Properties

Label 27.7.b.c.26.4
Level $27$
Weight $7$
Character 27.26
Analytic conductor $6.211$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,7,Mod(26,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.26");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.21146025774\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{41})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 21x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.4
Root \(3.70156i\) of defining polynomial
Character \(\chi\) \(=\) 27.26
Dual form 27.7.b.c.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+14.1047i q^{2} -134.942 q^{4} -137.419i q^{5} -514.769 q^{7} -1000.62i q^{8} +O(q^{10})\) \(q+14.1047i q^{2} -134.942 q^{4} -137.419i q^{5} -514.769 q^{7} -1000.62i q^{8} +1938.25 q^{10} +1218.26i q^{11} -170.463 q^{13} -7260.65i q^{14} +5477.09 q^{16} -1574.10i q^{17} -11289.1 q^{19} +18543.6i q^{20} -17183.2 q^{22} +10572.6i q^{23} -3258.91 q^{25} -2404.32i q^{26} +69464.0 q^{28} -8665.42i q^{29} -26209.1 q^{31} +13213.2i q^{32} +22202.2 q^{34} +70738.9i q^{35} +21866.9 q^{37} -159229. i q^{38} -137504. q^{40} +38166.6i q^{41} +23895.1 q^{43} -164395. i q^{44} -149124. q^{46} -26698.7i q^{47} +147338. q^{49} -45965.9i q^{50} +23002.6 q^{52} +213997. i q^{53} +167412. q^{55} +515086. i q^{56} +122223. q^{58} -163689. i q^{59} +111078. q^{61} -369671. i q^{62} +164166. q^{64} +23424.8i q^{65} -381035. q^{67} +212412. i q^{68} -997750. q^{70} +675048. i q^{71} -762939. q^{73} +308426. i q^{74} +1.52337e6 q^{76} -627123. i q^{77} +515708. q^{79} -752655. i q^{80} -538328. q^{82} -903773. i q^{83} -216311. q^{85} +337033. i q^{86} +1.21901e6 q^{88} -644278. i q^{89} +87748.8 q^{91} -1.42669e6i q^{92} +376577. q^{94} +1.55133e6i q^{95} -616470. q^{97} +2.07815e6i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 194 q^{4} - 676 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 194 q^{4} - 676 q^{7} + 3258 q^{10} - 3448 q^{13} + 10498 q^{16} - 3664 q^{19} - 58014 q^{22} + 17392 q^{25} + 152342 q^{28} - 153244 q^{31} + 65988 q^{34} + 128960 q^{37} - 338058 q^{40} + 126008 q^{43} - 116568 q^{46} + 121872 q^{49} - 71884 q^{52} + 54180 q^{55} + 567036 q^{58} + 167696 q^{61} - 28994 q^{64} + 8 q^{67} - 2104830 q^{70} - 1881676 q^{73} + 3764384 q^{76} + 1188728 q^{79} - 1366344 q^{82} - 176472 q^{85} + 27342 q^{88} - 373736 q^{91} + 1381140 q^{94} + 975212 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 14.1047i 1.76309i 0.472104 + 0.881543i \(0.343495\pi\)
−0.472104 + 0.881543i \(0.656505\pi\)
\(3\) 0 0
\(4\) −134.942 −2.10847
\(5\) − 137.419i − 1.09935i −0.835379 0.549675i \(-0.814752\pi\)
0.835379 0.549675i \(-0.185248\pi\)
\(6\) 0 0
\(7\) −514.769 −1.50078 −0.750392 0.660993i \(-0.770135\pi\)
−0.750392 + 0.660993i \(0.770135\pi\)
\(8\) − 1000.62i − 1.95433i
\(9\) 0 0
\(10\) 1938.25 1.93825
\(11\) 1218.26i 0.915298i 0.889133 + 0.457649i \(0.151308\pi\)
−0.889133 + 0.457649i \(0.848692\pi\)
\(12\) 0 0
\(13\) −170.463 −0.0775888 −0.0387944 0.999247i \(-0.512352\pi\)
−0.0387944 + 0.999247i \(0.512352\pi\)
\(14\) − 7260.65i − 2.64601i
\(15\) 0 0
\(16\) 5477.09 1.33718
\(17\) − 1574.10i − 0.320395i −0.987085 0.160197i \(-0.948787\pi\)
0.987085 0.160197i \(-0.0512131\pi\)
\(18\) 0 0
\(19\) −11289.1 −1.64588 −0.822938 0.568131i \(-0.807667\pi\)
−0.822938 + 0.568131i \(0.807667\pi\)
\(20\) 18543.6i 2.31795i
\(21\) 0 0
\(22\) −17183.2 −1.61375
\(23\) 10572.6i 0.868960i 0.900681 + 0.434480i \(0.143068\pi\)
−0.900681 + 0.434480i \(0.856932\pi\)
\(24\) 0 0
\(25\) −3258.91 −0.208570
\(26\) − 2404.32i − 0.136796i
\(27\) 0 0
\(28\) 69464.0 3.16436
\(29\) − 8665.42i − 0.355300i −0.984094 0.177650i \(-0.943150\pi\)
0.984094 0.177650i \(-0.0568496\pi\)
\(30\) 0 0
\(31\) −26209.1 −0.879766 −0.439883 0.898055i \(-0.644980\pi\)
−0.439883 + 0.898055i \(0.644980\pi\)
\(32\) 13213.2i 0.403234i
\(33\) 0 0
\(34\) 22202.2 0.564884
\(35\) 70738.9i 1.64989i
\(36\) 0 0
\(37\) 21866.9 0.431701 0.215850 0.976426i \(-0.430748\pi\)
0.215850 + 0.976426i \(0.430748\pi\)
\(38\) − 159229.i − 2.90182i
\(39\) 0 0
\(40\) −137504. −2.14849
\(41\) 38166.6i 0.553774i 0.960903 + 0.276887i \(0.0893027\pi\)
−0.960903 + 0.276887i \(0.910697\pi\)
\(42\) 0 0
\(43\) 23895.1 0.300541 0.150270 0.988645i \(-0.451986\pi\)
0.150270 + 0.988645i \(0.451986\pi\)
\(44\) − 164395.i − 1.92988i
\(45\) 0 0
\(46\) −149124. −1.53205
\(47\) − 26698.7i − 0.257156i −0.991699 0.128578i \(-0.958959\pi\)
0.991699 0.128578i \(-0.0410413\pi\)
\(48\) 0 0
\(49\) 147338. 1.25235
\(50\) − 45965.9i − 0.367727i
\(51\) 0 0
\(52\) 23002.6 0.163594
\(53\) 213997.i 1.43741i 0.695315 + 0.718705i \(0.255265\pi\)
−0.695315 + 0.718705i \(0.744735\pi\)
\(54\) 0 0
\(55\) 167412. 1.00623
\(56\) 515086.i 2.93303i
\(57\) 0 0
\(58\) 122223. 0.626425
\(59\) − 163689.i − 0.797010i −0.917166 0.398505i \(-0.869529\pi\)
