −1.44755
\(800\) −2.68029e9 −0.185083
\(801\) 0 0
\(802\) −1.49977e10 −1.02663
\(803\) −1.25952e10 −0.858419
\(804\) 0 0
\(805\) −1.62775e10 −1.09977
\(806\) 2.07160e10 1.39358
\(807\) 0 0
\(808\) 4.22566e9 0.281809
\(809\) −9.65209e9 −0.640917 −0.320458 0.947263i \(-0.603837\pi\)
−0.320458 + 0.947263i \(0.603837\pi\)
\(810\) 0 0
\(811\) 2.93565e10 1.93256 0.966278 0.257502i \(-0.0828994\pi\)
0.966278 + 0.257502i \(0.0828994\pi\)
\(812\) −1.76417e9 −0.115636
\(813\) 0 0
\(814\) −2.65350e10 −1.72438
\(815\) −1.06343e10 −0.688107
\(816\) 0 0
\(817\) 1.50980e10 0.968595
\(818\) −2.48089e10 −1.58479
\(819\) 0 0
\(820\) 2.49814e9 0.158222
\(821\) 1.46088e9 0.0921323 0.0460662 0.998938i \(-0.485331\pi\)
0.0460662 + 0.998938i \(0.485331\pi\)
\(822\) 0 0
\(823\) 2.29819e10 1.43710 0.718548 0.695478i \(-0.244807\pi\)
0.718548 + 0.695478i \(0.244807\pi\)
\(824\) −9.03010e9 −0.562273
\(825\) 0 0
\(826\) 4.56183e9 0.281649
\(827\) 1.26270e10 0.776300 0.388150 0.921596i \(-0.373114\pi\)
0.388150 + 0.921596i \(0.373114\pi\)
\(828\) 0 0
\(829\) −1.63249e10 −0.995198 −0.497599 0.867407i \(-0.665785\pi\)
−0.497599 + 0.867407i \(0.665785\pi\)
\(830\) 2.23222e10 1.35508
\(831\) 0 0
\(832\) −2.00684e10 −1.20804
\(833\) 1.28423e10 0.769811
\(834\) 0 0
\(835\) −2.79490e10 −1.66136
\(836\) −3.06309e9 −0.181317
\(837\) 0 0
\(838\) 2.39580e10 1.40636
\(839\) 1.16654e10 0.681918 0.340959 0.940078i \(-0.389248\pi\)
0.340959 + 0.940078i \(0.389248\pi\)
\(840\) 0 0
\(841\) 7.64994e9 0.443478
\(842\) 1.25682e10 0.725573
\(843\) 0 0
\(844\) 2.55610e9 0.146345
\(845\) 4.39473e9 0.250572
\(846\) 0 0
\(847\) −1.55031e9 −0.0876649
\(848\) −1.37760e10 −0.775777
\(849\) 0 0
\(850\) 1.22014e10 0.681467
\(851\) −4.45989e10 −2.48068
\(852\) 0 0
\(853\) −1.22702e9 −0.0676906 −0.0338453 0.999427i \(-0.510775\pi\)
−0.0338453 + 0.999427i \(0.510775\pi\)
\(854\) −8.00364e8 −0.0439729
\(855\) 0 0
\(856\) −8.99532e9 −0.490183
\(857\) 2.22932e10 1.20987 0.604935 0.796275i \(-0.293199\pi\)
0.604935 + 0.796275i \(0.293199\pi\)
\(858\) 0 0
\(859\) 1.11325e10 0.599263 0.299632 0.954055i \(-0.403136\pi\)
0.299632 + 0.954055i \(0.403136\pi\)
\(860\) 3.28684e9 0.176211
\(861\) 0 0
\(862\) 2.98553e10 1.58762
\(863\) 1.07748e10 0.570653 0.285327 0.958430i \(-0.407898\pi\)
0.285327 + 0.958430i \(0.407898\pi\)
\(864\) 0 0
\(865\) 9.93673e9 0.522020
\(866\) 1.86336e10 0.974956
\(867\) 0 0
\(868\) 2.57019e9 0.133397
\(869\) −5.19848e9 −0.268724
