Properties

Label 27.7.b.c.26.3
Level $27$
Weight $7$
Character 27.26
Analytic conductor $6.211$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,7,Mod(26,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.26");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.21146025774\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{41})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 21x^{2} + 100 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.3
Root \(2.70156i\) of defining polynomial
Character \(\chi\) \(=\) 27.26
Dual form 27.7.b.c.26.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.10469i q^{2} +37.9422 q^{4} +60.5813i q^{5} +176.769 q^{7} +520.383i q^{8} +O(q^{10})\) \(q+5.10469i q^{2} +37.9422 q^{4} +60.5813i q^{5} +176.769 q^{7} +520.383i q^{8} -309.248 q^{10} +2316.26i q^{11} -1553.54 q^{13} +902.349i q^{14} -228.092 q^{16} -2114.10i q^{17} +9457.06 q^{19} +2298.58i q^{20} -11823.8 q^{22} -17795.4i q^{23} +11954.9 q^{25} -7930.32i q^{26} +6706.99 q^{28} -31597.4i q^{29} -50412.9 q^{31} +32140.2i q^{32} +10791.8 q^{34} +10708.9i q^{35} +42613.1 q^{37} +48275.3i q^{38} -31525.4 q^{40} +28374.6i q^{41} +39108.9 q^{43} +87884.0i q^{44} +90839.7 q^{46} -61510.7i q^{47} -86401.8 q^{49} +61026.1i q^{50} -58944.6 q^{52} -77764.6i q^{53} -140322. q^{55} +91987.4i q^{56} +161295. q^{58} -330837. i q^{59} -27229.7 q^{61} -257342. i q^{62} -178663. q^{64} -94115.2i q^{65} +381039. q^{67} -80213.5i q^{68} -54665.4 q^{70} +127596. i q^{71} -177899. q^{73} +217526. i q^{74} +358821. q^{76} +409443. i q^{77} +78656.2 q^{79} -13818.1i q^{80} -144844. q^{82} +118033. i q^{83} +128075. q^{85} +199639. i q^{86} -1.20534e6 q^{88} +1.12789e6i q^{89} -274617. q^{91} -675195. i q^{92} +313993. q^{94} +572921. i q^{95} +1.10408e6 q^{97} -441054. i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 194 q^{4} - 676 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 194 q^{4} - 676 q^{7} + 3258 q^{10} - 3448 q^{13} + 10498 q^{16} - 3664 q^{19} - 58014 q^{22} + 17392 q^{25} + 152342 q^{28} - 153244 q^{31} + 65988 q^{34} + 128960 q^{37} - 338058 q^{40} + 126008 q^{43} - 116568 q^{46} + 121872 q^{49} - 71884 q^{52} + 54180 q^{55} + 567036 q^{58} + 167696 q^{61} - 28994 q^{64} + 8 q^{67} - 2104830 q^{70} - 1881676 q^{73} + 3764384 q^{76} + 1188728 q^{79} - 1366344 q^{82} - 176472 q^{85} + 27342 q^{88} - 373736 q^{91} + 1381140 q^{94} + 975212 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.10469i 0.638086i 0.947740 + 0.319043i \(0.103361\pi\)
−0.947740 + 0.319043i \(0.896639\pi\)
\(3\) 0 0
\(4\) 37.9422 0.592847
\(5\) 60.5813i 0.484650i 0.970195 + 0.242325i \(0.0779100\pi\)
−0.970195 + 0.242325i \(0.922090\pi\)
\(6\) 0 0
\(7\) 176.769 0.515361 0.257680 0.966230i \(-0.417042\pi\)
0.257680 + 0.966230i \(0.417042\pi\)
\(8\) 520.383i 1.01637i
\(9\) 0 0
\(10\) −309.248 −0.309248
\(11\) 2316.26i 1.74024i 0.492838 + 0.870121i \(0.335960\pi\)
−0.492838 + 0.870121i \(0.664040\pi\)
\(12\) 0 0
\(13\) −1553.54 −0.707118 −0.353559 0.935412i \(-0.615029\pi\)
−0.353559 + 0.935412i \(0.615029\pi\)
\(14\) 902.349i 0.328844i
\(15\) 0 0
\(16\) −228.092 −0.0556865
\(17\) − 2114.10i − 0.430307i −0.976580 0.215154i \(-0.930975\pi\)
0.976580 0.215154i \(-0.0690252\pi\)
\(18\) 0 0
\(19\) 9457.06 1.37878 0.689391 0.724390i \(-0.257878\pi\)
0.689391 + 0.724390i \(0.257878\pi\)
\(20\) 2298.58i 0.287323i
\(21\) 0 0
\(22\) −11823.8 −1.11042
\(23\) − 17795.4i − 1.46259i −0.682060 0.731296i \(-0.738916\pi\)
0.682060 0.731296i \(-0.261084\pi\)
\(24\) 0 0
\(25\) 11954.9 0.765114
\(26\) − 7930.32i − 0.451202i
\(27\) 0 0
\(28\) 6706.99 0.305530
\(29\) − 31597.4i − 1.29556i −0.761827 0.647780i \(-0.775698\pi\)
0.761827 0.647780i \(-0.224302\pi\)
\(30\) 0 0
\(31\) −50412.9 −1.69222 −0.846110 0.533009i \(-0.821061\pi\)
−0.846110 + 0.533009i \(0.821061\pi\)
\(32\) 32140.2i 0.980840i
\(33\) 0 0
\(34\) 10791.8 0.274573
\(35\) 10708.9i 0.249770i
\(36\) 0 0
\(37\) 42613.1 0.841274 0.420637 0.907229i \(-0.361807\pi\)
0.420637 + 0.907229i \(0.361807\pi\)
\(38\) 48275.3i 0.879781i
\(39\) 0 0
\(40\) −31525.4 −0.492585
\(41\) 28374.6i 0.411698i 0.978584 + 0.205849i \(0.0659956\pi\)
−0.978584 + 0.205849i \(0.934004\pi\)
\(42\) 0 0
\(43\) 39108.9 0.491893 0.245946 0.969283i \(-0.420901\pi\)
0.245946 + 0.969283i \(0.420901\pi\)
\(44\) 87884.0i 1.03170i
\(45\) 0 0
\(46\) 90839.7 0.933259
\(47\) − 61510.7i − 0.592458i −0.955117 0.296229i \(-0.904271\pi\)
0.955117 0.296229i \(-0.0957291\pi\)
\(48\) 0 0
\(49\) −86401.8 −0.734403
\(50\) 61026.1i 0.488209i
\(51\) 0 0
\(52\) −58944.6 −0.419212
\(53\) − 77764.6i − 0.522341i −0.965293 0.261171i \(-0.915892\pi\)
0.965293 0.261171i \(-0.0841085\pi\)
\(54\) 0 0
\(55\) −140322. −0.843408
\(56\) 91987.4i 0.523799i
\(57\) 0 0
\(58\) 161295. 0.826679
\(59\) − 330837.i − 1.61086i −0.592690 0.805431i \(-0.701934\pi\)
0.592690 0.805431i \(-0.298066\pi\)