0.917166 0.398505i \(-0.130471\pi\)
\(60\) 0 0
\(61\) 111078. 0.489370 0.244685 0.969603i \(-0.421315\pi\)
0.244685 + 0.969603i \(0.421315\pi\)
\(62\) − 369671.i − 1.55110i
\(63\) 0 0
\(64\) 164166. 0.626245
\(65\) 23424.8i 0.0852972i
\(66\) 0 0
\(67\) −381035. −1.26689 −0.633447 0.773786i \(-0.718361\pi\)
−0.633447 + 0.773786i \(0.718361\pi\)
\(68\) 212412.i 0.675543i
\(69\) 0 0
\(70\) −997750. −2.90889
\(71\) 675048.i 1.88608i 0.332682 + 0.943039i \(0.392047\pi\)
−0.332682 + 0.943039i \(0.607953\pi\)
\(72\) 0 0
\(73\) −762939. −1.96120 −0.980599 0.196025i \(-0.937197\pi\)
−0.980599 + 0.196025i \(0.937197\pi\)
\(74\) 308426.i 0.761125i
\(75\) 0 0
\(76\) 1.52337e6 3.47028
\(77\) − 627123.i − 1.37366i
\(78\) 0 0
\(79\) 515708. 1.04598 0.522989 0.852340i \(-0.324817\pi\)
0.522989 + 0.852340i \(0.324817\pi\)
\(80\) − 752655.i − 1.47003i
\(81\) 0 0
\(82\) −538328. −0.976350
\(83\) − 903773.i − 1.58061i −0.612713 0.790306i \(-0.709922\pi\)
0.612713 0.790306i \(-0.290078\pi\)
\(84\) 0 0
\(85\) −216311. −0.352226
\(86\) 337033.i 0.529879i
\(87\) 0 0
\(88\) 1.21901e6 1.78880
\(89\) − 644278.i − 0.913910i −0.889490 0.456955i \(-0.848940\pi\)
0.889490 0.456955i \(-0.151060\pi\)
\(90\) 0 0
\(91\) 87748.8 0.116444
\(92\) − 1.42669e6i − 1.83218i
\(93\) 0 0
\(94\) 376577. 0.453388
\(95\) 1.55133e6i 1.80939i
\(96\) 0 0
\(97\) −616470. −0.675455 −0.337728 0.941244i \(-0.609658\pi\)
−0.337728 + 0.941244i \(0.609658\pi\)
\(98\) 2.07815e6i 2.20800i
\(99\) 0 0
\(100\) 439765. 0.439765
\(101\) − 623027.i − 0.604704i −0.953196 0.302352i \(-0.902228\pi\)
0.953196 0.302352i \(-0.0977718\pi\)
\(102\) 0 0
\(103\) −750695. −0.686992 −0.343496 0.939154i \(-0.611611\pi\)
−0.343496 + 0.939154i \(0.611611\pi\)
\(104\) 170568.i 0.151634i
\(105\) 0 0
\(106\) −3.01837e6 −2.53428
\(107\) − 345428.i − 0.281973i −0.990012 0.140986i \(-0.954973\pi\)
0.990012 0.140986i \(-0.0450273\pi\)
\(108\) 0 0
\(109\) 1.17208e6 0.905061 0.452530 0.891749i \(-0.350521\pi\)
0.452530 + 0.891749i \(0.350521\pi\)
\(110\) 2.36129e6i 1.77408i
\(111\) 0 0
\(112\) −2.81944e6 −2.00682
\(113\) − 2.45331e6i − 1.70026i −0.526569 0.850132i \(-0.676522\pi\)
0.526569 0.850132i \(-0.323478\pi\)
\(114\) 0 0
\(115\) 1.45288e6 0.955291
\(116\) 1.16933e6i 0.749141i
\(117\) 0 0
\(118\) 2.30878e6 1.40520
\(119\) 810297.i 0.480843i
\(120\) 0 0
\(121\) 287398. 0.162229
\(122\) 1.56672e6i 0.862802i
\(123\) 0 0
\(124\) 3.53671e6 1.85496
\(125\) − 1.69933e6i − 0.870058i
\(126\) 0 0
\(127\) −1.53816e6 −0.750913 −0.375456 0.926840i \(-0.622514\pi\)
−0.375456 + 0.926840i \(0.622514\pi\)
\(128\) 3.16116e6i 1.50736i
\(129\) 0 0
\(130\) −330399. −0.150386
\(131\) 1.12723e6i 0.501416i 0.968063 + 0.250708i \(0.0806635\pi\)
−0.968063 + 0.250708i \(0.919337\pi\)
\(132\) 0 0
\(133\) 5.81126e6 2.47010
\(134\) − 5.37438e6i − 2.23364i
\(135\) 0 0
\(136\) −1.57507e6 −0.626157
\(137\) 3.20599e6i 1.24681i 0.781899 + 0.623406i \(0.214251\pi\)
−0.781899 + 0.623406i \(0.785749\pi\)
\(138\) 0 0
\(139\) −66685.5 −0.0248306 −0.0124153 0.999923i \(-0.503952\pi\)
−0.0124153 + 0.999923i \(0.503952\pi\)
\(140\) − 9.54566e6i − 3.47874i
\(141\) 0 0
\(142\) −9.52134e6 −3.32532
\(143\) − 207668.i − 0.0710169i
\(144\) 0 0
\(145\) −1.19079e6 −0.390600
\(146\) − 1.07610e7i − 3.45776i
\(147\) 0 0
\(148\) −2.95077e6 −0.910229
\(149\) 1.62846e6i 0.492288i 0.969233 + 0.246144i \(0.0791635\pi\)
−0.969233 + 0.246144i \(0.920836\pi\)
\(150\) 0 0
\(151\) −365620. −0.106194 −0.0530968 0.998589i \(-0.516909\pi\)
−0.0530968 + 0.998589i \(0.516909\pi\)
\(152\) 1.12960e7i 3.21658i
\(153\) 0 0
\(154\) 8.84538e6 2.42189
\(155\) 3.60162e6i 0.967170i
\(156\) 0 0
\(157\) −5.18926e6 −1.34093 −0.670465 0.741941i \(-0.733905\pi\)
−0.670465 + 0.741941i \(0.733905\pi\)
\(158\) 7.27390e6i 1.84415i
\(159\) 0 0
\(160\) 1.81574e6 0.443295
\(161\) − 5.44246e6i − 1.30412i
\(162\) 0 0
\(163\) −3.00726e6 −0.694397 −0.347199 0.937792i \(-0.612867\pi\)
−0.347199 + 0.937792i \(0.612867\pi\)
\(164\) − 5.15029e6i − 1.16762i
\(165\) 0 0
\(166\) 1.27474e7 2.78675
\(167\) 4.78381e6i 1.02713i 0.858051 + 0.513564i \(0.171675\pi\)
−0.858051 + 0.513564i \(0.828325\pi\)
\(168\) 0 0
\(169\) −4.79775e6 −0.993980
\(170\) − 3.05100e6i − 0.621005i
\(171\) 0 0
\(172\) −3.22446e6 −0.633681
\(173\) − 3.53596e6i − 0.682918i −0.939897 0.341459i \(-0.889079\pi\)
0.939897 0.341459i \(-0.110921\pi\)
\(174\) 0 0
\(175\) 1.67759e6 0.313019
\(176\) 6.67253e6i 1.22392i
\(177\) 0 0
\(178\) 9.08734e6 1.61130
\(179\) 8.57291e6i 1.49475i 0.664401 + 0.747376i \(0.268687\pi\)
−0.664401 + 0.747376i \(0.731313\pi\)
\(180\) 0 0
\(181\) 1.79208e6 0.302219 0.151110 0.988517i \(-0.451715\pi\)
0.151110 + 0.988517i \(0.451715\pi\)
\(182\) 1.23767e6i 0.205301i
\(183\) 0 0
\(184\) 1.05792e7 1.69824
\(185\) − 3.00493e6i − 0.474590i
\(186\) 0 0
\(187\) 1.91767e6 0.293257
\(188\) 3.60278e6i 0.542206i
\(189\) 0 0
