Properties

Label 27.6.a.c.1.1
Level $27$
Weight $6$
Character 27.1
Self dual yes
Analytic conductor $4.330$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [27,6,Mod(1,27)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(27, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("27.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.33036313495\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.44949\) of defining polynomial
Character \(\chi\) \(=\) 27.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-7.34847 q^{2} +22.0000 q^{4} -58.7878 q^{5} +167.000 q^{7} +73.4847 q^{8} +432.000 q^{10} +764.241 q^{11} -235.000 q^{13} -1227.19 q^{14} -1244.00 q^{16} -176.363 q^{17} +1361.00 q^{19} -1293.33 q^{20} -5616.00 q^{22} +2410.30 q^{23} +331.000 q^{25} +1726.89 q^{26} +3674.00 q^{28} -470.302 q^{29} +3500.00 q^{31} +6789.99 q^{32} +1296.00 q^{34} -9817.55 q^{35} +13115.0 q^{37} -10001.3 q^{38} -4320.00 q^{40} -9406.04 q^{41} +104.000 q^{43} +16813.3 q^{44} -17712.0 q^{46} +20516.9 q^{47} +11082.0 q^{49} -2432.34 q^{50} -5170.00 q^{52} +1058.18 q^{53} -44928.0 q^{55} +12271.9 q^{56} +3456.00 q^{58} -30746.0 q^{59} -7393.00 q^{61} -25719.6 q^{62} -10088.0 q^{64} +13815.1 q^{65} +38861.0 q^{67} -3879.99 q^{68} +72144.0 q^{70} +2469.09 q^{71} +5465.00 q^{73} -96375.2 q^{74} +29942.0 q^{76} +127628. q^{77} -82903.0 q^{79} +73132.0 q^{80} +69120.0 q^{82} +13286.0 q^{83} +10368.0 q^{85} -764.241 q^{86} +56160.0 q^{88} -89768.9 q^{89} -39245.0 q^{91} +53026.6 q^{92} -150768. q^{94} -80010.1 q^{95} -49603.0 q^{97} -81435.7 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 44 q^{4} + 334 q^{7} + 864 q^{10} - 470 q^{13} - 2488 q^{16} + 2722 q^{19} - 11232 q^{22} + 662 q^{25} + 7348 q^{28} + 7000 q^{31} + 2592 q^{34} + 26230 q^{37} - 8640 q^{40} + 208 q^{43} - 35424 q^{46}+ \cdots - 99206 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −7.34847 −1.29904 −0.649519 0.760345i \(-0.725030\pi\)
−0.649519 + 0.760345i \(0.725030\pi\)
\(3\) 0 0
\(4\) 22.0000 0.687500
\(5\) −58.7878 −1.05163 −0.525814 0.850600i \(-0.676239\pi\)
−0.525814 + 0.850600i \(0.676239\pi\)
\(6\) 0 0
\(7\) 167.000 1.28816 0.644082 0.764956i \(-0.277239\pi\)
0.644082 + 0.764956i \(0.277239\pi\)
\(8\) 73.4847 0.405949
\(9\) 0 0
\(10\) 432.000 1.36610
\(11\) 764.241 1.90436 0.952179 0.305541i \(-0.0988374\pi\)
0.952179 + 0.305541i \(0.0988374\pi\)
\(12\) 0 0
\(13\) −235.000 −0.385664 −0.192832 0.981232i \(-0.561767\pi\)
−0.192832 + 0.981232i \(0.561767\pi\)
\(14\) −1227.19 −1.67337
\(15\) 0 0
\(16\) −1244.00 −1.21484
\(17\) −176.363 −0.148008 −0.0740041 0.997258i \(-0.523578\pi\)
