Defining parameters
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 7 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(21\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(27, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 21 | 8 | 13 |
Cusp forms | 15 | 8 | 7 |
Eisenstein series | 6 | 0 | 6 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(27, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
27.7.b.a | $2$ | $6.211$ | \(\Q(\sqrt{-10}) \) | None | \(0\) | \(0\) | \(0\) | \(-806\) | \(q+\beta q^{2}-26q^{4}+14\beta q^{5}-403q^{7}+\cdots\) |
27.7.b.b | $2$ | $6.211$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(598\) | \(q+\beta q^{2}+28 q^{4}-40\beta q^{5}+299 q^{7}+\cdots\) |
27.7.b.c | $4$ | $6.211$ | \(\Q(i, \sqrt{41})\) | None | \(0\) | \(0\) | \(0\) | \(-676\) | \(q-\beta _{1}q^{2}+(-7^{2}+\beta _{3})q^{4}+(7\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{7}^{\mathrm{old}}(27, [\chi])\) into lower level spaces
\( S_{7}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{7}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)