\(190\) −2.18810e7 −3.19012
\(191\) 1.01076e7i 1.45061i 0.688429 + 0.725304i \(0.258301\pi\)
−0.688429 + 0.725304i \(0.741699\pi\)
\(192\) 0 0
\(193\) −7.64657e6 −1.06364 −0.531820 0.846857i \(-0.678492\pi\)
−0.531820 + 0.846857i \(0.678492\pi\)
\(194\) − 8.69511e6i − 1.19089i
\(195\) 0 0
\(196\) −1.98821e7 −2.64055
\(197\) − 4.94403e6i − 0.646669i −0.946285 0.323335i \(-0.895196\pi\)
0.946285 0.323335i \(-0.104804\pi\)
\(198\) 0 0
\(199\) −1.96814e6 −0.249745 −0.124872 0.992173i \(-0.539852\pi\)
−0.124872 + 0.992173i \(0.539852\pi\)
\(200\) 3.26092e6i 0.407615i
\(201\) 0 0
\(202\) 8.78760e6 1.06615
\(203\) 4.46069e6i 0.533229i
\(204\) 0 0
\(205\) 5.24481e6 0.608791
\(206\) − 1.05883e7i − 1.21123i
\(207\) 0 0
\(208\) −933639. −0.103750
\(209\) − 1.37530e7i − 1.50647i
\(210\) 0 0
\(211\) 8.29966e6 0.883513 0.441756 0.897135i \(-0.354356\pi\)
0.441756 + 0.897135i \(0.354356\pi\)
\(212\) − 2.88773e7i − 3.03074i
\(213\) 0 0
\(214\) 4.87216e6 0.497142
\(215\) − 3.28363e6i − 0.330399i
\(216\) 0 0
\(217\) 1.34916e7 1.32034
\(218\) 1.65318e7i 1.59570i
\(219\) 0 0
\(220\) −2.25909e7 −2.12161
\(221\) 268325.i 0.0248590i
\(222\) 0 0
\(223\) 9.37779e6 0.845641 0.422821 0.906213i \(-0.361040\pi\)
0.422821 + 0.906213i \(0.361040\pi\)
\(224\) − 6.80172e6i − 0.605167i
\(225\) 0 0
\(226\) 3.46031e7 2.99771
\(227\) 3.66419e6i 0.313257i 0.987658 + 0.156628i \(0.0500625\pi\)
−0.987658 + 0.156628i \(0.949938\pi\)
\(228\) 0 0
\(229\) 4.98904e6 0.415442 0.207721 0.978188i \(-0.433395\pi\)
0.207721 + 0.978188i \(0.433395\pi\)
\(230\) 2.04924e7i 1.68426i
\(231\) 0 0
\(232\) −8.67077e6 −0.694374
\(233\) 5.00370e6i 0.395570i 0.980245 + 0.197785i \(0.0633749\pi\)
−0.980245 + 0.197785i \(0.936625\pi\)
\(234\) 0 0
\(235\) −3.66890e6 −0.282705
\(236\) 2.20886e7i 1.68047i
\(237\) 0 0
\(238\) −1.14290e7 −0.847768
\(239\) − 1.89151e7i − 1.38553i −0.721163 0.692765i \(-0.756392\pi\)
0.721163 0.692765i \(-0.243608\pi\)
\(240\) 0 0
\(241\) −1.52515e7 −1.08958 −0.544791 0.838572i \(-0.683391\pi\)
−0.544791 + 0.838572i \(0.683391\pi\)
\(242\) 4.05366e6i 0.286023i
\(243\) 0 0
\(244\) −1.49891e7 −1.03182
\(245\) − 2.02470e7i − 1.37677i
\(246\) 0 0
\(247\) 1.92436e6 0.127702
\(248\) 2.62253e7i 1.71935i
\(249\) 0 0
\(250\) 2.39685e7 1.53399
\(251\) 1.44796e7i 0.915661i 0.889040 + 0.457830i \(0.151373\pi\)
−0.889040 + 0.457830i \(0.848627\pi\)
\(252\) 0 0
\(253\) −1.28802e7 −0.795358
\(254\) − 2.16952e7i − 1.32392i
\(255\) 0 0
\(256\) −3.40805e7 −2.03136
\(257\) − 1.19468e7i − 0.703807i −0.936036 0.351904i \(-0.885534\pi\)
0.936036 0.351904i \(-0.114466\pi\)
\(258\) 0 0
\(259\) −1.12564e7 −0.647889
\(260\) − 3.16099e6i − 0.179847i
\(261\) 0 0
\(262\) −1.58992e7 −0.884040
\(263\) − 1.51400e7i − 0.832258i −0.909306 0.416129i \(-0.863386\pi\)
0.909306 0.416129i \(-0.136614\pi\)
\(264\) 0 0
\(265\) 2.94073e7 1.58022
\(266\) 8.19659e7i 4.35500i
\(267\) 0 0
\(268\) 5.14177e7 2.67121
\(269\) 3.37864e7i 1.73574i 0.496789 + 0.867871i \(0.334512\pi\)
−0.496789 + 0.867871i \(0.665488\pi\)
\(270\) 0 0
\(271\) −292052. −0.0146741 −0.00733707 0.999973i \(-0.502335\pi\)
−0.00733707 + 0.999973i \(0.502335\pi\)
\(272\) − 8.62149e6i − 0.428426i
\(273\) 0 0
\(274\) −4.52195e7 −2.19824
\(275\) − 3.97021e6i − 0.190904i
\(276\) 0 0
\(277\) −1.18466e7 −0.557384 −0.278692 0.960381i \(-0.589901\pi\)
−0.278692 + 0.960381i \(0.589901\pi\)
\(278\) − 940578.i − 0.0437785i
\(279\) 0 0
\(280\) 7.07825e7 3.22442
\(281\) − 2.67693e6i − 0.120648i −0.998179 0.0603238i \(-0.980787\pi\)
0.998179 0.0603238i \(-0.0192133\pi\)
\(282\) 0 0
\(283\) −3.11101e7 −1.37260 −0.686298 0.727321i \(-0.740765\pi\)
−0.686298 + 0.727321i \(0.740765\pi\)
\(284\) − 9.10925e7i − 3.97674i
\(285\) 0 0
\(286\) 2.92909e6 0.125209
\(287\) − 1.96470e7i − 0.831094i
\(288\) 0 0
\(289\) 2.16598e7 0.897347
\(290\) − 1.67957e7i − 0.688660i
\(291\) 0 0
\(292\) 1.02953e8 4.13513
\(293\) − 2.35392e6i − 0.0935813i −0.998905 0.0467906i \(-0.985101\pi\)
0.998905 0.0467906i \(-0.0148994\pi\)
\(294\) 0 0
\(295\) −2.24939e7 −0.876193
\(296\) − 2.18804e7i − 0.843686i
\(297\) 0 0
\(298\) −2.29689e7 −0.867945
\(299\) − 1.80224e6i − 0.0674216i
\(300\) 0 0
\(301\) −1.23004e7 −0.451046
\(302\) − 5.15695e6i − 0.187229i
\(303\) 0 0
\(304\) −6.18312e7 −2.20083
\(305\) − 1.52642e7i − 0.537989i
\(306\) 0 0
\(307\) 3.99249e6 0.137984 0.0689920 0.997617i \(-0.478022\pi\)
0.0689920 + 0.997617i \(0.478022\pi\)
\(308\) 8.46254e7i 2.89633i
\(309\) 0 0
\(310\) −5.07997e7 −1.70520
\(311\) 3.01385e7i 1.00194i 0.865465 + 0.500969i \(0.167023\pi\)
−0.865465 + 0.500969i \(0.832977\pi\)
\(312\) 0 0
\(313\) −3.78911e7 −1.23568 −0.617838 0.786305i \(-0.711991\pi\)
−0.617838 + 0.786305i \(0.711991\pi\)
\(314\) − 7.31928e7i − 2.36417i
\(315\) 0 0
\(316\) −6.95907e7 −2.20541
\(317\) 3.47444e7i 1.09070i 0.838207 + 0.545352i \(0.183604\pi\)
−0.838207 + 0.545352i \(0.816396\pi\)