−0.0740041 + 0.997258i \(0.523578\pi\)
\(18\) 0 0
\(19\) 1361.00 0.864916 0.432458 0.901654i \(-0.357646\pi\)
0.432458 + 0.901654i \(0.357646\pi\)
\(20\) −1293.33 −0.722994
\(21\) 0 0
\(22\) −5616.00 −2.47383
\(23\) 2410.30 0.950060 0.475030 0.879970i \(-0.342437\pi\)
0.475030 + 0.879970i \(0.342437\pi\)
\(24\) 0 0
\(25\) 331.000 0.105920
\(26\) 1726.89 0.500993
\(27\) 0 0
\(28\) 3674.00 0.885613
\(29\) −470.302 −0.103844 −0.0519221 0.998651i \(-0.516535\pi\)
−0.0519221 + 0.998651i \(0.516535\pi\)
\(30\) 0 0
\(31\) 3500.00 0.654130 0.327065 0.945002i \(-0.393940\pi\)
0.327065 + 0.945002i \(0.393940\pi\)
\(32\) 6789.99 1.17218
\(33\) 0 0
\(34\) 1296.00 0.192268
\(35\) −9817.55 −1.35467
\(36\) 0 0
\(37\) 13115.0 1.57494 0.787470 0.616353i \(-0.211391\pi\)
0.787470 + 0.616353i \(0.211391\pi\)
\(38\) −10001.3 −1.12356
\(39\) 0 0
\(40\) −4320.00 −0.426907
\(41\) −9406.04 −0.873871 −0.436935 0.899493i \(-0.643936\pi\)
−0.436935 + 0.899493i \(0.643936\pi\)
\(42\) 0 0
\(43\) 104.000 0.00857753 0.00428876 0.999991i \(-0.498635\pi\)
0.00428876 + 0.999991i \(0.498635\pi\)
\(44\) 16813.3 1.30925
\(45\) 0 0
\(46\) −17712.0 −1.23416
\(47\) 20516.9 1.35478 0.677388 0.735626i \(-0.263112\pi\)
0.677388 + 0.735626i \(0.263112\pi\)
\(48\) 0 0
\(49\) 11082.0 0.659368
\(50\) −2432.34 −0.137594
\(51\) 0 0
\(52\) −5170.00 −0.265144
\(53\) 1058.18 0.0517452 0.0258726 0.999665i \(-0.491764\pi\)
0.0258726 + 0.999665i \(0.491764\pi\)
\(54\) 0 0
\(55\) −44928.0 −2.00267
\(56\) 12271.9 0.522930
\(57\) 0 0
\(58\) 3456.00 0.134897
\(59\) −30746.0 −1.14990 −0.574948 0.818190i \(-0.694978\pi\)
−0.574948 + 0.818190i \(0.694978\pi\)
\(60\) 0 0
\(61\) −7393.00 −0.254388 −0.127194 0.991878i \(-0.540597\pi\)
−0.127194 + 0.991878i \(0.540597\pi\)
\(62\) −25719.6 −0.849739
\(63\) 0 0
\(64\) −10088.0 −0.307861
\(65\) 13815.1 0.405575
\(66\) 0 0
\(67\) 38861.0 1.05761 0.528807 0.848742i \(-0.322640\pi\)
0.528807 + 0.848742i \(0.322640\pi\)
\(68\) −3879.99 −0.101756
\(69\) 0 0
\(70\) 72144.0 1.75977
\(71\) 2469.09 0.0581287 0.0290643 0.999578i \(-0.490747\pi\)
0.0290643 + 0.999578i \(0.490747\pi\)
\(72\) 0 0
\(73\) 5465.00 0.120028 0.0600141 0.998198i \(-0.480885\pi\)
0.0600141 + 0.998198i \(0.480885\pi\)
\(74\) −96375.2 −2.04591
\(75\) 0 0
\(76\) 29942.0 0.594630
\(77\) 127628. 2.45313
\(78\) 0 0
\(79\) −82903.0 −1.49452 −0.747261 0.664530i \(-0.768632\pi\)
−0.747261 + 0.664530i \(0.768632\pi\)
\(80\) 73132.0 1.27756
\(81\) 0 0
\(82\) 69120.0 1.13519
\(83\) 13286.0 0.211690 0.105845 0.994383i \(-0.466245\pi\)
0.105845 + 0.994383i \(0.466245\pi\)
\(84\) 0 0
\(85\) 10368.0 0.155649