\(60\) 0 0
\(61\) −27229.7 −0.119965 −0.0599824 0.998199i \(-0.519104\pi\)
−0.0599824 + 0.998199i \(0.519104\pi\)
\(62\) − 257342.i − 1.07978i
\(63\) 0 0
\(64\) −178663. −0.681547
\(65\) − 94115.2i − 0.342705i
\(66\) 0 0
\(67\) 381039. 1.26691 0.633454 0.773780i \(-0.281637\pi\)
0.633454 + 0.773780i \(0.281637\pi\)
\(68\) − 80213.5i − 0.255106i
\(69\) 0 0
\(70\) −54665.4 −0.159374
\(71\) 127596.i 0.356503i 0.983985 + 0.178251i \(0.0570440\pi\)
−0.983985 + 0.178251i \(0.942956\pi\)
\(72\) 0 0
\(73\) −177899. −0.457303 −0.228652 0.973508i \(-0.573432\pi\)
−0.228652 + 0.973508i \(0.573432\pi\)
\(74\) 217526.i 0.536805i
\(75\) 0 0
\(76\) 358821. 0.817406
\(77\) 409443.i 0.896852i
\(78\) 0 0
\(79\) 78656.2 0.159533 0.0797667 0.996814i \(-0.474582\pi\)
0.0797667 + 0.996814i \(0.474582\pi\)
\(80\) − 13818.1i − 0.0269885i
\(81\) 0 0
\(82\) −144844. −0.262699
\(83\) 118033.i 0.206428i 0.994659 + 0.103214i \(0.0329127\pi\)
−0.994659 + 0.103214i \(0.967087\pi\)
\(84\) 0 0
\(85\) 128075. 0.208548
\(86\) 199639.i 0.313870i
\(87\) 0 0
\(88\) −1.20534e6 −1.76873
\(89\) 1.12789e6i 1.59992i 0.600054 + 0.799960i \(0.295146\pi\)
−0.600054 + 0.799960i \(0.704854\pi\)
\(90\) 0 0
\(91\) −274617. −0.364421
\(92\) − 675195.i − 0.867093i
\(93\) 0 0
\(94\) 313993. 0.378039
\(95\) 572921.i 0.668226i
\(96\) 0 0
\(97\) 1.10408e6 1.20972 0.604858 0.796333i \(-0.293230\pi\)
0.604858 + 0.796333i \(0.293230\pi\)
\(98\) − 441054.i − 0.468612i
\(99\) 0 0
\(100\) 453595. 0.453595
\(101\) 264427.i 0.256650i 0.991732 + 0.128325i \(0.0409601\pi\)
−0.991732 + 0.128325i \(0.959040\pi\)
\(102\) 0 0
\(103\) −706437. −0.646490 −0.323245 0.946315i \(-0.604774\pi\)
−0.323245 + 0.946315i \(0.604774\pi\)
\(104\) − 808434.i − 0.718695i
\(105\) 0 0
\(106\) 396964. 0.333298
\(107\) − 1.18702e6i − 0.968961i −0.874802 0.484480i \(-0.839009\pi\)
0.874802 0.484480i \(-0.160991\pi\)
\(108\) 0 0
\(109\) −276000. −0.213122 −0.106561 0.994306i \(-0.533984\pi\)
−0.106561 + 0.994306i \(0.533984\pi\)
\(110\) − 716300.i − 0.538167i
\(111\) 0 0
\(112\) −40319.5 −0.0286986
\(113\) − 637251.i − 0.441647i −0.975314 0.220823i \(-0.929126\pi\)
0.975314 0.220823i \(-0.0708744\pi\)
\(114\) 0 0
\(115\) 1.07807e6 0.708845
\(116\) − 1.19888e6i − 0.768068i
\(117\) 0 0
\(118\) 1.68882e6 1.02787
\(119\) − 373707.i − 0.221763i
\(120\) 0 0
\(121\) −3.59351e6 −2.02844
\(122\) − 138999.i − 0.0765479i
\(123\) 0 0
\(124\) −1.91278e6 −1.00323
\(125\) 1.67083e6i 0.855463i
\(126\) 0 0
\(127\) 878767. 0.429005 0.214503 0.976723i \(-0.431187\pi\)
0.214503 + 0.976723i \(0.431187\pi\)
\(128\) 1.14495e6i 0.545955i
\(129\) 0 0
\(130\) 480429. 0.218675
\(131\) − 1.19392e6i − 0.531084i −0.964099 0.265542i \(-0.914449\pi\)
0.964099 0.265542i \(-0.0855508\pi\)
\(132\) 0 0
\(133\) 1.67171e6 0.710570
\(134\) 1.94509e6i 0.808396i
\(135\) 0 0
\(136\) 1.10014e6 0.437353
\(137\) 4.07989e6i 1.58667i 0.608784 + 0.793336i \(0.291657\pi\)
−0.608784 + 0.793336i \(0.708343\pi\)
\(138\) 0 0
\(139\) −3.70694e6 −1.38029 −0.690146 0.723670i \(-0.742454\pi\)
−0.690146 + 0.723670i \(0.742454\pi\)
\(140\) 406318.i 0.148075i
\(141\) 0 0
\(142\) −651339. −0.227479
\(143\) − 3.59840e6i − 1.23056i
\(144\) 0 0
\(145\) 1.91421e6 0.627893
\(146\) − 908117.i − 0.291799i
\(147\) 0 0
\(148\) 1.61683e6 0.498746
\(149\) 5.61278e6i 1.69676i 0.529392 + 0.848378i \(0.322420\pi\)
−0.529392 + 0.848378i \(0.677580\pi\)
\(150\) 0 0
\(151\) 3.53119e6 1.02563 0.512815 0.858499i \(-0.328603\pi\)
0.512815 + 0.858499i \(0.328603\pi\)
\(152\) 4.92129e6i 1.40136i
\(153\) 0 0
\(154\) −2.09008e6 −0.572269
\(155\) − 3.05408e6i − 0.820134i
\(156\) 0 0
\(157\) 4.27374e6 1.10436 0.552178 0.833726i \(-0.313797\pi\)
0.552178 + 0.833726i \(0.313797\pi\)
\(158\) 401515.i 0.101796i
\(159\) 0 0
\(160\) −1.94709e6 −0.475364
\(161\) − 3.14566e6i − 0.753763i
\(162\) 0 0
\(163\) −5.66276e6 −1.30757 −0.653786 0.756680i \(-0.726820\pi\)
−0.653786 + 0.756680i \(0.726820\pi\)
\(164\) 1.07660e6i 0.244074i
\(165\) 0 0
\(166\) −602521. −0.131719
\(167\) − 7.40827e6i − 1.59062i −0.606200 0.795312i \(-0.707307\pi\)
0.606200 0.795312i \(-0.292693\pi\)
\(168\) 0 0
\(169\) −2.41333e6 −0.499985
\(170\) 653782.i 0.133072i
\(171\) 0 0
\(172\) 1.48388e6 0.291617
\(173\) − 7.36260e6i − 1.42198i −0.703204 0.710989i \(-0.748248\pi\)
0.703204 0.710989i \(-0.251752\pi\)
\(174\) 0 0
\(175\) 2.11325e6 0.394310
\(176\) − 528321.i − 0.0969080i
\(177\) 0 0
\(178\) −5.75754e6 −1.02089
\(179\) − 2.05402e6i − 0.358134i −0.983837 0.179067i \(-0.942692\pi\)
0.983837 0.179067i \(-0.0573079\pi\)
\(180\) 0 0
\(181\) −3.17869e6 −0.536059 −0.268029 0.963411i \(-0.586372\pi\)
−0.268029 + 0.963411i \(0.586372\pi\)
\(182\) − 1.40183e6i − 0.232532i
\(183\) 0 0
\(184\) 9.26040e6 1.48654
\(185\) 2.58155e6i 0.407724i
\(186\) 0 0
\(187\) 4.89681e6 0.748839
\(188\) − 2.33385e6i − 0.351236i
\(189\) 0 0
\(190\) −2.92458e6 −0.426386