\(318\) 0 0
\(319\) 1.05568e7 0.325206
\(320\) − 2.25595e7i − 0.688462i
\(321\) 0 0
\(322\) 7.67642e7 2.29928
\(323\) 1.77701e7i 0.527330i
\(324\) 0 0
\(325\) 555522. 0.0161827
\(326\) − 4.24164e7i − 1.22428i
\(327\) 0 0
\(328\) 3.81902e7 1.08226
\(329\) 1.37437e7i 0.385936i
\(330\) 0 0
\(331\) 3.66213e7 1.00983 0.504917 0.863168i \(-0.331523\pi\)
0.504917 + 0.863168i \(0.331523\pi\)
\(332\) 1.21957e8i 3.33267i
\(333\) 0 0
\(334\) −6.74742e7 −1.81092
\(335\) 5.23614e7i 1.39276i
\(336\) 0 0
\(337\) 4.53144e7 1.18398 0.591992 0.805944i \(-0.298342\pi\)
0.591992 + 0.805944i \(0.298342\pi\)
\(338\) − 6.76708e7i − 1.75247i
\(339\) 0 0
\(340\) 2.91895e7 0.742659
\(341\) − 3.19296e7i − 0.805248i
\(342\) 0 0
\(343\) −1.52829e7 −0.378724
\(344\) − 2.39098e7i − 0.587356i
\(345\) 0 0
\(346\) 4.98736e7 1.20404
\(347\) − 2.92265e7i − 0.699502i −0.936843 0.349751i \(-0.886266\pi\)
0.936843 0.349751i \(-0.113734\pi\)
\(348\) 0 0
\(349\) −9.61270e6 −0.226136 −0.113068 0.993587i \(-0.536068\pi\)
−0.113068 + 0.993587i \(0.536068\pi\)
\(350\) 2.36618e7i 0.551879i
\(351\) 0 0
\(352\) −1.60971e7 −0.369079
\(353\) 3.01291e7i 0.684955i 0.939526 + 0.342478i \(0.111266\pi\)
−0.939526 + 0.342478i \(0.888734\pi\)
\(354\) 0 0
\(355\) 9.27643e7 2.07346
\(356\) 8.69403e7i 1.92695i
\(357\) 0 0
\(358\) −1.20918e8 −2.63538
\(359\) − 3.63910e7i − 0.786521i −0.919427 0.393260i \(-0.871347\pi\)
0.919427 0.393260i \(-0.128653\pi\)
\(360\) 0 0
\(361\) 8.03970e7 1.70891
\(362\) 2.52767e7i 0.532838i
\(363\) 0 0
\(364\) −1.18410e7 −0.245519
\(365\) 1.04842e8i 2.15604i
\(366\) 0 0
\(367\) 5.05958e7 1.02357 0.511784 0.859114i \(-0.328985\pi\)
0.511784 + 0.859114i \(0.328985\pi\)
\(368\) 5.79073e7i 1.16196i
\(369\) 0 0
\(370\) 4.23836e7 0.836743
\(371\) − 1.10159e8i − 2.15724i
\(372\) 0 0
\(373\) −9.44996e7 −1.82097 −0.910487 0.413538i \(-0.864293\pi\)
−0.910487 + 0.413538i \(0.864293\pi\)
\(374\) 2.70481e7i 0.517037i
\(375\) 0 0
\(376\) −2.67152e7 −0.502568
\(377\) 1.47713e6i 0.0275673i
\(378\) 0 0
\(379\) −5.62274e7 −1.03283 −0.516417 0.856337i \(-0.672734\pi\)
−0.516417 + 0.856337i \(0.672734\pi\)
\(380\) − 2.09340e8i − 3.81505i
\(381\) 0 0
\(382\) −1.42565e8 −2.55755
\(383\) 2.12413e7i 0.378080i 0.981969 + 0.189040i \(0.0605376\pi\)
−0.981969 + 0.189040i \(0.939462\pi\)
\(384\) 0 0
\(385\) −8.61785e7 −1.51014
\(386\) − 1.07853e8i − 1.87529i
\(387\) 0 0
\(388\) 8.31877e7 1.42418
\(389\) 9.62174e7i 1.63458i 0.576230 + 0.817288i \(0.304523\pi\)
−0.576230 + 0.817288i \(0.695477\pi\)
\(390\) 0 0
\(391\) 1.66424e7 0.278410
\(392\) − 1.47429e8i − 2.44751i
\(393\) 0 0
\(394\) 6.97339e7 1.14013
\(395\) − 7.08679e7i − 1.14990i
\(396\) 0 0
\(397\) 2.71686e7 0.434206 0.217103 0.976149i \(-0.430339\pi\)
0.217103 + 0.976149i \(0.430339\pi\)
\(398\) − 2.77600e7i − 0.440322i
\(399\) 0 0
\(400\) −1.78494e7 −0.278896
\(401\) − 1.53926e7i − 0.238715i −0.992851 0.119357i \(-0.961917\pi\)
0.992851 0.119357i \(-0.0380834\pi\)
\(402\) 0 0
\(403\) 4.46767e6 0.0682599
\(404\) 8.40727e7i 1.27500i
\(405\) 0 0
\(406\) −6.29166e7 −0.940129
\(407\) 2.66397e7i 0.395135i
\(408\) 0 0
\(409\) −3.26408e7 −0.477080 −0.238540 0.971133i \(-0.576669\pi\)
−0.238540 + 0.971133i \(0.576669\pi\)
\(410\) 7.39764e7i 1.07335i
\(411\) 0 0
\(412\) 1.01300e8 1.44850
\(413\) 8.42620e7i 1.19614i
\(414\) 0 0
\(415\) −1.24195e8 −1.73765
\(416\) − 2.25235e6i − 0.0312864i
\(417\) 0 0
\(418\) 1.93982e8 2.65603
\(419\) − 8.86249e7i − 1.20480i −0.798196 0.602398i \(-0.794212\pi\)
0.798196 0.602398i \(-0.205788\pi\)
\(420\) 0 0
\(421\) 9.51173e7 1.27472 0.637358 0.770568i \(-0.280027\pi\)
0.637358 + 0.770568i \(0.280027\pi\)
\(422\) 1.17064e8i 1.55771i
\(423\) 0 0
\(424\) 2.14130e8 2.80918
\(425\) 5.12985e6i 0.0668249i
\(426\) 0 0
\(427\) −5.71793e7 −0.734439
\(428\) 4.66129e7i 0.594531i
\(429\) 0 0
\(430\) 4.63146e7 0.582522
\(431\) − 8.05617e7i − 1.00623i −0.864220 0.503115i \(-0.832187\pi\)
0.864220 0.503115i \(-0.167813\pi\)
\(432\) 0 0
\(433\) 3.50511e7 0.431755 0.215878 0.976420i \(-0.430739\pi\)
0.215878 + 0.976420i \(0.430739\pi\)
\(434\) 1.90295e8i 2.32787i
\(435\) 0 0
\(436\) −1.58163e8 −1.90829
\(437\) − 1.19355e8i − 1.43020i
\(438\) 0 0
\(439\) −4.63062e7 −0.547325 −0.273663 0.961826i \(-0.588235\pi\)
−0.273663 + 0.961826i \(0.588235\pi\)
\(440\) − 1.67515e8i − 1.96651i
\(441\) 0 0
\(442\) −3.78464e6 −0.0438286
\(443\) − 1.19041e8i − 1.36926i −0.728893 0.684628i \(-0.759965\pi\)
0.728893 0.684628i \(-0.240035\pi\)
\(444\) 0 0
\(445\) −8.85359e7 −1.00471
\(446\) 1.32271e8i 1.49094i
\(447\) 0 0
\(448\) −8.45077e7 −0.939858
\(449\) − 9.75546e7i − 1.07773i −0.842393 0.538864i \(-0.818854\pi\)
0.842393 0.538864i \(-0.181146\pi\)
\(450\) 0 0
\(451\) −4.64970e7 −0.506868
\(452\) 3.31055e8i 3.58496i
\(453\) 0 0
\(454\) −5.16822e7 −0.552298
\(455\) − 1.20583e7i − 0.128013i
\(456\) 0 0