\(86\) −764.241 −0.0111425
\(87\) 0 0
\(88\) 56160.0 0.773073
\(89\) −89768.9 −1.20130 −0.600649 0.799513i \(-0.705091\pi\)
−0.600649 + 0.799513i \(0.705091\pi\)
\(90\) 0 0
\(91\) −39245.0 −0.496799
\(92\) 53026.6 0.653166
\(93\) 0 0
\(94\) −150768. −1.75991
\(95\) −80010.1 −0.909570
\(96\) 0 0
\(97\) −49603.0 −0.535277 −0.267639 0.963519i \(-0.586243\pi\)
−0.267639 + 0.963519i \(0.586243\pi\)
\(98\) −81435.7 −0.856544
\(99\) 0 0
\(100\) 7282.00 0.0728200
\(101\) −138739. −1.35330 −0.676652 0.736303i \(-0.736570\pi\)
−0.676652 + 0.736303i \(0.736570\pi\)
\(102\) 0 0
\(103\) −94933.0 −0.881707 −0.440853 0.897579i \(-0.645324\pi\)
−0.440853 + 0.897579i \(0.645324\pi\)
\(104\) −17268.9 −0.156560
\(105\) 0 0
\(106\) −7776.00 −0.0672189
\(107\) 168780. 1.42515 0.712575 0.701596i \(-0.247529\pi\)
0.712575 + 0.701596i \(0.247529\pi\)
\(108\) 0 0
\(109\) 124850. 1.00652 0.503260 0.864135i \(-0.332134\pi\)
0.503260 + 0.864135i \(0.332134\pi\)
\(110\) 330152. 2.60155
\(111\) 0 0
\(112\) −207748. −1.56492
\(113\) −172542. −1.27116 −0.635578 0.772037i \(-0.719238\pi\)
−0.635578 + 0.772037i \(0.719238\pi\)
\(114\) 0 0
\(115\) −141696. −0.999109
\(116\) −10346.6 −0.0713928
\(117\) 0 0
\(118\) 225936. 1.49376
\(119\) −29452.7 −0.190659
\(120\) 0 0
\(121\) 423013. 2.62658
\(122\) 54327.2 0.330459
\(123\) 0 0
\(124\) 77000.0 0.449714
\(125\) 164253. 0.940239
\(126\) 0 0
\(127\) −70108.0 −0.385708 −0.192854 0.981227i \(-0.561774\pi\)
−0.192854 + 0.981227i \(0.561774\pi\)
\(128\) −143148. −0.772255
\(129\) 0 0
\(130\) −101520. −0.526858
\(131\) 139445. 0.709943 0.354971 0.934877i \(-0.384491\pi\)
0.354971 + 0.934877i \(0.384491\pi\)
\(132\) 0 0
\(133\) 227287. 1.11415
\(134\) −285569. −1.37388
\(135\) 0 0
\(136\) −12960.0 −0.0600838
\(137\) −9464.83 −0.0430835 −0.0215418 0.999768i \(-0.506857\pi\)
−0.0215418 + 0.999768i \(0.506857\pi\)
\(138\) 0 0
\(139\) −150913. −0.662506 −0.331253 0.943542i \(-0.607471\pi\)
−0.331253 + 0.943542i \(0.607471\pi\)
\(140\) −215986. −0.931335
\(141\) 0 0
\(142\) −18144.0 −0.0755113
\(143\) −179597. −0.734443
\(144\) 0 0
\(145\) 27648.0 0.109205
\(146\) −40159.4 −0.155921
\(147\) 0 0
\(148\) 288530. 1.08277
\(149\) 230801. 0.851670 0.425835 0.904801i \(-0.359980\pi\)
0.425835 + 0.904801i \(0.359980\pi\)
\(150\) 0 0
\(151\) 129461. 0.462058 0.231029 0.972947i \(-0.425791\pi\)
0.231029 + 0.972947i \(0.425791\pi\)
\(152\) 100013. 0.351112
\(153\) 0 0
\(154\) −937872. −3.18670
\(155\) −205757. −0.687901
\(156\) 0 0
\(157\) 257822. 0.834778 0.417389 0.908728i \(-0.362945\pi\)
0.417389 + 0.908728i \(0.362945\pi\)
\(158\) 609210. 1.94144
