Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [27,7,Mod(2,27)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(27, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 7, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("27.2");
S:= CuspForms(chi, 7);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.f (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(6.21146025774\) |
Analytic rank: | \(0\) |
Dimension: | \(102\) |
Relative dimension: | \(17\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −15.2056 | − | 2.68115i | −15.0389 | − | 22.4239i | 163.880 | + | 59.6475i | 37.7314 | + | 44.9665i | 168.554 | + | 381.289i | 398.264 | − | 144.956i | −1476.19 | − | 852.278i | −276.661 | + | 674.463i | −453.165 | − | 784.905i |
2.2 | −12.9309 | − | 2.28007i | 19.5181 | + | 18.6559i | 101.870 | + | 37.0775i | −78.6006 | − | 93.6725i | −209.851 | − | 285.740i | 149.932 | − | 54.5707i | −504.967 | − | 291.543i | 32.9160 | + | 728.257i | 802.798 | + | 1390.49i |
2.3 | −11.6551 | − | 2.05510i | −14.9225 | + | 22.5015i | 71.4770 | + | 26.0155i | 105.310 | + | 125.503i | 220.166 | − | 231.590i | −278.603 | + | 101.403i | −123.650 | − | 71.3896i | −283.637 | − | 671.559i | −969.470 | − | 1679.17i |
2.4 | −9.97059 | − | 1.75808i | 24.1318 | − | 12.1101i | 36.1814 | + | 13.1690i | 60.9980 | + | 72.6946i | −261.899 | + | 78.3191i | −133.791 | + | 48.6960i | 223.553 | + | 129.069i | 435.691 | − | 584.478i | −480.383 | − | 832.047i |
2.5 | −9.42516 | − | 1.66191i | −26.9402 | − | 1.79573i | 25.9314 | + | 9.43824i | −132.788 | − | 158.250i | 250.932 | + | 61.6973i | −462.855 | + | 168.465i | 301.732 | + | 174.205i | 722.551 | + | 96.7550i | 988.548 | + | 1712.22i |
2.6 | −6.34855 | − | 1.11942i | 2.13616 | − | 26.9154i | −21.0893 | − | 7.67587i | −34.3281 | − | 40.9106i | −43.6912 | + | 168.482i | 90.1091 | − | 32.7970i | 482.595 | + | 278.626i | −719.874 | − | 114.991i | 172.137 | + | 298.151i |
2.7 | −3.87880 | − | 0.683936i | −3.37914 | + | 26.7877i | −45.5630 | − | 16.5836i | −43.1394 | − | 51.4115i | 31.4281 | − | 101.593i | 424.254 | − | 154.416i | 383.689 | + | 221.523i | −706.163 | − | 181.039i | 132.167 | + | 228.919i |
2.8 | −2.18396 | − | 0.385091i | −26.6089 | − | 4.57871i | −55.5189 | − | 20.2072i | 71.1763 | + | 84.8246i | 56.3496 | + | 20.2466i | 318.690 | − | 115.994i | 236.384 | + | 136.476i | 687.071 | + | 243.669i | −122.781 | − | 212.663i |
2.9 | −0.698460 | − | 0.123157i | 20.3194 | + | 17.7798i | −59.6676 | − | 21.7172i | 95.6034 | + | 113.936i | −12.0026 | − | 14.9210i | −285.640 | + | 103.964i | 78.3107 | + | 45.2127i | 96.7599 | + | 722.550i | −52.7432 | − | 91.3539i |
2.10 | 1.51454 | + | 0.267054i | 26.8676 | − | 2.67034i | −57.9178 | − | 21.0804i | −139.142 | − | 165.822i | 41.4052 | + | 3.13078i | −39.0374 | + | 14.2084i | −167.329 | − | 96.6072i | 714.739 | − | 143.491i | −166.452 | − | 288.303i |