\(191\) − 2.46769e6i − 0.354153i −0.984197 0.177077i \(-0.943336\pi\)
0.984197 0.177077i \(-0.0566640\pi\)
\(192\) 0 0
\(193\) 2.43466e6 0.338662 0.169331 0.985559i \(-0.445839\pi\)
0.169331 + 0.985559i \(0.445839\pi\)
\(194\) 5.63596e6i 0.771903i
\(195\) 0 0
\(196\) −3.27827e6 −0.435388
\(197\) 5.37024e6i 0.702417i 0.936297 + 0.351209i \(0.114229\pi\)
−0.936297 + 0.351209i \(0.885771\pi\)
\(198\) 0 0
\(199\) 2.22880e6 0.282821 0.141411 0.989951i \(-0.454836\pi\)
0.141411 + 0.989951i \(0.454836\pi\)
\(200\) 6.22113e6i 0.777641i
\(201\) 0 0
\(202\) −1.34982e6 −0.163765
\(203\) − 5.58544e6i − 0.667681i
\(204\) 0 0
\(205\) −1.71897e6 −0.199529
\(206\) − 3.60614e6i − 0.412516i
\(207\) 0 0
\(208\) 354349. 0.0393769
\(209\) 2.19050e7i 2.39941i
\(210\) 0 0
\(211\) 8.93725e6 0.951386 0.475693 0.879611i \(-0.342197\pi\)
0.475693 + 0.879611i \(0.342197\pi\)
\(212\) − 2.95056e6i − 0.309668i
\(213\) 0 0
\(214\) 6.05936e6 0.618280
\(215\) 2.36927e6i 0.238396i
\(216\) 0 0
\(217\) −8.91142e6 −0.872103
\(218\) − 1.40889e6i − 0.135990i
\(219\) 0 0
\(220\) −5.32413e6 −0.500012
\(221\) 3.28433e6i 0.304278i
\(222\) 0 0
\(223\) −1.40543e7 −1.26734 −0.633670 0.773603i \(-0.718452\pi\)
−0.633670 + 0.773603i \(0.718452\pi\)
\(224\) 5.68138e6i 0.505486i
\(225\) 0 0
\(226\) 3.25297e6 0.281809
\(227\) − 3.68417e6i − 0.314965i −0.987522 0.157482i \(-0.949662\pi\)
0.987522 0.157482i \(-0.0503377\pi\)
\(228\) 0 0
\(229\) −1.49162e7 −1.24208 −0.621042 0.783777i \(-0.713290\pi\)
−0.621042 + 0.783777i \(0.713290\pi\)
\(230\) 5.50319e6i 0.452304i
\(231\) 0 0
\(232\) 1.64428e7 1.31677
\(233\) 5.69069e6i 0.449881i 0.974373 + 0.224940i \(0.0722187\pi\)
−0.974373 + 0.224940i \(0.927781\pi\)
\(234\) 0 0
\(235\) 3.72640e6 0.287135
\(236\) − 1.25527e7i − 0.954993i
\(237\) 0 0
\(238\) 1.90766e6 0.141504
\(239\) 6.37450e6i 0.466930i 0.972365 + 0.233465i \(0.0750065\pi\)
−0.972365 + 0.233465i \(0.924993\pi\)
\(240\) 0 0
\(241\) 8.33550e6 0.595498 0.297749 0.954644i \(-0.403764\pi\)
0.297749 + 0.954644i \(0.403764\pi\)
\(242\) − 1.83437e7i − 1.29432i
\(243\) 0 0
\(244\) −1.03316e6 −0.0711207
\(245\) − 5.23433e6i − 0.355929i
\(246\) 0 0
\(247\) −1.46919e7 −0.974961
\(248\) − 2.62340e7i − 1.71993i
\(249\) 0 0
\(250\) −8.52904e6 −0.545859
\(251\) − 3.97558e6i − 0.251408i −0.992068 0.125704i \(-0.959881\pi\)
0.992068 0.125704i \(-0.0401190\pi\)
\(252\) 0 0
\(253\) 4.12187e7 2.54526
\(254\) 4.48583e6i 0.273742i
\(255\) 0 0
\(256\) −1.72791e7 −1.02991
\(257\) − 4.71491e6i − 0.277763i −0.990309 0.138881i \(-0.955649\pi\)
0.990309 0.138881i \(-0.0443507\pi\)
\(258\) 0 0
\(259\) 7.53266e6 0.433560
\(260\) − 3.57094e6i − 0.203171i
\(261\) 0 0
\(262\) 6.09461e6 0.338877
\(263\) − 2.55263e7i − 1.40320i −0.712570 0.701601i \(-0.752469\pi\)
0.712570 0.701601i \(-0.247531\pi\)
\(264\) 0 0
\(265\) 4.71107e6 0.253153
\(266\) 8.53357e6i 0.453404i
\(267\) 0 0
\(268\) 1.44575e7 0.751082
\(269\) 2.34673e7i 1.20561i 0.797888 + 0.602805i \(0.205950\pi\)
−0.797888 + 0.602805i \(0.794050\pi\)
\(270\) 0 0
\(271\) −1.86835e7 −0.938750 −0.469375 0.882999i \(-0.655521\pi\)
−0.469375 + 0.882999i \(0.655521\pi\)
\(272\) 482209.i 0.0239623i
\(273\) 0 0
\(274\) −2.08266e7 −1.01243
\(275\) 2.76907e7i 1.33148i
\(276\) 0 0
\(277\) −3.67724e7 −1.73014 −0.865072 0.501647i \(-0.832727\pi\)
−0.865072 + 0.501647i \(0.832727\pi\)
\(278\) − 1.89228e7i − 0.880745i
\(279\) 0 0
\(280\) −5.57271e6 −0.253859
\(281\) 6.77022e6i 0.305129i 0.988293 + 0.152565i \(0.0487532\pi\)
−0.988293 + 0.152565i \(0.951247\pi\)
\(282\) 0 0
\(283\) 9.96580e6 0.439696 0.219848 0.975534i \(-0.429444\pi\)
0.219848 + 0.975534i \(0.429444\pi\)
\(284\) 4.84128e6i 0.211351i
\(285\) 0 0
\(286\) 1.83687e7 0.785200
\(287\) 5.01575e6i 0.212173i
\(288\) 0 0
\(289\) 1.96682e7 0.814836
\(290\) 9.77145e6i 0.400650i
\(291\) 0 0
\(292\) −6.74986e6 −0.271111
\(293\) − 1.51644e7i − 0.602869i −0.953487 0.301434i \(-0.902535\pi\)
0.953487 0.301434i \(-0.0974654\pi\)
\(294\) 0 0
\(295\) 2.00425e7 0.780704
\(296\) 2.21751e7i 0.855048i
\(297\) 0 0
\(298\) −2.86515e7 −1.08268
\(299\) 2.76458e7i 1.03422i
\(300\) 0 0
\(301\) 6.91323e6 0.253502
\(302\) 1.80256e7i 0.654440i
\(303\) 0 0
\(304\) −2.15708e6 −0.0767795
\(305\) − 1.64961e6i − 0.0581410i
\(306\) 0 0
\(307\) −1.38326e7 −0.478066 −0.239033 0.971011i \(-0.576830\pi\)
−0.239033 + 0.971011i \(0.576830\pi\)
\(308\) 1.55351e7i 0.531696i
\(309\) 0 0
\(310\) 1.55901e7 0.523316
\(311\) − 1.65344e7i − 0.549677i −0.961490 0.274839i \(-0.911376\pi\)
0.961490 0.274839i \(-0.0886244\pi\)
\(312\) 0 0
\(313\) −2.05488e7 −0.670120 −0.335060 0.942197i \(-0.608757\pi\)
−0.335060 + 0.942197i \(0.608757\pi\)
\(314\) 2.18161e7i 0.704674i
\(315\) 0 0
\(316\) 2.98439e6 0.0945788
\(317\) − 4.26456e6i − 0.133874i −0.997757 0.0669370i \(-0.978677\pi\)
0.997757 0.0669370i \(-0.0213226\pi\)
\(318\) 0 0
\(319\) 7.31879e7 2.25459
\(320\) − 1.08236e7i − 0.330312i