\(159\) 0 0
\(160\) −399168. −1.23270
\(161\) 402520. 1.22383
\(162\) 0 0
\(163\) −131569. −0.387869 −0.193934 0.981015i \(-0.562125\pi\)
−0.193934 + 0.981015i \(0.562125\pi\)
\(164\) −206933. −0.600786
\(165\) 0 0
\(166\) −97632.0 −0.274993
\(167\) 257079. 0.713305 0.356652 0.934237i \(-0.383918\pi\)
0.356652 + 0.934237i \(0.383918\pi\)
\(168\) 0 0
\(169\) −316068. −0.851263
\(170\) −76188.9 −0.202195
\(171\) 0 0
\(172\) 2288.00 0.00589705
\(173\) 167428. 0.425316 0.212658 0.977127i \(-0.431788\pi\)
0.212658 + 0.977127i \(0.431788\pi\)
\(174\) 0 0
\(175\) 55277.0 0.136442
\(176\) −950716. −2.31350
\(177\) 0 0
\(178\) 659664. 1.56053
\(179\) −389057. −0.907572 −0.453786 0.891111i \(-0.649927\pi\)
−0.453786 + 0.891111i \(0.649927\pi\)
\(180\) 0 0
\(181\) 165305. 0.375050 0.187525 0.982260i \(-0.439953\pi\)
0.187525 + 0.982260i \(0.439953\pi\)
\(182\) 288391. 0.645361
\(183\) 0 0
\(184\) 177120. 0.385676
\(185\) −771001. −1.65625
\(186\) 0 0
\(187\) −134784. −0.281861
\(188\) 451372. 0.931409
\(189\) 0 0
\(190\) 587952. 1.18157
\(191\) 343967. 0.682234 0.341117 0.940021i \(-0.389195\pi\)
0.341117 + 0.940021i \(0.389195\pi\)
\(192\) 0 0
\(193\) −251785. −0.486560 −0.243280 0.969956i \(-0.578223\pi\)
−0.243280 + 0.969956i \(0.578223\pi\)
\(194\) 364506. 0.695345
\(195\) 0 0
\(196\) 243804. 0.453316
\(197\) −820971. −1.50717 −0.753585 0.657350i \(-0.771677\pi\)
−0.753585 + 0.657350i \(0.771677\pi\)
\(198\) 0 0
\(199\) −336157. −0.601741 −0.300870 0.953665i \(-0.597277\pi\)
−0.300870 + 0.953665i \(0.597277\pi\)
\(200\) 24323.4 0.0429982
\(201\) 0 0
\(202\) 1.01952e6 1.75799
\(203\) −78540.4 −0.133768
\(204\) 0 0
\(205\) 552960. 0.918986
\(206\) 697612. 1.14537
\(207\) 0 0
\(208\) 292340. 0.468522
\(209\) 1.04013e6 1.64711
\(210\) 0 0
\(211\) −821557. −1.27037 −0.635187 0.772358i \(-0.719077\pi\)
−0.635187 + 0.772358i \(0.719077\pi\)
\(212\) 23280.0 0.0355748
\(213\) 0 0
\(214\) −1.24027e6 −1.85132
\(215\) −6113.93 −0.00902036
\(216\) 0 0
\(217\) 584500. 0.842627
\(218\) −917456. −1.30751
\(219\) 0 0
\(220\) −988416. −1.37684
\(221\) 41445.4 0.0570815
\(222\) 0 0
\(223\) 670388. 0.902743 0.451371 0.892336i \(-0.350935\pi\)
0.451371 + 0.892336i \(0.350935\pi\)
\(224\) 1.13393e6 1.50996
\(225\) 0 0
\(226\) 1.26792e6 1.65128
\(227\) −860065. −1.10781 −0.553907 0.832579i \(-0.686864\pi\)
−0.553907 + 0.832579i \(0.686864\pi\)
\(228\) 0 0
\(229\) −1.43277e6 −1.80546 −0.902732 0.430203i \(-0.858442\pi\)
−0.902732 + 0.430203i \(0.858442\pi\)
\(230\) 1.04125e6 1.29788
\(231\) 0 0
\(232\) −34560.0 −0.0421555
\(233\) −407046. −0.491195 −0.245598 0.969372i \(-0.578984\pi\)