\(870\) 0 0
\(871\) 2.72305e9 0.139634
\(872\) 1.37609e10 0.702814
\(873\) 0 0
\(874\) 2.78009e10 1.40854
\(875\) 6.20240e9 0.312991
\(876\) 0 0
\(877\) −4.31886e9 −0.216207 −0.108104 0.994140i \(-0.534478\pi\)
−0.108104 + 0.994140i \(0.534478\pi\)
\(878\) 3.22415e9 0.160763
\(879\) 0 0
\(880\) 2.23790e10 1.10701
\(881\) 2.49223e10 1.22793 0.613963 0.789335i \(-0.289574\pi\)
0.613963 + 0.789335i \(0.289574\pi\)
\(882\) 0 0
\(883\) 8.75421e9 0.427912 0.213956 0.976843i \(-0.431365\pi\)
0.213956 + 0.976843i \(0.431365\pi\)
\(884\) −4.35780e9 −0.212170
\(885\) 0 0
\(886\) −6.36689e9 −0.307545
\(887\) 7.18370e8 0.0345633 0.0172817 0.999851i \(-0.494499\pi\)
0.0172817 + 0.999851i \(0.494499\pi\)
\(888\) 0 0
\(889\) −1.09973e10 −0.524962
\(890\) −1.20675e10 −0.573789
\(891\) 0 0
\(892\) 1.33131e9 0.0628059
\(893\) −2.69613e10 −1.26695
\(894\) 0 0
\(895\) −1.07710e10 −0.502197
\(896\) 9.34061e9 0.433808
\(897\) 0 0
\(898\) −9.06451e9 −0.417712
\(899\) −3.62762e10 −1.66519
\(900\) 0 0
\(901\) −2.57874e10 −1.17455
\(902\) −1.73330e10 −0.786415
\(903\) 0 0
\(904\) 2.00972e10 0.904788
\(905\) 1.05579e9 0.0473484
\(906\) 0 0
\(907\) 2.02975e10 0.903271 0.451635 0.892203i \(-0.350841\pi\)
0.451635 + 0.892203i \(0.350841\pi\)
\(908\) 2.92829e9 0.129812
\(909\) 0 0
\(910\) −1.77985e10 −0.782959
\(911\) −2.91617e10 −1.27790 −0.638951 0.769247i \(-0.720632\pi\)
−0.638951 + 0.769247i \(0.720632\pi\)
\(912\) 0 0
\(913\) 2.86816e10 1.24725
\(914\) −4.05358e10 −1.75601
\(915\) 0 0
\(916\) 5.11456e9 0.219874
\(917\) 4.78923e9 0.205104
\(918\) 0 0
\(919\) −2.07384e10 −0.881394 −0.440697 0.897656i \(-0.645269\pi\)
−0.440697 + 0.897656i \(0.645269\pi\)
\(920\) 4.47867e10 1.89623
\(921\) 0 0
\(922\) 2.19112e10 0.920680
\(923\) −2.43637e10 −1.01985
\(924\) 0 0
\(925\) −2.52854e10 −1.05045
\(926\) −1.50012e10 −0.620849
\(927\) 0 0
\(928\) 9.05209e9 0.371819
\(929\) 8.26175e9 0.338078 0.169039 0.985609i \(-0.445934\pi\)
0.169039 + 0.985609i \(0.445934\pi\)
\(930\) 0 0
\(931\) 1.65896e10 0.673770
\(932\) 1.10391e9 0.0446660
\(933\) 0 0
\(934\) −2.11687e10 −0.850120
\(935\) 4.18916e10 1.67605
\(936\) 0 0
\(937\) −4.78884e10 −1.90170 −0.950849 0.309655i \(-0.899786\pi\)
−0.950849 + 0.309655i \(0.899786\pi\)
\(938\) −1.82436e9 −0.0721772
\(939\) 0 0
\(940\) −5.86947e9 −0.230490
\(941\) 2.54037e10 0.993878 0.496939 0.867786i \(-0.334457\pi\)
0.496939 + 0.867786i \(0.334457\pi\)
\(942\) 0 0