\(457\) −8.13740e6 −0.0852583 −0.0426292 0.999091i \(-0.513573\pi\)
−0.0426292 + 0.999091i \(0.513573\pi\)
\(458\) 7.03688e7i 0.732460i
\(459\) 0 0
\(460\) −1.96055e8 −2.01420
\(461\) 1.55318e8i 1.58533i 0.609659 + 0.792664i \(0.291306\pi\)
−0.609659 + 0.792664i \(0.708694\pi\)
\(462\) 0 0
\(463\) 7.62984e7 0.768728 0.384364 0.923182i \(-0.374421\pi\)
0.384364 + 0.923182i \(0.374421\pi\)
\(464\) − 4.74613e7i − 0.475101i
\(465\) 0 0
\(466\) −7.05757e7 −0.697425
\(467\) 1.85842e8i 1.82470i 0.409408 + 0.912352i \(0.365735\pi\)
−0.409408 + 0.912352i \(0.634265\pi\)
\(468\) 0 0
\(469\) 1.96145e8 1.90133
\(470\) − 5.17487e7i − 0.498432i
\(471\) 0 0
\(472\) −1.63790e8 −1.55762
\(473\) 2.91105e7i 0.275084i
\(474\) 0 0
\(475\) 3.67901e7 0.343281
\(476\) − 1.09343e8i − 1.01384i
\(477\) 0 0
\(478\) 2.66792e8 2.44281
\(479\) − 1.23819e8i − 1.12663i −0.826243 0.563314i \(-0.809526\pi\)
0.826243 0.563314i \(-0.190474\pi\)
\(480\) 0 0
\(481\) −3.72749e6 −0.0334951
\(482\) − 2.15117e8i − 1.92103i
\(483\) 0 0
\(484\) −3.87821e7 −0.342055
\(485\) 8.47145e7i 0.742561i
\(486\) 0 0
\(487\) −6.09360e7 −0.527578 −0.263789 0.964580i \(-0.584972\pi\)
−0.263789 + 0.964580i \(0.584972\pi\)
\(488\) − 1.11146e8i − 0.956391i
\(489\) 0 0
\(490\) 2.85577e8 2.42737
\(491\) 6.48068e7i 0.547490i 0.961802 + 0.273745i \(0.0882624\pi\)
−0.961802 + 0.273745i \(0.911738\pi\)
\(492\) 0 0
\(493\) −1.36402e7 −0.113836
\(494\) 2.71425e7i 0.225149i
\(495\) 0 0
\(496\) −1.43550e8 −1.17641
\(497\) − 3.47494e8i − 2.83060i
\(498\) 0 0
\(499\) 2.87096e7 0.231061 0.115530 0.993304i \(-0.463143\pi\)
0.115530 + 0.993304i \(0.463143\pi\)
\(500\) 2.29312e8i 1.83449i
\(501\) 0 0
\(502\) −2.04230e8 −1.61439
\(503\) − 1.12463e8i − 0.883702i −0.897088 0.441851i \(-0.854322\pi\)
0.897088 0.441851i \(-0.145678\pi\)
\(504\) 0 0
\(505\) −8.56156e7 −0.664781
\(506\) − 1.81672e8i − 1.40228i
\(507\) 0 0
\(508\) 2.07562e8 1.58328
\(509\) 5.61786e7i 0.426008i 0.977051 + 0.213004i \(0.0683247\pi\)
−0.977051 + 0.213004i \(0.931675\pi\)
\(510\) 0 0
\(511\) 3.92737e8 2.94333
\(512\) − 2.78380e8i − 2.07410i
\(513\) 0 0
\(514\) 1.68506e8 1.24087
\(515\) 1.03160e8i 0.755245i
\(516\) 0 0
\(517\) 3.25260e7 0.235375
\(518\) − 1.58768e8i − 1.14228i
\(519\) 0 0
\(520\) 2.34392e7 0.166699
\(521\) 1.68861e8i 1.19403i 0.802230 + 0.597015i \(0.203647\pi\)
−0.802230 + 0.597015i \(0.796353\pi\)
\(522\) 0 0
\(523\) −2.39748e8 −1.67591 −0.837955 0.545739i \(-0.816249\pi\)
−0.837955 + 0.545739i \(0.816249\pi\)
\(524\) − 1.52111e8i − 1.05722i
\(525\) 0 0
\(526\) 2.13545e8 1.46734
\(527\) 4.12557e7i 0.281872i
\(528\) 0 0
\(529\) 3.62552e7 0.244908
\(530\) 4.14780e8i 2.78606i
\(531\) 0 0
\(532\) −7.84183e8 −5.20814
\(533\) − 6.50598e6i − 0.0429666i
\(534\) 0 0
\(535\) −4.74683e7 −0.309986
\(536\) 3.81270e8i 2.47593i
\(537\) 0 0
\(538\) −4.76547e8 −3.06026
\(539\) 1.79496e8i 1.14627i
\(540\) 0 0
\(541\) 1.85322e8 1.17040 0.585200 0.810889i \(-0.301016\pi\)
0.585200 + 0.810889i \(0.301016\pi\)
\(542\) − 4.11930e6i − 0.0258718i
\(543\) 0 0
\(544\) 2.07988e7 0.129194
\(545\) − 1.61066e8i − 0.994978i
\(546\) 0 0
\(547\) 2.52846e8 1.54488 0.772438 0.635090i \(-0.219037\pi\)
0.772438 + 0.635090i \(0.219037\pi\)
\(548\) − 4.32624e8i − 2.62887i
\(549\) 0 0
\(550\) 5.59986e7 0.336580
\(551\) 9.78245e7i 0.584780i
\(552\) 0 0
\(553\) −2.65470e8 −1.56979
\(554\) − 1.67093e8i − 0.982715i
\(555\) 0 0
\(556\) 8.99869e6 0.0523546
\(557\) 1.01472e8i 0.587194i 0.955929 + 0.293597i \(0.0948524\pi\)
−0.955929 + 0.293597i \(0.905148\pi\)
\(558\) 0 0
\(559\) −4.07322e6 −0.0233186
\(560\) 3.87443e8i 2.20620i
\(561\) 0 0
\(562\) 3.77573e7 0.212712
\(563\) − 1.15852e8i − 0.649202i −0.945851 0.324601i \(-0.894770\pi\)
0.945851 0.324601i \(-0.105230\pi\)
\(564\) 0 0
\(565\) −3.37130e8 −1.86919
\(566\) − 4.38799e8i − 2.42000i
\(567\) 0 0
\(568\) 6.75465e8 3.68602
\(569\) 7.30159e7i 0.396352i 0.980166 + 0.198176i \(0.0635017\pi\)
−0.980166 + 0.198176i \(0.936498\pi\)
\(570\) 0 0
\(571\) −9.75143e7 −0.523793 −0.261897 0.965096i \(-0.584348\pi\)
−0.261897 + 0.965096i \(0.584348\pi\)
\(572\) 2.80232e7i 0.149737i
\(573\) 0 0
\(574\) 2.77115e8 1.46529
\(575\) − 3.44553e7i − 0.181239i
\(576\) 0 0
\(577\) 8.90080e7 0.463342 0.231671 0.972794i \(-0.425581\pi\)
0.231671 + 0.972794i \(0.425581\pi\)
\(578\) 3.05504e8i 1.58210i
\(579\) 0 0
\(580\) 1.60688e8 0.823568
\(581\) 4.65234e8i 2.37216i
\(582\) 0 0
\(583\) −2.60705e8 −1.31566
\(584\) 7.63410e8i 3.83283i
\(585\) 0 0
\(586\) 3.32013e7 0.164992
\(587\) 1.26314e8i 0.624509i 0.949998 + 0.312255i \(0.101084\pi\)
−0.949998 + 0.312255i \(0.898916\pi\)
\(588\) 0 0
\(589\) 2.95876e8 1.44798
\(590\) − 3.17270e8i − 1.54480i
\(591\) 0 0
\(592\) 1.19767e8 0.577262
\(593\) − 1.59275e8i − 0.763805i −0.924203 0.381902i \(-0.875269\pi\)
0.924203 0.381902i \(-0.124731\pi\)
\(594\) 0 0
\(595\) 1.11350e8 0.528615
\(596\) − 2.19748e8i − 1.03797i