−0.245598 + 0.969372i \(0.578984\pi\)
\(234\) 0 0
\(235\) −1.20614e6 −1.42472
\(236\) −676412. −0.790553
\(237\) 0 0
\(238\) 216432. 0.247673
\(239\) −115577. −0.130881 −0.0654404 0.997856i \(-0.520845\pi\)
−0.0654404 + 0.997856i \(0.520845\pi\)
\(240\) 0 0
\(241\) −1.55192e6 −1.72118 −0.860590 0.509298i \(-0.829905\pi\)
−0.860590 + 0.509298i \(0.829905\pi\)
\(242\) −3.10850e6 −3.41202
\(243\) 0 0
\(244\) −162646. −0.174892
\(245\) −651486. −0.693410
\(246\) 0 0
\(247\) −319835. −0.333567
\(248\) 257196. 0.265544
\(249\) 0 0
\(250\) −1.20701e6 −1.22141
\(251\) 1.70226e6 1.70546 0.852729 0.522353i \(-0.174946\pi\)
0.852729 + 0.522353i \(0.174946\pi\)
\(252\) 0 0
\(253\) 1.84205e6 1.80925
\(254\) 515186. 0.501049
\(255\) 0 0
\(256\) 1.37474e6 1.31105
\(257\) 1.38210e6 1.30529 0.652645 0.757664i \(-0.273660\pi\)
0.652645 + 0.757664i \(0.273660\pi\)
\(258\) 0 0
\(259\) 2.19020e6 2.02878
\(260\) 303933. 0.278833
\(261\) 0 0
\(262\) −1.02470e6 −0.922243
\(263\) 1.61678e6 1.44132 0.720662 0.693286i \(-0.243838\pi\)
0.720662 + 0.693286i \(0.243838\pi\)
\(264\) 0 0
\(265\) −62208.0 −0.0544166
\(266\) −1.67021e6 −1.44733
\(267\) 0 0
\(268\) 854942. 0.727109
\(269\) 406870. 0.342827 0.171413 0.985199i \(-0.445167\pi\)
0.171413 + 0.985199i \(0.445167\pi\)
\(270\) 0 0
\(271\) 246053. 0.203519 0.101760 0.994809i \(-0.467553\pi\)
0.101760 + 0.994809i \(0.467553\pi\)
\(272\) 219396. 0.179807
\(273\) 0 0
\(274\) 69552.0 0.0559672
\(275\) 252964. 0.201710
\(276\) 0 0
\(277\) −347350. −0.271999 −0.136000 0.990709i \(-0.543425\pi\)
−0.136000 + 0.990709i \(0.543425\pi\)
\(278\) 1.10898e6 0.860620
\(279\) 0 0
\(280\) −721440. −0.549927
\(281\) −611393. −0.461907 −0.230953 0.972965i \(-0.574185\pi\)
−0.230953 + 0.972965i \(0.574185\pi\)
\(282\) 0 0
\(283\) 2.05827e6 1.52770 0.763848 0.645397i \(-0.223308\pi\)
0.763848 + 0.645397i \(0.223308\pi\)
\(284\) 54319.9 0.0399635
\(285\) 0 0
\(286\) 1.31976e6 0.954069
\(287\) −1.57081e6 −1.12569
\(288\) 0 0
\(289\) −1.38875e6 −0.978094
\(290\) −203170. −0.141862
\(291\) 0 0
\(292\) 120230. 0.0825193
\(293\) −2.26844e6 −1.54369 −0.771843 0.635813i \(-0.780665\pi\)
−0.771843 + 0.635813i \(0.780665\pi\)
\(294\) 0 0
\(295\) 1.80749e6 1.20926
\(296\) 963752. 0.639346
\(297\) 0 0
\(298\) −1.69603e6 −1.10635
\(299\) −566420. −0.366404
\(300\) 0 0
\(301\) 17368.0 0.0110493
\(302\) −951340. −0.600231
\(303\) 0 0
\(304\) −1.69308e6 −1.05074
\(305\) 434618. 0.267521
\(306\) 0 0
\(307\) 902576. 0.546560 0.273280 0.961935i \(-0.411891\pi\)
0.273280 + 0.961935i \(0.411891\pi\)
\(308\) 2.80782e6 1.68652
\(309\) 0 0
\(310\) 1.51200e6 0.893609