\(321\) 0 0
\(322\) 1.60576e7 0.480965
\(323\) − 1.99932e7i − 0.593300i
\(324\) 0 0
\(325\) −1.85724e7 −0.541026
\(326\) − 2.89066e7i − 0.834343i
\(327\) 0 0
\(328\) −1.47657e7 −0.418439
\(329\) − 1.08732e7i − 0.305329i
\(330\) 0 0
\(331\) −5.49369e7 −1.51489 −0.757443 0.652901i \(-0.773552\pi\)
−0.757443 + 0.652901i \(0.773552\pi\)
\(332\) 4.47843e6i 0.122380i
\(333\) 0 0
\(334\) 3.78169e7 1.01495
\(335\) 2.30838e7i 0.614007i
\(336\) 0 0
\(337\) 4.07383e6 0.106442 0.0532210 0.998583i \(-0.483051\pi\)
0.0532210 + 0.998583i \(0.483051\pi\)
\(338\) − 1.23193e7i − 0.319033i
\(339\) 0 0
\(340\) 4.85944e6 0.123637
\(341\) − 1.16770e8i − 2.94487i
\(342\) 0 0
\(343\) −3.60698e7 −0.893843
\(344\) 2.03516e7i 0.499946i
\(345\) 0 0
\(346\) 3.75837e7 0.907343
\(347\) − 3.15668e7i − 0.755514i −0.925905 0.377757i \(-0.876696\pi\)
0.925905 0.377757i \(-0.123304\pi\)
\(348\) 0 0
\(349\) −3.12730e7 −0.735688 −0.367844 0.929887i \(-0.619904\pi\)
−0.367844 + 0.929887i \(0.619904\pi\)
\(350\) 1.07875e7i 0.251604i
\(351\) 0 0
\(352\) −7.44451e7 −1.70690
\(353\) − 6.66535e7i − 1.51530i −0.652661 0.757650i \(-0.726347\pi\)
0.652661 0.757650i \(-0.273653\pi\)
\(354\) 0 0
\(355\) −7.72994e6 −0.172779
\(356\) 4.27947e7i 0.948507i
\(357\) 0 0
\(358\) 1.04851e7 0.228520
\(359\) 6.87890e7i 1.48674i 0.668879 + 0.743371i \(0.266775\pi\)
−0.668879 + 0.743371i \(0.733225\pi\)
\(360\) 0 0
\(361\) 4.23901e7 0.901038
\(362\) − 1.62262e7i − 0.342051i
\(363\) 0 0
\(364\) −1.04196e7 −0.216045
\(365\) − 1.07773e7i − 0.221632i
\(366\) 0 0
\(367\) 3.46386e7 0.700749 0.350374 0.936610i \(-0.386054\pi\)
0.350374 + 0.936610i \(0.386054\pi\)
\(368\) 4.05898e6i 0.0814466i
\(369\) 0 0
\(370\) −1.31780e7 −0.260163
\(371\) − 1.37463e7i − 0.269194i
\(372\) 0 0
\(373\) 3.42743e7 0.660453 0.330227 0.943902i \(-0.392875\pi\)
0.330227 + 0.943902i \(0.392875\pi\)
\(374\) 2.49967e7i 0.477823i
\(375\) 0 0
\(376\) 3.20091e7 0.602158
\(377\) 4.90878e7i 0.916114i
\(378\) 0 0
\(379\) −1.29759e7 −0.238352 −0.119176 0.992873i \(-0.538025\pi\)
−0.119176 + 0.992873i \(0.538025\pi\)
\(380\) 2.17379e7i 0.396156i
\(381\) 0 0
\(382\) 1.25968e7 0.225980
\(383\) 3.88636e7i 0.691747i 0.938281 + 0.345873i \(0.112417\pi\)
−0.938281 + 0.345873i \(0.887583\pi\)
\(384\) 0 0
\(385\) −2.48046e7 −0.434660
\(386\) 1.24282e7i 0.216095i
\(387\) 0 0
\(388\) 4.18910e7 0.717176
\(389\) − 5.97724e6i − 0.101543i −0.998710 0.0507717i \(-0.983832\pi\)
0.998710 0.0507717i \(-0.0161681\pi\)
\(390\) 0 0
\(391\) −3.76212e7 −0.629364
\(392\) − 4.49620e7i − 0.746428i
\(393\) 0 0
\(394\) −2.74134e7 −0.448203
\(395\) 4.76509e6i 0.0773179i
\(396\) 0 0
\(397\) 2.49239e7 0.398331 0.199166 0.979966i \(-0.436177\pi\)
0.199166 + 0.979966i \(0.436177\pi\)
\(398\) 1.13773e7i 0.180464i
\(399\) 0 0
\(400\) −2.72682e6 −0.0426065
\(401\) 9.45291e7i 1.46599i 0.680232 + 0.732997i \(0.261879\pi\)
−0.680232 + 0.732997i \(0.738121\pi\)
\(402\) 0 0
\(403\) 7.83183e7 1.19660
\(404\) 1.00329e7i 0.152154i
\(405\) 0 0
\(406\) 2.85119e7 0.426038
\(407\) 9.87030e7i 1.46402i
\(408\) 0 0
\(409\) −9.50341e7 −1.38902 −0.694512 0.719481i \(-0.744380\pi\)
−0.694512 + 0.719481i \(0.744380\pi\)
\(410\) − 8.77481e6i − 0.127317i
\(411\) 0 0
\(412\) −2.68038e7 −0.383269
\(413\) − 5.84816e7i − 0.830174i
\(414\) 0 0
\(415\) −7.15058e6 −0.100045
\(416\) − 4.99309e7i − 0.693569i
\(417\) 0 0
\(418\) −1.11818e8 −1.53103
\(419\) 5.28519e7i 0.718486i 0.933244 + 0.359243i \(0.116965\pi\)
−0.933244 + 0.359243i \(0.883035\pi\)
\(420\) 0 0
\(421\) −9.49015e6 −0.127182 −0.0635911 0.997976i \(-0.520255\pi\)
−0.0635911 + 0.997976i \(0.520255\pi\)
\(422\) 4.56219e7i 0.607066i
\(423\) 0 0
\(424\) 4.04673e7 0.530893
\(425\) − 2.52739e7i − 0.329234i
\(426\) 0 0
\(427\) −4.81337e6 −0.0618252
\(428\) − 4.50381e7i − 0.574445i
\(429\) 0 0
\(430\) −1.20944e7 −0.152117
\(431\) − 4.75802e7i − 0.594284i −0.954833 0.297142i \(-0.903967\pi\)
0.954833 0.297142i \(-0.0960335\pi\)
\(432\) 0 0
\(433\) 1.15820e8 1.42666 0.713328 0.700830i \(-0.247187\pi\)
0.713328 + 0.700830i \(0.247187\pi\)
\(434\) − 4.54900e7i − 0.556477i
\(435\) 0 0
\(436\) −1.04720e7 −0.126349
\(437\) − 1.68292e8i − 2.01660i
\(438\) 0 0
\(439\) 6.60638e7 0.780854 0.390427 0.920634i \(-0.372327\pi\)
0.390427 + 0.920634i \(0.372327\pi\)
\(440\) − 7.30212e7i − 0.857217i
\(441\) 0 0
\(442\) −1.67655e7 −0.194155
\(443\) 1.07267e8i 1.23383i 0.787028 + 0.616917i \(0.211618\pi\)
−0.787028 + 0.616917i \(0.788382\pi\)
\(444\) 0 0
\(445\) −6.83292e7 −0.775401
\(446\) − 7.17426e7i − 0.808672i
\(447\) 0 0
\(448\) −3.15821e7 −0.351242
\(449\) 1.85732e7i 0.205186i 0.994723 + 0.102593i \(0.0327140\pi\)
−0.994723 + 0.102593i \(0.967286\pi\)
\(450\) 0 0
\(451\) −6.57231e7 −0.716454
\(452\) − 2.41787e7i − 0.261829i
\(453\) 0 0
\(454\) 1.88065e7 0.200974
\(455\) − 1.66366e7i − 0.176616i
\(456\) 0 0
\(457\) 6.95969e7 0.729191 0.364596 0.931166i \(-0.381207\pi\)
