Defining parameters
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_0(27))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 9 | 15 |
Cusp forms | 18 | 9 | 9 |
Eisenstein series | 6 | 0 | 6 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | Dim |
---|---|
\(+\) | \(5\) |
\(-\) | \(4\) |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_0(27))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 3 | |||||||
27.8.a.a | $1$ | $8.434$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(1763\) | $+$ | \(q-2^{7}q^{4}+1763q^{7}+12605q^{13}+\cdots\) | |
27.8.a.b | $2$ | $8.434$ | \(\Q(\sqrt{65}) \) | None | \(-9\) | \(0\) | \(-180\) | \(700\) | $-$ | \(q+(-5-\beta )q^{2}+(43+9\beta )q^{4}+(-91+\cdots)q^{5}+\cdots\) | |
27.8.a.c | $2$ | $8.434$ | \(\Q(\sqrt{3}) \) | None | \(0\) | \(0\) | \(0\) | \(-1118\) | $-$ | \(q+\beta q^{2}-20q^{4}-34\beta q^{5}-559q^{7}+\cdots\) | |
27.8.a.d | $2$ | $8.434$ | \(\Q(\sqrt{42}) \) | None | \(0\) | \(0\) | \(0\) | \(-2522\) | $+$ | \(q+\beta q^{2}+250q^{4}+20\beta q^{5}-1261q^{7}+\cdots\) | |
27.8.a.e | $2$ | $8.434$ | \(\Q(\sqrt{65}) \) | None | \(9\) | \(0\) | \(180\) | \(700\) | $+$ | \(q+(5+\beta )q^{2}+(43+9\beta )q^{4}+(91+2\beta )q^{5}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_0(27))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_0(27)) \simeq \) \(S_{8}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 2}\)