Properties

Label 27.8.a
Level $27$
Weight $8$
Character orbit 27.a
Rep. character $\chi_{27}(1,\cdot)$
Character field $\Q$
Dimension $9$
Newform subspaces $5$
Sturm bound $24$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(24\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(27))\).

Total New Old
Modular forms 24 9 15
Cusp forms 18 9 9
Eisenstein series 6 0 6

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(3\)Dim
\(+\)\(5\)
\(-\)\(4\)

Trace form

\( 9 q + 486 q^{4} - 477 q^{7} + O(q^{10}) \) \( 9 q + 486 q^{4} - 477 q^{7} + 10566 q^{10} + 3465 q^{13} - 14166 q^{16} - 62379 q^{19} + 276930 q^{22} - 116289 q^{25} - 306054 q^{28} + 459468 q^{31} - 1531440 q^{34} - 293553 q^{37} + 3203082 q^{40} - 1441656 q^{43} - 1755612 q^{46} + 4729986 q^{49} - 688860 q^{52} - 178056 q^{55} + 580140 q^{58} - 974637 q^{61} - 4297662 q^{64} - 1320615 q^{67} - 8772174 q^{70} + 6787089 q^{73} - 16525728 q^{76} + 30330405 q^{79} + 26821620 q^{82} - 34065792 q^{85} + 11245590 q^{88} - 33990489 q^{91} - 8233524 q^{94} + 20656197 q^{97} + O(q^{100}) \)

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(27))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 3
27.8.a.a 27.a 1.a $1$ $8.434$ \(\Q\) \(\Q(\sqrt{-3}) \) 27.8.a.a \(0\) \(0\) \(0\) \(1763\) $+$ $N(\mathrm{U}(1))$ \(q-2^{7}q^{4}+1763q^{7}+12605q^{13}+\cdots\)
27.8.a.b 27.a 1.a $2$ $8.434$ \(\Q(\sqrt{65}) \) None 27.8.a.b \(-9\) \(0\) \(-180\) \(700\) $-$ $\mathrm{SU}(2)$ \(q+(-5-\beta )q^{2}+(43+9\beta )q^{4}+(-91+\cdots)q^{5}+\cdots\)
27.8.a.c 27.a 1.a $2$ $8.434$ \(\Q(\sqrt{3}) \) None 27.8.a.c \(0\) \(0\) \(0\) \(-1118\) $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}-20q^{4}-34\beta q^{5}-559q^{7}+\cdots\)
27.8.a.d 27.a 1.a $2$ $8.434$ \(\Q(\sqrt{42}) \) None 27.8.a.d \(0\) \(0\) \(0\) \(-2522\) $+$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+250q^{4}+20\beta q^{5}-1261q^{7}+\cdots\)
27.8.a.e 27.a 1.a $2$ $8.434$ \(\Q(\sqrt{65}) \) None 27.8.a.b \(9\) \(0\) \(180\) \(700\) $+$ $\mathrm{SU}(2)$ \(q+(5+\beta )q^{2}+(43+9\beta )q^{4}+(91+2\beta )q^{5}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(27))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_0(27)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)