\(597\) 0 0
\(598\) 2.54200e7 0.118870
\(599\) − 1.42561e8i − 0.663315i −0.943400 0.331658i \(-0.892392\pi\)
0.943400 0.331658i \(-0.107608\pi\)
\(600\) 0 0
\(601\) −1.18489e8 −0.545828 −0.272914 0.962038i \(-0.587987\pi\)
−0.272914 + 0.962038i \(0.587987\pi\)
\(602\) − 1.73494e8i − 0.795234i
\(603\) 0 0
\(604\) 4.93375e7 0.223906
\(605\) − 3.94939e7i − 0.178346i
\(606\) 0 0
\(607\) −8.06041e7 −0.360405 −0.180203 0.983630i \(-0.557675\pi\)
−0.180203 + 0.983630i \(0.557675\pi\)
\(608\) − 1.49164e8i − 0.663673i
\(609\) 0 0
\(610\) 2.15296e8 0.948521
\(611\) 4.55113e6i 0.0199524i
\(612\) 0 0
\(613\) −2.49459e8 −1.08297 −0.541486 0.840710i \(-0.682138\pi\)
−0.541486 + 0.840710i \(0.682138\pi\)
\(614\) 5.63128e7i 0.243278i
\(615\) 0 0
\(616\) −6.27510e8 −2.68459
\(617\) − 3.44285e8i − 1.46576i −0.680358 0.732880i \(-0.738176\pi\)
0.680358 0.732880i \(-0.261824\pi\)
\(618\) 0 0
\(619\) 4.59439e7 0.193712 0.0968558 0.995298i \(-0.469121\pi\)
0.0968558 + 0.995298i \(0.469121\pi\)
\(620\) − 4.86011e8i − 2.03925i
\(621\) 0 0
\(622\) −4.25094e8 −1.76650
\(623\) 3.31654e8i 1.37158i
\(624\) 0 0
\(625\) −2.84441e8 −1.16507
\(626\) − 5.34443e8i − 2.17860i
\(627\) 0 0
\(628\) 7.00249e8 2.82731
\(629\) − 3.44207e7i − 0.138315i
\(630\) 0 0
\(631\) −2.71320e8 −1.07993 −0.539963 0.841689i \(-0.681562\pi\)
−0.539963 + 0.841689i \(0.681562\pi\)
\(632\) − 5.16026e8i − 2.04419i
\(633\) 0 0
\(634\) −4.90059e8 −1.92300
\(635\) 2.11372e8i 0.825516i
\(636\) 0 0
\(637\) −2.51156e7 −0.0971684
\(638\) 1.48900e8i 0.573366i
\(639\) 0 0
\(640\) 4.34402e8 1.65711
\(641\) − 3.13515e8i − 1.19037i −0.803587 0.595187i \(-0.797078\pi\)
0.803587 0.595187i \(-0.202922\pi\)
\(642\) 0 0
\(643\) 5.94578e7 0.223654 0.111827 0.993728i \(-0.464330\pi\)
0.111827 + 0.993728i \(0.464330\pi\)
\(644\) 7.34418e8i 2.74970i
\(645\) 0 0
\(646\) −2.50642e8 −0.929728
\(647\) 2.04779e8i 0.756089i 0.925787 + 0.378045i \(0.123403\pi\)
−0.925787 + 0.378045i \(0.876597\pi\)
\(648\) 0 0
\(649\) 1.99416e8 0.729502
\(650\) 7.83547e6i 0.0285315i
\(651\) 0 0
\(652\) 4.05806e8 1.46412
\(653\) − 3.40035e7i − 0.122119i −0.998134 0.0610596i \(-0.980552\pi\)
0.998134 0.0610596i \(-0.0194480\pi\)
\(654\) 0 0
\(655\) 1.54902e8 0.551232
\(656\) 2.09042e8i 0.740495i
\(657\) 0 0
\(658\) −1.93850e8 −0.680438
\(659\) 2.43145e8i 0.849590i 0.905290 + 0.424795i \(0.139654\pi\)
−0.905290 + 0.424795i \(0.860346\pi\)
\(660\) 0 0
\(661\) 4.51973e8 1.56498 0.782488 0.622665i \(-0.213950\pi\)
0.782488 + 0.622665i \(0.213950\pi\)
\(662\) 5.16532e8i 1.78042i
\(663\) 0 0
\(664\) −9.04331e8 −3.08904
\(665\) − 7.98575e8i − 2.71551i
\(666\) 0 0
\(667\) 9.16164e7 0.308742
\(668\) − 6.45538e8i − 2.16567i
\(669\) 0 0
\(670\) −7.38541e8 −2.45556
\(671\) 1.35322e8i 0.447920i
\(672\) 0 0
\(673\) 3.17560e8 1.04179 0.520896 0.853620i \(-0.325598\pi\)
0.520896 + 0.853620i \(0.325598\pi\)
\(674\) 6.39145e8i 2.08747i
\(675\) 0 0
\(676\) 6.47419e8 2.09578
\(677\) − 6.70541e7i − 0.216102i −0.994145 0.108051i \(-0.965539\pi\)
0.994145 0.108051i \(-0.0344610\pi\)
\(678\) 0 0
\(679\) 3.17339e8 1.01371
\(680\) 2.16444e8i 0.688366i
\(681\) 0 0
\(682\) 4.50356e8 1.41972
\(683\) − 1.51437e8i − 0.475303i −0.971350 0.237652i \(-0.923622\pi\)
0.971350 0.237652i \(-0.0763777\pi\)
\(684\) 0 0
\(685\) 4.40563e8 1.37068
\(686\) − 2.15560e8i − 0.667723i
\(687\) 0 0
\(688\) 1.30876e8 0.401877
\(689\) − 3.64786e7i − 0.111527i
\(690\) 0 0
\(691\) 9.46804e7 0.286963 0.143482 0.989653i \(-0.454170\pi\)
0.143482 + 0.989653i \(0.454170\pi\)
\(692\) 4.77150e8i 1.43991i
\(693\) 0 0
\(694\) 4.12231e8 1.23328
\(695\) 9.16384e6i 0.0272975i
\(696\) 0 0
\(697\) 6.00781e7 0.177426
\(698\) − 1.35584e8i − 0.398697i
\(699\) 0 0
\(700\) −2.26377e8 −0.659991
\(701\) 7.92713e6i 0.0230124i 0.999934 + 0.0115062i \(0.00366262\pi\)
−0.999934 + 0.0115062i \(0.996337\pi\)
\(702\) 0 0
\(703\) −2.46857e8 −0.710526
\(704\) 1.99998e8i 0.573201i
\(705\) 0 0
\(706\) −4.24962e8 −1.20763
\(707\) 3.20715e8i 0.907530i
\(708\) 0 0
\(709\) −6.65474e8 −1.86721 −0.933603 0.358310i \(-0.883353\pi\)
−0.933603 + 0.358310i \(0.883353\pi\)
\(710\) 1.30841e9i 3.65569i
\(711\) 0 0
\(712\) −6.44676e8 −1.78608
\(713\) − 2.77099e8i − 0.764481i
\(714\) 0 0
\(715\) −2.85375e7 −0.0780724
\(716\) − 1.15685e9i − 3.15164i
\(717\) 0 0
\(718\) 5.13283e8 1.38670
\(719\) − 4.90198e8i − 1.31882i −0.751784 0.659409i \(-0.770806\pi\)
0.751784 0.659409i \(-0.229194\pi\)
\(720\) 0 0
\(721\) 3.86434e8 1.03103
\(722\) 1.13397e9i 3.01295i
\(723\) 0 0
\(724\) −2.41827e8 −0.637221
\(725\) 2.82398e7i 0.0741051i
\(726\) 0 0
\(727\) −2.09307e8 −0.544730 −0.272365 0.962194i \(-0.587806\pi\)
−0.272365 + 0.962194i \(0.587806\pi\)
\(728\) − 8.78030e7i − 0.227570i
\(729\) 0 0
\(730\) −1.47877e9 −3.80129
\(731\) − 3.76133e7i − 0.0962917i
\(732\) 0 0
\(733\) −3.66672e8 −0.931034 −0.465517 0.885039i \(-0.654132\pi\)