\(311\) −1.45964e6 −0.855746 −0.427873 0.903839i \(-0.640737\pi\)
−0.427873 + 0.903839i \(0.640737\pi\)
\(312\) 0 0
\(313\) −2.75992e6 −1.59234 −0.796169 0.605075i \(-0.793143\pi\)
−0.796169 + 0.605075i \(0.793143\pi\)
\(314\) −1.89460e6 −1.08441
\(315\) 0 0
\(316\) −1.82387e6 −1.02748
\(317\) −17048.4 −0.00952877 −0.00476438 0.999989i \(-0.501517\pi\)
−0.00476438 + 0.999989i \(0.501517\pi\)
\(318\) 0 0
\(319\) −359424. −0.197756
\(320\) 593051. 0.323755
\(321\) 0 0
\(322\) −2.95790e6 −1.58981
\(323\) −240030. −0.128015
\(324\) 0 0
\(325\) −77785.0 −0.0408496
\(326\) 966831. 0.503856
\(327\) 0 0
\(328\) −691200. −0.354747
\(329\) 3.42633e6 1.74518
\(330\) 0 0
\(331\) 3.37236e6 1.69186 0.845929 0.533296i \(-0.179047\pi\)
0.845929 + 0.533296i \(0.179047\pi\)
\(332\) 292293. 0.145537
\(333\) 0 0
\(334\) −1.88914e6 −0.926610
\(335\) −2.28455e6 −1.11222
\(336\) 0 0
\(337\) −360523. −0.172925 −0.0864626 0.996255i \(-0.527556\pi\)
−0.0864626 + 0.996255i \(0.527556\pi\)
\(338\) 2.32262e6 1.10582
\(339\) 0 0
\(340\) 228096. 0.107009
\(341\) 2.67484e6 1.24570
\(342\) 0 0
\(343\) −956075. −0.438790
\(344\) 7642.41 0.00348204
\(345\) 0 0
\(346\) −1.23034e6 −0.552502
\(347\) 1.44206e6 0.642926 0.321463 0.946922i \(-0.395825\pi\)
0.321463 + 0.946922i \(0.395825\pi\)
\(348\) 0 0
\(349\) 677579. 0.297781 0.148890 0.988854i \(-0.452430\pi\)
0.148890 + 0.988854i \(0.452430\pi\)
\(350\) −406201. −0.177244
\(351\) 0 0
\(352\) 5.18918e6 2.23225
\(353\) −3.84484e6 −1.64226 −0.821129 0.570743i \(-0.806655\pi\)
−0.821129 + 0.570743i \(0.806655\pi\)
\(354\) 0 0
\(355\) −145152. −0.0611297
\(356\) −1.97492e6 −0.825893
\(357\) 0 0
\(358\) 2.85898e6 1.17897
\(359\) −1.36699e6 −0.559796 −0.279898 0.960030i \(-0.590301\pi\)
−0.279898 + 0.960030i \(0.590301\pi\)
\(360\) 0 0
\(361\) −623778. −0.251920
\(362\) −1.21474e6 −0.487205
\(363\) 0 0
\(364\) −863390. −0.341549
\(365\) −321275. −0.126225
\(366\) 0 0
\(367\) −1.16951e6 −0.453251 −0.226625 0.973982i \(-0.572769\pi\)
−0.226625 + 0.973982i \(0.572769\pi\)
\(368\) −2.99841e6 −1.15417
\(369\) 0 0
\(370\) 5.66568e6 2.15153
\(371\) 176716. 0.0666563
\(372\) 0 0
\(373\) 2.52666e6 0.940318 0.470159 0.882582i \(-0.344197\pi\)
0.470159 + 0.882582i \(0.344197\pi\)
\(374\) 990456. 0.366148
\(375\) 0 0
\(376\) 1.50768e6 0.549971
\(377\) 110521. 0.0400490
\(378\) 0 0
\(379\) 219269. 0.0784114 0.0392057 0.999231i \(-0.487517\pi\)
0.0392057 + 0.999231i \(0.487517\pi\)
\(380\) −1.76022e6 −0.625329
\(381\) 0 0
\(382\) −2.52763e6 −0.886248
\(383\) 59728.4 0.0208058 0.0104029 0.999946i \(-0.496689\pi\)
0.0104029 + 0.999946i \(0.496689\pi\)