2.11 | 4.56069 | + | 0.804173i | −8.77856 | − | 25.5331i | −39.9871 | − | 14.5541i | 33.6911 | + | 40.1515i | −19.5033 | − | 123.508i | −487.528 | + | 177.446i | −427.344 | − | 246.727i | −574.874 | + | 448.287i | 121.366 | + | 210.212i |
2.12 | 6.39689 | + | 1.12795i | −18.1397 | + | 19.9988i | −20.4923 | − | 7.45860i | −37.9291 | − | 45.2022i | −138.595 | + | 107.470i | −230.668 | + | 83.9562i | −482.696 | − | 278.685i | −70.9056 | − | 725.544i | −191.643 | − | 331.936i |
2.13 | 7.40620 | + | 1.30591i | 20.7548 | − | 17.2696i | −6.99392 | − | 2.54558i | 93.4519 | + | 111.372i | 176.267 | − | 100.798i | 468.870 | − | 170.655i | −465.300 | − | 268.641i | 132.523 | − | 716.853i | 546.682 | + | 946.881i |
2.14 | 10.4695 | + | 1.84606i | −18.3558 | − | 19.8006i | 46.0625 | + | 16.7654i | −137.909 | − | 164.354i | −155.623 | − | 241.189i | 506.532 | − | 184.363i | −137.929 | − | 79.6334i | −55.1285 | + | 726.913i | −1140.44 | − | 1975.29i |
2.15 | 11.6192 | + | 2.04878i | 14.4502 | + | 22.8077i | 70.6679 | + | 25.7210i | 2.84045 | + | 3.38512i | 121.171 | + | 294.613i | 129.733 | − | 47.2189i | 114.471 | + | 66.0899i | −311.386 | + | 659.151i | 26.0684 | + | 45.1518i |
2.16 | 13.7878 | + | 2.43117i | −26.9804 | + | 1.02752i | 124.053 | + | 45.1517i | 118.006 | + | 140.634i | −374.500 | − | 51.4266i | −10.3283 | + | 3.75918i | 824.665 | + | 476.120i | 726.888 | − | 55.4459i | 1285.14 | + | 2225.93i |
2.17 | 14.6025 | + | 2.57482i | 19.5272 | − | 18.6464i | 146.463 | + | 53.3083i | −47.4564 | − | 56.5563i | 333.158 | − | 222.005i | −559.698 | + | 203.713i | 1179.64 | + | 681.064i | 33.6255 | − | 728.224i | −547.361 | − | 948.057i |
5.1 | −9.07449 | − | 10.8146i | −10.8701 | − | 24.7152i | −23.4948 | + | 133.245i | 72.7572 | + | 199.899i | −168.644 | + | 341.833i | −62.5083 | − | 354.502i | 871.728 | − | 503.293i | −492.683 | + | 537.312i | 1501.58 | − | 2600.82i |
5.2 | −8.78575 | − | 10.4705i | 21.2323 | − | 16.6790i | −21.3274 | + | 120.954i | −83.1319 | − | 228.403i | −361.178 | − | 75.7744i | 3.85901 | + | 21.8856i | 696.250 | − | 401.980i | 172.622 | − | 708.267i | −1661.11 | + | 2877.12i |
5.3 | −8.36754 | − | 9.97205i | −20.7807 | + | 17.2384i | −18.3125 | + | 103.855i | −10.7822 | − | 29.6238i | 345.786 | + | 62.9829i | 45.8281 | + | 259.904i | 467.375 | − | 269.839i | 134.674 | − | 716.452i | −205.189 | + | 355.398i |
See next 80 embeddings (of 102 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.f | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 27.7.f.a | ✓ | 102 |
3.b | odd | 2 | 1 | 81.7.f.a | 102 | ||
27.e | even | 9 | 1 | 81.7.f.a | 102 | ||
27.f | odd | 18 | 1 | inner | 27.7.f.a | ✓ | 102 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.7.f.a | ✓ | 102 | 1.a | even | 1 | 1 | trivial |
27.7.f.a | ✓ | 102 | 27.f | odd | 18 | 1 | inner |
81.7.f.a | 102 | 3.b | odd | 2 | 1 | ||
81.7.f.a | 102 | 27.e | even | 9 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(27, [\chi])\).