−0.465517 + 0.885039i \(0.654132\pi\)
\(734\) 7.13638e8i 1.80464i
\(735\) 0 0
\(736\) −1.39698e8 −0.350394
\(737\) − 4.64201e8i − 1.15959i
\(738\) 0 0
\(739\) −6.11387e8 −1.51490 −0.757449 0.652895i \(-0.773554\pi\)
−0.757449 + 0.652895i \(0.773554\pi\)
\(740\) 4.05491e8i 1.00066i
\(741\) 0 0
\(742\) 1.55376e9 3.80340
\(743\) 2.10111e8i 0.512252i 0.966643 + 0.256126i \(0.0824461\pi\)
−0.966643 + 0.256126i \(0.917554\pi\)
\(744\) 0 0
\(745\) 2.23781e8 0.541196
\(746\) − 1.33289e9i − 3.21053i
\(747\) 0 0
\(748\) −2.58774e8 −0.618324
\(749\) 1.77816e8i 0.423180i
\(750\) 0 0
\(751\) 5.05697e8 1.19391 0.596953 0.802276i \(-0.296378\pi\)
0.596953 + 0.802276i \(0.296378\pi\)
\(752\) − 1.46231e8i − 0.343864i
\(753\) 0 0
\(754\) −2.08345e7 −0.0486036
\(755\) 5.02430e7i 0.116744i
\(756\) 0 0
\(757\) 4.19839e8 0.967822 0.483911 0.875117i \(-0.339216\pi\)
0.483911 + 0.875117i \(0.339216\pi\)
\(758\) − 7.93070e8i − 1.82097i
\(759\) 0 0
\(760\) 1.55229e9 3.53615
\(761\) − 7.32156e8i − 1.66131i −0.556791 0.830653i \(-0.687968\pi\)
0.556791 0.830653i \(-0.312032\pi\)
\(762\) 0 0
\(763\) −6.03350e8 −1.35830
\(764\) − 1.36395e9i − 3.05856i
\(765\) 0 0
\(766\) −2.99601e8 −0.666588
\(767\) 2.79029e7i 0.0618390i
\(768\) 0 0
\(769\) −2.53294e8 −0.556988 −0.278494 0.960438i \(-0.589835\pi\)
−0.278494 + 0.960438i \(0.589835\pi\)
\(770\) − 1.21552e9i − 2.66250i
\(771\) 0 0
\(772\) 1.03185e9 2.24266
\(773\) 7.82197e8i 1.69347i 0.532014 + 0.846735i \(0.321435\pi\)
−0.532014 + 0.846735i \(0.678565\pi\)
\(774\) 0 0
\(775\) 8.54131e7 0.183493
\(776\) 6.16850e8i 1.32006i
\(777\) 0 0
\(778\) −1.35712e9 −2.88190
\(779\) − 4.30865e8i − 0.911443i
\(780\) 0 0
\(781\) −8.22386e8 −1.72632
\(782\) 2.34736e8i 0.490861i
\(783\) 0 0
\(784\) 8.06983e8 1.67462
\(785\) 7.13101e8i 1.47415i
\(786\) 0 0
\(787\) 6.81837e8 1.39880 0.699401 0.714730i \(-0.253450\pi\)
0.699401 + 0.714730i \(0.253450\pi\)
\(788\) 6.67158e8i 1.36348i
\(789\) 0 0
\(790\) 9.99570e8 2.02736
\(791\) 1.26289e9i 2.55173i
\(792\) 0 0
\(793\) −1.89346e7 −0.0379696
\(794\) 3.83205e8i 0.765543i
\(795\) 0 0
\(796\) 2.65585e8 0.526580
\(797\) 5.08452e7i 0.100433i 0.998738 + 0.0502163i \(0.0159911\pi\)
−0.998738 + 0.0502163i \(0.984009\pi\)
\(798\) 0 0
\(799\) −4.20264e7 −0.0823915
\(800\) − 4.30605e7i − 0.0841026i
\(801\) 0 0
\(802\) 2.17108e8 0.420874
\(803\) − 9.29460e8i − 1.79508i
\(804\) 0 0
\(805\) −7.47896e8 −1.43369
\(806\) 6.30151e7i 0.120348i
\(807\) 0 0
\(808\) −6.23412e8 −1.18179
\(809\) 1.02851e7i 0.0194251i 0.999953 + 0.00971257i \(0.00309166\pi\)
−0.999953 + 0.00971257i \(0.996908\pi\)
\(810\) 0 0
\(811\) 4.84952e8 0.909152 0.454576 0.890708i \(-0.349791\pi\)
0.454576 + 0.890708i \(0.349791\pi\)
\(812\) − 6.01935e8i − 1.12430i
\(813\) 0 0
\(814\) −3.75744e8 −0.696657
\(815\) 4.13254e8i 0.763385i
\(816\) 0 0
\(817\) −2.69753e8 −0.494653
\(818\) − 4.60389e8i − 0.841133i
\(819\) 0 0
\(820\) −7.07746e8 −1.28362
\(821\) 4.96161e8i 0.896588i 0.893886 + 0.448294i \(0.147968\pi\)
−0.893886 + 0.448294i \(0.852032\pi\)
\(822\) 0 0
\(823\) −3.21483e8 −0.576711 −0.288356 0.957523i \(-0.593109\pi\)
−0.288356 + 0.957523i \(0.593109\pi\)
\(824\) 7.51158e8i 1.34261i
\(825\) 0 0
\(826\) −1.18849e9 −2.10890
\(827\) − 7.54902e8i − 1.33467i −0.744757 0.667336i \(-0.767435\pi\)
0.744757 0.667336i \(-0.232565\pi\)
\(828\) 0 0
\(829\) −5.82262e8 −1.02201 −0.511004 0.859578i \(-0.670726\pi\)
−0.511004 + 0.859578i \(0.670726\pi\)
\(830\) − 1.75174e9i − 3.06362i
\(831\) 0 0
\(832\) −2.79842e7 −0.0485896
\(833\) − 2.31924e8i − 0.401247i
\(834\) 0 0
\(835\) 6.57385e8 1.12917
\(836\) 1.85586e9i 3.17634i
\(837\) 0 0
\(838\) 1.25003e9 2.12416
\(839\) − 6.64141e8i − 1.12454i −0.826954 0.562270i \(-0.809928\pi\)
0.826954 0.562270i \(-0.190072\pi\)
\(840\) 0 0
\(841\) 5.19734e8 0.873762
\(842\) 1.34160e9i 2.24743i
\(843\) 0 0
\(844\) −1.11997e9 −1.86286
\(845\) 6.59301e8i 1.09273i
\(846\) 0 0
\(847\) −1.47943e8 −0.243470
\(848\) 1.17208e9i 1.92208i
\(849\) 0 0
\(850\) −7.23550e7 −0.117818
\(851\) 2.31191e8i 0.375131i
\(852\) 0 0
\(853\) 7.87779e8 1.26928 0.634640 0.772808i \(-0.281148\pi\)
0.634640 + 0.772808i \(0.281148\pi\)
\(854\) − 8.06497e8i − 1.29488i
\(855\) 0 0
\(856\) −3.45642e8 −0.551067
\(857\) − 9.65175e8i − 1.53343i −0.641988 0.766715i \(-0.721890\pi\)
0.641988 0.766715i \(-0.278110\pi\)
\(858\) 0 0
\(859\) −5.95457e8 −0.939444 −0.469722 0.882814i \(-0.655646\pi\)
−0.469722 + 0.882814i \(0.655646\pi\)
\(860\) 4.43101e8i 0.696638i
\(861\) 0 0
\(862\) 1.13630e9 1.77407
\(863\) 9.85551e8i 1.53337i 0.642024 + 0.766684i \(0.278095\pi\)
−0.642024 + 0.766684i \(0.721905\pi\)
\(864\) 0 0
\(865\) −4.85907e8 −0.750766
\(866\) 4.94385e8i 0.761222i
\(867\) 0 0
\(868\) −1.82059e9 −2.78389
\(869\) 6.28267e8i 0.957382i
\(870\) 0 0
\(871\) 6.49522e7 0.0982969
\(872\) − 1.17280e9i − 1.76879i
\(873\) 0 0
\(874\) 1.68347e9 2.52157