0.364596 + 0.931166i \(0.381207\pi\)
\(458\) − 7.61424e7i − 0.792556i
\(459\) 0 0
\(460\) 4.09041e7 0.420237
\(461\) − 2.56902e7i − 0.262219i −0.991368 0.131110i \(-0.958146\pi\)
0.991368 0.131110i \(-0.0418540\pi\)
\(462\) 0 0
\(463\) −9.56494e6 −0.0963695 −0.0481847 0.998838i \(-0.515344\pi\)
−0.0481847 + 0.998838i \(0.515344\pi\)
\(464\) 7.20711e6i 0.0721452i
\(465\) 0 0
\(466\) −2.90492e7 −0.287062
\(467\) 7.22148e7i 0.709048i 0.935047 + 0.354524i \(0.115357\pi\)
−0.935047 + 0.354524i \(0.884643\pi\)
\(468\) 0 0
\(469\) 6.73558e7 0.652915
\(470\) 1.90221e7i 0.183216i
\(471\) 0 0
\(472\) 1.72162e8 1.63724
\(473\) 9.05865e7i 0.856012i
\(474\) 0 0
\(475\) 1.13058e8 1.05493
\(476\) − 1.41792e7i − 0.131472i
\(477\) 0 0
\(478\) −3.25398e7 −0.297942
\(479\) − 8.04747e7i − 0.732239i −0.930568 0.366120i \(-0.880686\pi\)
0.930568 0.366120i \(-0.119314\pi\)
\(480\) 0 0
\(481\) −6.62010e7 −0.594880
\(482\) 4.25501e7i 0.379979i
\(483\) 0 0
\(484\) −1.36346e8 −1.20256
\(485\) 6.68863e7i 0.586289i
\(486\) 0 0
\(487\) −2.13387e8 −1.84748 −0.923742 0.383015i \(-0.874886\pi\)
−0.923742 + 0.383015i \(0.874886\pi\)
\(488\) − 1.41699e7i − 0.121929i
\(489\) 0 0
\(490\) 2.67196e7 0.227113
\(491\) 1.18371e8i 1.00000i 0.866025 + 0.500001i \(0.166667\pi\)
−0.866025 + 0.500001i \(0.833333\pi\)
\(492\) 0 0
\(493\) −6.68001e7 −0.557489
\(494\) − 7.49975e7i − 0.622109i
\(495\) 0 0
\(496\) 1.14988e7 0.0942337
\(497\) 2.25550e7i 0.183727i
\(498\) 0 0
\(499\) 991441. 0.00797931 0.00398965 0.999992i \(-0.498730\pi\)
0.00398965 + 0.999992i \(0.498730\pi\)
\(500\) 6.33948e7i 0.507158i
\(501\) 0 0
\(502\) 2.02941e7 0.160420
\(503\) 1.83706e8i 1.44351i 0.692150 + 0.721753i \(0.256663\pi\)
−0.692150 + 0.721753i \(0.743337\pi\)
\(504\) 0 0
\(505\) −1.60193e7 −0.124385
\(506\) 2.10409e8i 1.62410i
\(507\) 0 0
\(508\) 3.33423e7 0.254334
\(509\) − 1.79117e8i − 1.35826i −0.734017 0.679131i \(-0.762357\pi\)
0.734017 0.679131i \(-0.237643\pi\)
\(510\) 0 0
\(511\) −3.14469e7 −0.235676
\(512\) − 1.49274e7i − 0.111218i
\(513\) 0 0
\(514\) 2.40681e7 0.177236
\(515\) − 4.27968e7i − 0.313321i
\(516\) 0 0
\(517\) 1.42475e8 1.03102
\(518\) 3.84518e7i 0.276648i
\(519\) 0 0
\(520\) 4.89760e7 0.348316
\(521\) 6.66586e7i 0.471349i 0.971832 + 0.235675i \(0.0757300\pi\)
−0.971832 + 0.235675i \(0.924270\pi\)
\(522\) 0 0
\(523\) −1.59361e8 −1.11398 −0.556991 0.830519i \(-0.688044\pi\)
−0.556991 + 0.830519i \(0.688044\pi\)
\(524\) − 4.53001e7i − 0.314851i
\(525\) 0 0
\(526\) 1.30304e8 0.895363
\(527\) 1.06578e8i 0.728174i
\(528\) 0 0
\(529\) −1.68639e8 −1.13918
\(530\) 2.40486e7i 0.161533i
\(531\) 0 0
\(532\) 6.34284e7 0.421259
\(533\) − 4.40811e7i − 0.291119i
\(534\) 0 0
\(535\) 7.19111e7 0.469607
\(536\) 1.98286e8i 1.28765i
\(537\) 0 0
\(538\) −1.19793e8 −0.769283
\(539\) − 2.00129e8i − 1.27804i
\(540\) 0 0
\(541\) 1.51696e8 0.958040 0.479020 0.877804i \(-0.340992\pi\)
0.479020 + 0.877804i \(0.340992\pi\)
\(542\) − 9.53734e7i − 0.599003i
\(543\) 0 0
\(544\) 6.79475e7 0.422063
\(545\) − 1.67204e7i − 0.103290i
\(546\) 0 0
\(547\) 2.50093e8 1.52806 0.764030 0.645181i \(-0.223218\pi\)
0.764030 + 0.645181i \(0.223218\pi\)
\(548\) 1.54800e8i 0.940653i
\(549\) 0 0
\(550\) −1.41352e8 −0.849601
\(551\) − 2.98819e8i − 1.78629i
\(552\) 0 0
\(553\) 1.39040e7 0.0822172
\(554\) − 1.87711e8i − 1.10398i
\(555\) 0 0
\(556\) −1.40649e8 −0.818301
\(557\) − 1.71192e8i − 0.990644i −0.868709 0.495322i \(-0.835050\pi\)
0.868709 0.495322i \(-0.164950\pi\)
\(558\) 0 0
\(559\) −6.07572e7 −0.347826
\(560\) − 2.44261e6i − 0.0139088i
\(561\) 0 0
\(562\) −3.45599e7 −0.194699
\(563\) − 2.68409e8i − 1.50408i −0.659115 0.752042i \(-0.729069\pi\)
0.659115 0.752042i \(-0.270931\pi\)
\(564\) 0 0
\(565\) 3.86055e7 0.214044
\(566\) 5.08723e7i 0.280564i
\(567\) 0 0
\(568\) −6.63989e7 −0.362340
\(569\) 2.44299e8i 1.32612i 0.748564 + 0.663062i \(0.230743\pi\)
−0.748564 + 0.663062i \(0.769257\pi\)
\(570\) 0 0
\(571\) 1.49417e8 0.802587 0.401293 0.915950i \(-0.368561\pi\)
0.401293 + 0.915950i \(0.368561\pi\)
\(572\) − 1.36531e8i − 0.729531i
\(573\) 0 0
\(574\) −2.56038e7 −0.135385
\(575\) − 2.12742e8i − 1.11905i
\(576\) 0 0
\(577\) −1.88650e8 −0.982040 −0.491020 0.871148i \(-0.663376\pi\)
−0.491020 + 0.871148i \(0.663376\pi\)
\(578\) 1.00400e8i 0.519935i
\(579\) 0 0
\(580\) 7.26294e7 0.372244
\(581\) 2.08645e7i 0.106385i
\(582\) 0 0
\(583\) 1.80123e8 0.909000
\(584\) − 9.25754e7i − 0.464790i
\(585\) 0 0
\(586\) 7.74096e7 0.384682
\(587\) 7.92716e7i 0.391925i 0.980611 + 0.195963i \(0.0627832\pi\)
−0.980611 + 0.195963i \(0.937217\pi\)
\(588\) 0 0
\(589\) −4.76758e8 −2.33320
\(590\) 1.02311e8i 0.498156i
\(591\) 0 0
\(592\) −9.71969e6 −0.0468476
\(593\) 1.52784e8i 0.732678i 0.930481 + 0.366339i \(0.119389\pi\)
−0.930481 + 0.366339i \(0.880611\pi\)
\(594\) 0 0
\(595\) 2.26396e7 0.107478
\(596\) 2.12961e8i 1.00592i
\(597\) 0 0