\(943\) −2.91327e10 −1.13133
\(944\) −1.05414e10 −0.407845
\(945\) 0 0
\(946\) −2.28054e10 −0.875827
\(947\) 4.11954e10 1.57625 0.788123 0.615518i \(-0.211053\pi\)
0.788123 + 0.615518i \(0.211053\pi\)
\(948\) 0 0
\(949\) −2.31476e10 −0.879171
\(950\) 1.57618e10 0.596447
\(951\) 0 0
\(952\) 2.16050e10 0.811567
\(953\) 1.74074e10 0.651491 0.325745 0.945458i \(-0.394385\pi\)
0.325745 + 0.945458i \(0.394385\pi\)
\(954\) 0 0
\(955\) −1.19933e10 −0.445581
\(956\) −3.65179e9 −0.135177
\(957\) 0 0
\(958\) −7.28326e9 −0.267637
\(959\) 3.10881e10 1.13823
\(960\) 0 0
\(961\) 2.53377e10 0.920949
\(962\) −4.87664e10 −1.76607
\(963\) 0 0
\(964\) −3.44886e8 −0.0123996
\(965\) −5.55603e10 −1.99030
\(966\) 0 0
\(967\) −9.30580e9 −0.330949 −0.165474 0.986214i \(-0.552916\pi\)
−0.165474 + 0.986214i \(0.552916\pi\)
\(968\) 4.26559e9 0.151153
\(969\) 0 0
\(970\) 1.09403e10 0.384882
\(971\) 2.04072e10 0.715347 0.357673 0.933847i \(-0.383570\pi\)
0.357673 + 0.933847i \(0.383570\pi\)
\(972\) 0 0
\(973\) −1.55396e10 −0.540810
\(974\) 2.23933e9 0.0776535
\(975\) 0 0
\(976\) 1.84946e9 0.0636754
\(977\) 8.37841e9 0.287429 0.143715 0.989619i \(-0.454095\pi\)
0.143715 + 0.989619i \(0.454095\pi\)
\(978\) 0 0
\(979\) −1.55054e10 −0.528133
\(980\) 3.61156e9 0.122575
\(981\) 0 0
\(982\) −1.20249e10 −0.405219
\(983\) 3.20951e10 1.07771 0.538855 0.842398i \(-0.318857\pi\)
0.538855 + 0.842398i \(0.318857\pi\)
\(984\) 0 0
\(985\) 2.22629e10 0.742257
\(986\) −4.12077e10 −1.36902
\(987\) 0 0
\(988\) −5.62939e9 −0.185700
\(989\) −3.83303e10 −1.25996
\(990\) 0 0
\(991\) −2.26449e9 −0.0739115 −0.0369558 0.999317i \(-0.511766\pi\)
−0.0369558 + 0.999317i \(0.511766\pi\)
\(992\) −1.31879e10 −0.428928
\(993\) 0 0
\(994\) 1.63229e10 0.527163
\(995\) 6.81291e10 2.19256
\(996\) 0 0
\(997\) 9.29325e9 0.296985 0.148493 0.988914i \(-0.452558\pi\)
0.148493 + 0.988914i \(0.452558\pi\)
\(998\) 3.37209e10 1.07385
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.8.a.c.1.1 2
3.2 odd 2 inner 27.8.a.c.1.2 yes 2
4.3 odd 2 432.8.a.n.1.2 2
9.2 odd 6 81.8.c.g.28.1 4
9.4 even 3 81.8.c.g.55.2 4
9.5 odd 6 81.8.c.g.55.1 4
9.7 even 3 81.8.c.g.28.2 4
12.11 even 2 432.8.a.n.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.8.a.c.1.1 2 1.1 even 1 trivial
27.8.a.c.1.2 yes 2 3.2 odd 2 inner
81.8.c.g.28.1 4 9.2 odd 6
81.8.c.g.28.2 4 9.7 even 3
81.8.c.g.55.1 4 9.5 odd 6
81.8.c.g.55.2 4 9.4 even 3
432.8.a.n.1.1 2 12.11 even 2
432.8.a.n.1.2 2 4.3 odd 2