\(875\) 8.74763e8i 1.30577i
\(876\) 0 0
\(877\) 3.68680e8 0.546577 0.273288 0.961932i \(-0.411889\pi\)
0.273288 + 0.961932i \(0.411889\pi\)
\(878\) − 6.53134e8i − 0.964981i
\(879\) 0 0
\(880\) 9.16931e8 1.34552
\(881\) 7.29792e8i 1.06726i 0.845717 + 0.533632i \(0.179173\pi\)
−0.845717 + 0.533632i \(0.820827\pi\)
\(882\) 0 0
\(883\) −7.12900e7 −0.103549 −0.0517746 0.998659i \(-0.516488\pi\)
−0.0517746 + 0.998659i \(0.516488\pi\)
\(884\) − 3.62084e7i − 0.0524146i
\(885\) 0 0
\(886\) 1.67903e9 2.41411
\(887\) − 3.15305e8i − 0.451814i −0.974149 0.225907i \(-0.927465\pi\)
0.974149 0.225907i \(-0.0725346\pi\)
\(888\) 0 0
\(889\) 7.91795e8 1.12696
\(890\) − 1.24877e9i − 1.77139i
\(891\) 0 0
\(892\) −1.26546e9 −1.78301
\(893\) 3.01403e8i 0.423247i
\(894\) 0 0
\(895\) 1.17808e9 1.64326
\(896\) − 1.62726e9i − 2.26222i
\(897\) 0 0
\(898\) 1.37598e9 1.90013
\(899\) 2.27113e8i 0.312581i
\(900\) 0 0
\(901\) 3.36853e8 0.460539
\(902\) − 6.55825e8i − 0.893652i
\(903\) 0 0
\(904\) −2.45482e9 −3.32288
\(905\) − 2.46266e8i − 0.332245i
\(906\) 0 0
\(907\) −5.70419e8 −0.764491 −0.382245 0.924061i \(-0.624849\pi\)
−0.382245 + 0.924061i \(0.624849\pi\)
\(908\) − 4.94454e8i − 0.660493i
\(909\) 0 0
\(910\) 1.70079e8 0.225697
\(911\) − 3.43557e8i − 0.454406i −0.973847 0.227203i \(-0.927042\pi\)
0.973847 0.227203i \(-0.0729581\pi\)
\(912\) 0 0
\(913\) 1.10103e9 1.44673
\(914\) − 1.14775e8i − 0.150318i
\(915\) 0 0
\(916\) −6.73231e8 −0.875947
\(917\) − 5.80262e8i − 0.752517i
\(918\) 0 0
\(919\) 7.92851e8 1.02152 0.510758 0.859725i \(-0.329365\pi\)
0.510758 + 0.859725i \(0.329365\pi\)
\(920\) − 1.45378e9i − 1.86695i
\(921\) 0 0
\(922\) −2.19071e9 −2.79507
\(923\) − 1.15070e8i − 0.146339i
\(924\) 0 0
\(925\) −7.12624e7 −0.0900400
\(926\) 1.07617e9i 1.35533i
\(927\) 0 0
\(928\) 1.14498e8 0.143269
\(929\) − 1.82427e8i − 0.227531i −0.993508 0.113766i \(-0.963709\pi\)
0.993508 0.113766i \(-0.0362913\pi\)
\(930\) 0 0
\(931\) −1.66331e9 −2.06121
\(932\) − 6.75211e8i − 0.834049i
\(933\) 0 0
\(934\) −2.62124e9 −3.21711
\(935\) − 2.63523e8i − 0.322392i
\(936\) 0 0
\(937\) −3.34488e8 −0.406594 −0.203297 0.979117i \(-0.565166\pi\)
−0.203297 + 0.979117i \(0.565166\pi\)
\(938\) 2.76656e9i 3.35222i
\(939\) 0 0
\(940\) 4.95090e8 0.596075
\(941\) 2.91160e8i 0.349433i 0.984619 + 0.174716i \(0.0559008\pi\)
−0.984619 + 0.174716i \(0.944099\pi\)
\(942\) 0 0
\(943\) −4.03522e8 −0.481207
\(944\) − 8.96540e8i − 1.06575i
\(945\) 0 0
\(946\) −4.10594e8 −0.484997
\(947\) − 1.69634e8i − 0.199739i −0.995001 0.0998694i \(-0.968158\pi\)
0.995001 0.0998694i \(-0.0318425\pi\)
\(948\) 0 0
\(949\) 1.30053e8 0.152167
\(950\) 5.18912e8i 0.605234i
\(951\) 0 0
\(952\) 8.10797e8 0.939727
\(953\) − 5.17958e8i − 0.598434i −0.954185 0.299217i \(-0.903275\pi\)
0.954185 0.299217i \(-0.0967254\pi\)
\(954\) 0 0
\(955\) 1.38898e9 1.59473
\(956\) 2.55245e9i 2.92135i
\(957\) 0 0
\(958\) 1.74643e9 1.98634
\(959\) − 1.65034e9i − 1.87119i
\(960\) 0 0
\(961\) −2.00587e8 −0.226013
\(962\) − 5.25751e7i − 0.0590548i
\(963\) 0 0
\(964\) 2.05806e9 2.29735
\(965\) 1.05078e9i 1.16931i
\(966\) 0 0
\(967\) −1.37422e9 −1.51976 −0.759881 0.650062i \(-0.774743\pi\)
−0.759881 + 0.650062i \(0.774743\pi\)
\(968\) − 2.87575e8i − 0.317048i
\(969\) 0 0
\(970\) −1.19487e9 −1.30920
\(971\) − 7.45510e8i − 0.814321i −0.913357 0.407160i \(-0.866519\pi\)
0.913357 0.407160i \(-0.133481\pi\)
\(972\) 0 0
\(973\) 3.43276e7 0.0372653
\(974\) − 8.59483e8i − 0.930166i
\(975\) 0 0
\(976\) 6.08383e8 0.654376
\(977\) 9.80224e8i 1.05109i 0.850764 + 0.525547i \(0.176139\pi\)
−0.850764 + 0.525547i \(0.823861\pi\)
\(978\) 0 0
\(979\) 7.84900e8 0.836501
\(980\) 2.73217e9i 2.90288i
\(981\) 0 0
\(982\) −9.14080e8 −0.965272
\(983\) − 1.01328e9i − 1.06676i −0.845875 0.533381i \(-0.820921\pi\)
0.845875 0.533381i \(-0.179079\pi\)
\(984\) 0 0
\(985\) −6.79402e8 −0.710916
\(986\) − 1.92391e8i − 0.200703i
\(987\) 0 0
\(988\) −2.59678e8 −0.269255
\(989\) 2.52634e8i 0.261158i
\(990\) 0 0
\(991\) −1.85231e9 −1.90324 −0.951620 0.307279i \(-0.900582\pi\)
−0.951620 + 0.307279i \(0.900582\pi\)
\(992\) − 3.46305e8i − 0.354751i
\(993\) 0 0
\(994\) 4.90129e9 4.99058
\(995\) 2.70459e8i 0.274557i
\(996\) 0 0
\(997\) 1.25665e9 1.26803 0.634013 0.773322i \(-0.281407\pi\)
0.634013 + 0.773322i \(0.281407\pi\)
\(998\) 4.04941e8i 0.407380i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.7.b.c.26.4 yes 4
3.2 odd 2 inner 27.7.b.c.26.1 4
4.3 odd 2 432.7.e.j.161.1 4
9.2 odd 6 81.7.d.e.53.1 8
9.4 even 3 81.7.d.e.26.1 8
9.5 odd 6 81.7.d.e.26.4 8
9.7 even 3 81.7.d.e.53.4 8
12.11 even 2 432.7.e.j.161.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.7.b.c.26.1 4 3.2 odd 2 inner
27.7.b.c.26.4 yes 4 1.1 even 1 trivial
81.7.d.e.26.1 8 9.4 even 3
81.7.d.e.26.4 8 9.5 odd 6
81.7.d.e.53.1 8 9.2 odd 6
81.7.d.e.53.4 8 9.7 even 3
432.7.e.j.161.1 4 4.3 odd 2
432.7.e.j.161.4 4 12.11 even 2