\(598\) −1.41123e8 −0.659924
\(599\) − 2.72353e8i − 1.26722i −0.773654 0.633609i \(-0.781573\pi\)
0.773654 0.633609i \(-0.218427\pi\)
\(600\) 0 0
\(601\) −3.56556e7 −0.164250 −0.0821248 0.996622i \(-0.526171\pi\)
−0.0821248 + 0.996622i \(0.526171\pi\)
\(602\) 3.52899e7i 0.161756i
\(603\) 0 0
\(604\) 1.33981e8 0.608041
\(605\) − 2.17699e8i − 0.983085i
\(606\) 0 0
\(607\) 7.72185e7 0.345267 0.172634 0.984986i \(-0.444772\pi\)
0.172634 + 0.984986i \(0.444772\pi\)
\(608\) 3.03952e8i 1.35236i
\(609\) 0 0
\(610\) 8.42075e6 0.0370989
\(611\) 9.55592e7i 0.418937i
\(612\) 0 0
\(613\) 4.11015e8 1.78433 0.892167 0.451706i \(-0.149184\pi\)
0.892167 + 0.451706i \(0.149184\pi\)
\(614\) − 7.06110e7i − 0.305047i
\(615\) 0 0
\(616\) −2.13067e8 −0.911536
\(617\) 3.50920e8i 1.49401i 0.664821 + 0.747003i \(0.268508\pi\)
−0.664821 + 0.747003i \(0.731492\pi\)
\(618\) 0 0
\(619\) −1.48013e8 −0.624062 −0.312031 0.950072i \(-0.601009\pi\)
−0.312031 + 0.950072i \(0.601009\pi\)
\(620\) − 1.15878e8i − 0.486214i
\(621\) 0 0
\(622\) 8.44030e7 0.350741
\(623\) 1.99376e8i 0.824536i
\(624\) 0 0
\(625\) 8.55748e7 0.350514
\(626\) − 1.04895e8i − 0.427594i
\(627\) 0 0
\(628\) 1.62155e8 0.654714
\(629\) − 9.00883e7i − 0.362006i
\(630\) 0 0
\(631\) −1.37842e8 −0.548647 −0.274323 0.961638i \(-0.588454\pi\)
−0.274323 + 0.961638i \(0.588454\pi\)
\(632\) 4.09313e7i 0.162145i
\(633\) 0 0
\(634\) 2.17692e7 0.0854231
\(635\) 5.32368e7i 0.207917i
\(636\) 0 0
\(637\) 1.34228e8 0.519310
\(638\) 3.73601e8i 1.43862i
\(639\) 0 0
\(640\) −6.93625e7 −0.264597
\(641\) 2.80331e8i 1.06438i 0.846625 + 0.532190i \(0.178631\pi\)
−0.846625 + 0.532190i \(0.821369\pi\)
\(642\) 0 0
\(643\) −2.70884e8 −1.01894 −0.509472 0.860487i \(-0.670159\pi\)
−0.509472 + 0.860487i \(0.670159\pi\)
\(644\) − 1.19353e8i − 0.446866i
\(645\) 0 0
\(646\) 1.02059e8 0.378576
\(647\) 1.28121e8i 0.473052i 0.971625 + 0.236526i \(0.0760088\pi\)
−0.971625 + 0.236526i \(0.923991\pi\)
\(648\) 0 0
\(649\) 7.66305e8 2.80329
\(650\) − 9.48063e7i − 0.345221i
\(651\) 0 0
\(652\) −2.14858e8 −0.775189
\(653\) 3.02662e8i 1.08697i 0.839419 + 0.543485i \(0.182896\pi\)
−0.839419 + 0.543485i \(0.817104\pi\)
\(654\) 0 0
\(655\) 7.23294e7 0.257390
\(656\) − 6.47202e6i − 0.0229260i
\(657\) 0 0
\(658\) 5.55041e7 0.194826
\(659\) − 2.43959e8i − 0.852434i −0.904621 0.426217i \(-0.859846\pi\)
0.904621 0.426217i \(-0.140154\pi\)
\(660\) 0 0
\(661\) −2.45903e8 −0.851452 −0.425726 0.904852i \(-0.639981\pi\)
−0.425726 + 0.904852i \(0.639981\pi\)
\(662\) − 2.80435e8i − 0.966627i
\(663\) 0 0
\(664\) −6.14223e7 −0.209808
\(665\) 1.01274e8i 0.344378i
\(666\) 0 0
\(667\) −5.62288e8 −1.89488
\(668\) − 2.81086e8i − 0.942996i
\(669\) 0 0
\(670\) −1.17836e8 −0.391789
\(671\) − 6.30712e7i − 0.208768i
\(672\) 0 0
\(673\) −4.47762e8 −1.46893 −0.734466 0.678645i \(-0.762567\pi\)
−0.734466 + 0.678645i \(0.762567\pi\)
\(674\) 2.07956e7i 0.0679192i
\(675\) 0 0
\(676\) −9.15670e7 −0.296414
\(677\) − 1.32514e8i − 0.427067i −0.976936 0.213533i \(-0.931503\pi\)
0.976936 0.213533i \(-0.0684972\pi\)
\(678\) 0 0
\(679\) 1.95166e8 0.623440
\(680\) 6.66479e7i 0.211963i
\(681\) 0 0
\(682\) 5.96072e8 1.87908
\(683\) − 2.40688e8i − 0.755428i −0.925922 0.377714i \(-0.876710\pi\)
0.925922 0.377714i \(-0.123290\pi\)
\(684\) 0 0
\(685\) −2.47165e8 −0.768980
\(686\) − 1.84125e8i − 0.570349i
\(687\) 0 0
\(688\) −8.92042e6 −0.0273918
\(689\) 1.20810e8i 0.369357i
\(690\) 0 0
\(691\) −6.01908e7 −0.182430 −0.0912149 0.995831i \(-0.529075\pi\)
−0.0912149 + 0.995831i \(0.529075\pi\)
\(692\) − 2.79353e8i − 0.843014i
\(693\) 0 0
\(694\) 1.61139e8 0.482083
\(695\) − 2.24571e8i − 0.668959i
\(696\) 0 0
\(697\) 5.99868e7 0.177157
\(698\) − 1.59639e8i − 0.469432i
\(699\) 0 0
\(700\) 8.01815e7 0.233765
\(701\) − 1.85129e8i − 0.537427i −0.963220 0.268714i \(-0.913401\pi\)
0.963220 0.268714i \(-0.0865986\pi\)
\(702\) 0 0
\(703\) 4.02994e8 1.15993
\(704\) − 4.13831e8i − 1.18606i
\(705\) 0 0
\(706\) 3.40245e8 0.966892
\(707\) 4.67424e7i 0.132267i
\(708\) 0 0
\(709\) −1.71954e8 −0.482473 −0.241237 0.970466i \(-0.577553\pi\)
−0.241237 + 0.970466i \(0.577553\pi\)
\(710\) − 3.94589e7i − 0.110248i
\(711\) 0 0
\(712\) −5.86936e8 −1.62611
\(713\) 8.97116e8i 2.47503i
\(714\) 0 0
\(715\) 2.17996e8 0.596389
\(716\) − 7.79339e7i − 0.212318i
\(717\) 0 0
\(718\) −3.51146e8 −0.948670
\(719\) − 3.35794e8i − 0.903414i −0.892166 0.451707i \(-0.850815\pi\)
0.892166 0.451707i \(-0.149185\pi\)
\(720\) 0 0
\(721\) −1.24876e8 −0.333175
\(722\) 2.16388e8i 0.574940i
\(723\) 0 0
\(724\) −1.20606e8 −0.317801
\(725\) − 3.77744e8i − 0.991252i
\(726\) 0 0
\(727\) −1.59856e8 −0.416032 −0.208016 0.978125i \(-0.566701\pi\)
−0.208016 + 0.978125i \(0.566701\pi\)
\(728\) − 1.42906e8i − 0.370387i
\(729\) 0 0
\(730\) 5.50149e7 0.141420
\(731\) − 8.26801e7i − 0.211665i
\(732\) 0 0
\(733\) 6.79164e8 1.72450 0.862249 0.506485i \(-0.169055\pi\)
0.862249 + 0.506485i \(0.169055\pi\)
\(734\) 1.76819e8i 0.447138i
\(735\) 0 0
\(736\) 5.71946e8 1.43457
\(737\) 8.82587e8i 2.20473i
\(738\) 0 0
\(739\) 2.06184e8 0.510883 0.255442 0.966824i \(-0.417779\pi\)
0.255442 + 0.966824i \(0.417779\pi\)
\(740\) 9.79497e7i 0.241717i
\(741\) 0 0
\(742\) 7.01708e7 0.171769
\(743\) 1.00505e8i 0.245031i 0.992467 + 0.122516i \(0.0390962\pi\)
−0.992467 + 0.122516i \(0.960904\pi\)
\(744\) 0 0
\(745\) −3.40029e8 −0.822333
\(746\) 1.74960e8i 0.421426i
\(747\) 0 0
\(748\) 1.85796e8 0.443947
\(749\) − 2.09828e8i − 0.499364i
\(750\) 0 0
\(751\) 7.81034e7 0.184395 0.0921977 0.995741i \(-0.470611\pi\)
0.0921977 + 0.995741i \(0.470611\pi\)
\(752\) 1.40301e7i 0.0329919i
\(753\) 0 0
\(754\) −2.50578e8 −0.584559
\(755\) 2.13924e8i 0.497072i
\(756\) 0 0
\(757\) −4.11790e8 −0.949266 −0.474633 0.880184i \(-0.657419\pi\)
−0.474633 + 0.880184i \(0.657419\pi\)
\(758\) − 6.62378e7i − 0.152089i
\(759\) 0 0
\(760\) −2.98138e8 −0.679167
\(761\) − 3.07699e7i − 0.0698187i −0.999390 0.0349094i \(-0.988886\pi\)
0.999390 0.0349094i \(-0.0111143\pi\)
\(762\) 0 0
\(763\) −4.87881e7 −0.109835
\(764\) − 9.36297e7i − 0.209959i
\(765\) 0 0
\(766\) −1.98387e8 −0.441394
\(767\) 5.13968e8i 1.13907i
\(768\) 0 0
\(769\) 4.01203e8 0.882237 0.441119 0.897449i \(-0.354582\pi\)
0.441119 + 0.897449i \(0.354582\pi\)
\(770\) − 1.26619e8i − 0.277350i
\(771\) 0 0
\(772\) 9.23763e7 0.200774
\(773\) − 5.96520e7i − 0.129148i −0.997913 0.0645739i \(-0.979431\pi\)
0.997913 0.0645739i \(-0.0205688\pi\)
\(774\) 0 0
\(775\) −6.02682e8 −1.29474
\(776\) 5.74542e8i 1.22952i
\(777\) 0 0
\(778\) 3.05119e7 0.0647934
\(779\) 2.68341e8i 0.567641i
\(780\) 0 0
\(781\) −2.95546e8 −0.620401
\(782\) − 1.92044e8i − 0.401588i
\(783\) 0 0
\(784\) 1.97076e7 0.0408963
\(785\) 2.58909e8i 0.535227i
\(786\) 0 0
\(787\) 4.58088e8 0.939777 0.469889 0.882726i \(-0.344294\pi\)
0.469889 + 0.882726i \(0.344294\pi\)
\(788\) 2.03759e8i 0.416426i
\(789\) 0 0
\(790\) −2.43243e7 −0.0493354
\(791\) − 1.12646e8i − 0.227607i
\(792\) 0 0
\(793\) 4.23024e7 0.0848293
\(794\) 1.27229e8i 0.254169i
\(795\) 0 0
\(796\) 8.45656e7 0.167670
\(797\) − 5.83337e7i − 0.115224i −0.998339 0.0576122i \(-0.981651\pi\)
0.998339 0.0576122i \(-0.0183487\pi\)
\(798\) 0 0
\(799\) −1.30040e8 −0.254939
\(800\) 3.84233e8i 0.750455i
\(801\) 0 0
\(802\) −4.82541e8 −0.935430
\(803\) − 4.12060e8i − 0.795818i
\(804\) 0 0
\(805\) 1.90568e8 0.365311
\(806\) 3.99791e8i 0.763532i
\(807\) 0 0
\(808\) −1.37603e8 −0.260852
\(809\) − 1.96748e7i − 0.0371591i −0.999827 0.0185796i \(-0.994086\pi\)
0.999827 0.0185796i \(-0.00591440\pi\)
\(810\) 0 0
\(811\) 6.36063e8 1.19244 0.596221 0.802820i \(-0.296668\pi\)
0.596221 + 0.802820i \(0.296668\pi\)
\(812\) − 2.11924e8i − 0.395832i
\(813\) 0 0
\(814\) −5.03848e8 −0.934171
\(815\) − 3.43057e8i − 0.633715i
\(816\) 0 0
\(817\) 3.69855e8 0.678212
\(818\) − 4.85119e8i − 0.886316i
\(819\) 0 0
\(820\) −6.52215e7 −0.118290
\(821\) − 9.87886e8i − 1.78516i −0.450888 0.892581i \(-0.648893\pi\)
0.450888 0.892581i \(-0.351107\pi\)
\(822\) 0 0
\(823\) 1.39368e7 0.0250014 0.0125007 0.999922i \(-0.496021\pi\)
0.0125007 + 0.999922i \(0.496021\pi\)
\(824\) − 3.67618e8i − 0.657075i
\(825\) 0 0
\(826\) 2.98530e8 0.529723
\(827\) − 7.89957e8i − 1.39665i −0.715782 0.698324i \(-0.753929\pi\)
0.715782 0.698324i \(-0.246071\pi\)
\(828\) 0 0
\(829\) 6.29378e8 1.10471 0.552355 0.833609i \(-0.313729\pi\)
0.552355 + 0.833609i \(0.313729\pi\)
\(830\) − 3.65015e7i − 0.0638375i
\(831\) 0 0
\(832\) 2.77560e8 0.481934
\(833\) 1.82662e8i 0.316019i
\(834\) 0 0
\(835\) 4.48802e8 0.770896
\(836\) 8.31125e8i 1.42248i
\(837\) 0 0
\(838\) −2.69792e8 −0.458456
\(839\) − 2.67487e8i − 0.452915i −0.974021 0.226458i \(-0.927286\pi\)
0.974021 0.226458i \(-0.0727145\pi\)
\(840\) 0 0
\(841\) −4.03574e8 −0.678477
\(842\) − 4.84442e7i − 0.0811532i
\(843\) 0 0
\(844\) 3.39099e8 0.564026
\(845\) − 1.46203e8i − 0.242318i
\(846\) 0 0
\(847\) −6.35220e8 −1.04538
\(848\) 1.77375e7i 0.0290873i
\(849\) 0 0
\(850\) 1.29015e8 0.210080
\(851\) − 7.58315e8i − 1.23044i
\(852\) 0 0
\(853\) −4.90055e8 −0.789582 −0.394791 0.918771i \(-0.629183\pi\)
−0.394791 + 0.918771i \(0.629183\pi\)
\(854\) − 2.45707e7i − 0.0394498i
\(855\) 0 0
\(856\) 6.17704e8 0.984825
\(857\) − 8.18399e8i − 1.30024i −0.759833 0.650119i \(-0.774719\pi\)
0.759833 0.650119i \(-0.225281\pi\)
\(858\) 0 0
\(859\) −9.34404e8 −1.47420 −0.737098 0.675786i \(-0.763804\pi\)
−0.737098 + 0.675786i \(0.763804\pi\)
\(860\) 8.98951e7i 0.141332i
\(861\) 0 0
\(862\) 2.42882e8 0.379204
\(863\) 2.86507e8i 0.445762i 0.974846 + 0.222881i \(0.0715462\pi\)
−0.974846 + 0.222881i \(0.928454\pi\)
\(864\) 0 0
\(865\) 4.46035e8 0.689161
\(866\) 5.91224e8i 0.910329i
\(867\) 0 0
\(868\) −3.38119e8 −0.517023
\(869\) 1.82188e8i 0.277627i
\(870\) 0 0
\(871\) −5.91959e8 −0.895853
\(872\) − 1.43625e8i − 0.216612i
\(873\) 0 0
\(874\) 8.59077e8 1.28676
\(875\) 2.95350e8i 0.440872i
\(876\) 0 0
\(877\) −9.66122e8 −1.43230 −0.716149 0.697947i \(-0.754097\pi\)
−0.716149 + 0.697947i \(0.754097\pi\)
\(878\) 3.37235e8i 0.498252i
\(879\) 0 0
\(880\) 3.20063e7 0.0469665
\(881\) − 3.33017e8i − 0.487011i −0.969900 0.243505i \(-0.921703\pi\)
0.969900 0.243505i \(-0.0782973\pi\)
\(882\) 0 0
\(883\) 5.33713e8 0.775221 0.387610 0.921823i \(-0.373301\pi\)
0.387610 + 0.921823i \(0.373301\pi\)
\(884\) 1.24615e8i 0.180390i
\(885\) 0 0
\(886\) −5.47566e8 −0.787292
\(887\) 6.17923e8i 0.885449i 0.896658 + 0.442724i \(0.145988\pi\)
−0.896658 + 0.442724i \(0.854012\pi\)
\(888\) 0 0
\(889\) 1.55338e8 0.221092
\(890\) − 3.48799e8i − 0.494772i
\(891\) 0 0
\(892\) −5.33249e8 −0.751339
\(893\) − 5.81711e8i − 0.816869i
\(894\) 0 0
\(895\) 1.24435e8 0.173570
\(896\) 2.02391e8i 0.281364i
\(897\) 0 0
\(898\) −9.48105e7 −0.130926
\(899\) 1.59292e9i 2.19237i
\(900\) 0 0
\(901\) −1.64402e8 −0.224767
\(902\) − 3.35496e8i − 0.457159i
\(903\) 0 0
\(904\) 3.31614e8 0.448878
\(905\) − 1.92569e8i − 0.259801i
\(906\) 0 0
\(907\) 7.78999e8 1.04403 0.522017 0.852935i \(-0.325180\pi\)
0.522017 + 0.852935i \(0.325180\pi\)
\(908\) − 1.39785e8i − 0.186726i
\(909\) 0 0
\(910\) 8.49248e7 0.112696
\(911\) 8.00263e8i 1.05847i 0.848476 + 0.529234i \(0.177521\pi\)
−0.848476 + 0.529234i \(0.822479\pi\)
\(912\) 0 0
\(913\) −2.73395e8 −0.359235
\(914\) 3.55271e8i 0.465287i
\(915\) 0 0
\(916\) −5.65952e8 −0.736365
\(917\) − 2.11048e8i − 0.273700i
\(918\) 0 0
\(919\) 4.75902e8 0.613156 0.306578 0.951846i \(-0.400816\pi\)
0.306578 + 0.951846i \(0.400816\pi\)
\(920\) 5.61007e8i 0.720451i
\(921\) 0 0
\(922\) 1.31140e8 0.167318
\(923\) − 1.98225e8i − 0.252089i
\(924\) 0 0
\(925\) 5.09435e8 0.643671
\(926\) − 4.88260e7i − 0.0614920i
\(927\) 0 0
\(928\) 1.01555e9 1.27074
\(929\) 1.18986e9i 1.48405i 0.670371 + 0.742026i \(0.266135\pi\)
−0.670371 + 0.742026i \(0.733865\pi\)
\(930\) 0 0
\(931\) −8.17107e8 −1.01258
\(932\) 2.15917e8i 0.266710i
\(933\) 0 0
\(934\) −3.68634e8 −0.452434
\(935\) 2.96655e8i 0.362925i
\(936\) 0 0
\(937\) −1.06075e9 −1.28942 −0.644711 0.764427i \(-0.723022\pi\)
−0.644711 + 0.764427i \(0.723022\pi\)
\(938\) 3.43830e8i 0.416616i
\(939\) 0 0
\(940\) 1.41388e8 0.170227
\(941\) − 1.48471e9i − 1.78185i −0.454146 0.890927i \(-0.650056\pi\)
0.454146 0.890927i \(-0.349944\pi\)
\(942\) 0 0
\(943\) 5.04937e8 0.602146
\(944\) 7.54612e7i 0.0897032i
\(945\) 0 0
\(946\) −4.62416e8 −0.546209
\(947\) 5.11517e8i 0.602296i 0.953577 + 0.301148i \(0.0973699\pi\)
−0.953577 + 0.301148i \(0.902630\pi\)
\(948\) 0 0
\(949\) 2.76372e8 0.323367
\(950\) 5.77127e8i 0.673133i
\(951\) 0 0
\(952\) 1.94471e8 0.225394
\(953\) − 7.30034e8i − 0.843459i −0.906722 0.421730i \(-0.861423\pi\)
0.906722 0.421730i \(-0.138577\pi\)
\(954\) 0 0
\(955\) 1.49496e8 0.171640
\(956\) 2.41862e8i 0.276818i
\(957\) 0 0
\(958\) 4.10798e8 0.467231
\(959\) 7.21197e8i 0.817708i
\(960\) 0 0
\(961\) 1.65396e9 1.86361
\(962\) − 3.37935e8i − 0.379584i
\(963\) 0 0
\(964\) 3.16267e8 0.353039
\(965\) 1.47495e8i 0.164132i
\(966\) 0 0
\(967\) 1.18887e9 1.31479 0.657394 0.753547i \(-0.271659\pi\)
0.657394 + 0.753547i \(0.271659\pi\)
\(968\) − 1.87000e9i − 2.06165i
\(969\) 0 0
\(970\) −3.41433e8 −0.374103
\(971\) 4.35915e8i 0.476151i 0.971247 + 0.238075i \(0.0765165\pi\)
−0.971247 + 0.238075i \(0.923484\pi\)
\(972\) 0 0
\(973\) −6.55271e8 −0.711348
\(974\) − 1.08927e9i − 1.17885i
\(975\) 0 0
\(976\) 6.21088e6 0.00668042
\(977\) 1.20441e9i 1.29149i 0.763553 + 0.645745i \(0.223453\pi\)
−0.763553 + 0.645745i \(0.776547\pi\)
\(978\) 0 0
\(979\) −2.61250e9 −2.78425
\(980\) − 1.98602e8i − 0.211011i
\(981\) 0 0
\(982\) −6.04247e8 −0.638087
\(983\) − 8.76305e8i − 0.922560i −0.887255 0.461280i \(-0.847390\pi\)
0.887255 0.461280i \(-0.152610\pi\)
\(984\) 0 0
\(985\) −3.25336e8 −0.340427
\(986\) − 3.40994e8i − 0.355726i
\(987\) 0 0
\(988\) −5.57443e8 −0.578002
\(989\) − 6.95957e8i − 0.719439i
\(990\) 0 0
\(991\) −8.74381e7 −0.0898421 −0.0449211 0.998991i \(-0.514304\pi\)
−0.0449211 + 0.998991i \(0.514304\pi\)
\(992\) − 1.62028e9i − 1.65980i
\(993\) 0 0
\(994\) −1.15136e8 −0.117234
\(995\) 1.35024e8i 0.137069i
\(996\) 0 0
\(997\) 1.33045e9 1.34250 0.671250 0.741231i \(-0.265758\pi\)
0.671250 + 0.741231i \(0.265758\pi\)
\(998\) 5.06099e6i 0.00509148i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.7.b.c.26.3 yes 4
3.2 odd 2 inner 27.7.b.c.26.2 4
4.3 odd 2 432.7.e.j.161.3 4
9.2 odd 6 81.7.d.e.53.2 8
9.4 even 3 81.7.d.e.26.2 8
9.5 odd 6 81.7.d.e.26.3 8
9.7 even 3 81.7.d.e.53.3 8
12.11 even 2 432.7.e.j.161.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.7.b.c.26.2 4 3.2 odd 2 inner
27.7.b.c.26.3 yes 4 1.1 even 1 trivial
81.7.d.e.26.2 8 9.4 even 3
81.7.d.e.26.3 8 9.5 odd 6
81.7.d.e.53.2 8 9.2 odd 6
81.7.d.e.53.3 8 9.7 even 3
432.7.e.j.161.2 4 12.11 even 2
432.7.e.j.161.3 4 4.3 odd 2