\(384\) 0 0
\(385\) −7.50298e6 −2.57977
\(386\) 1.85023e6 0.632060
\(387\) 0 0
\(388\) −1.09127e6 −0.368003
\(389\) 2.70653e6 0.906857 0.453428 0.891293i \(-0.350201\pi\)
0.453428 + 0.891293i \(0.350201\pi\)
\(390\) 0 0
\(391\) −425088. −0.140617
\(392\) 814357. 0.267670
\(393\) 0 0
\(394\) 6.03288e6 1.95787
\(395\) 4.87368e6 1.57168
\(396\) 0 0
\(397\) 4.43128e6 1.41108 0.705542 0.708668i \(-0.250704\pi\)
0.705542 + 0.708668i \(0.250704\pi\)
\(398\) 2.47024e6 0.781684
\(399\) 0 0
\(400\) −411764. −0.128676
\(401\) −2.37585e6 −0.737832 −0.368916 0.929463i \(-0.620271\pi\)
−0.368916 + 0.929463i \(0.620271\pi\)
\(402\) 0 0
\(403\) −822500. −0.252274
\(404\) −3.05226e6 −0.930397
\(405\) 0 0
\(406\) 577152. 0.173770
\(407\) 1.00230e7 2.99925
\(408\) 0 0
\(409\) −1.71805e6 −0.507840 −0.253920 0.967225i \(-0.581720\pi\)
−0.253920 + 0.967225i \(0.581720\pi\)
\(410\) −4.06341e6 −1.19380
\(411\) 0 0
\(412\) −2.08853e6 −0.606173
\(413\) −5.13458e6 −1.48126
\(414\) 0 0
\(415\) −781056. −0.222619
\(416\) −1.59565e6 −0.452068
\(417\) 0 0
\(418\) −7.64338e6 −2.13966
\(419\) −5.34633e6 −1.48772 −0.743860 0.668336i \(-0.767007\pi\)
−0.743860 + 0.668336i \(0.767007\pi\)
\(420\) 0 0
\(421\) −5.68202e6 −1.56242 −0.781209 0.624269i \(-0.785397\pi\)
−0.781209 + 0.624269i \(0.785397\pi\)
\(422\) 6.03719e6 1.65026
\(423\) 0 0
\(424\) 77760.0 0.0210059
\(425\) −58376.2 −0.0156770
\(426\) 0 0
\(427\) −1.23463e6 −0.327693
\(428\) 3.71315e6 0.979791
\(429\) 0 0
\(430\) 44928.0 0.0117178
\(431\) 2.29890e6 0.596109 0.298055 0.954549i \(-0.403662\pi\)
0.298055 + 0.954549i \(0.403662\pi\)
\(432\) 0 0
\(433\) −4.72608e6 −1.21138 −0.605691 0.795700i \(-0.707103\pi\)
−0.605691 + 0.795700i \(0.707103\pi\)
\(434\) −4.29518e6 −1.09460
\(435\) 0 0
\(436\) 2.74670e6 0.691982
\(437\) 3.28042e6 0.821723
\(438\) 0 0
\(439\) 6.12223e6 1.51617 0.758086 0.652155i \(-0.226135\pi\)
0.758086 + 0.652155i \(0.226135\pi\)
\(440\) −3.30152e6 −0.812985
\(441\) 0 0
\(442\) −304560. −0.0741510
\(443\) −6.68429e6 −1.61825 −0.809125 0.587636i \(-0.800059\pi\)
−0.809125 + 0.587636i \(0.800059\pi\)
\(444\) 0 0
\(445\) 5.27731e6 1.26332
\(446\) −4.92633e6 −1.17270
\(447\) 0 0
\(448\) −1.68470e6 −0.396576
\(449\) −5.01701e6 −1.17443 −0.587217 0.809429i \(-0.699777\pi\)
−0.587217 + 0.809429i \(0.699777\pi\)
\(450\) 0 0
\(451\) −7.18848e6 −1.66416
\(452\) −3.79593e6 −0.873920
\(453\) 0 0
\(454\) 6.32016e6 1.43909
\(455\) 2.30713e6 0.522448
\(456\) 0 0
\(457\) 683222. 0.153028 0.0765141 0.997069i \(-0.475621\pi\)
0.0765141 + 0.997069i \(0.475621\pi\)
\(458\) 1.05287e7 2.34537
\(459\) 0 0
\(460\) −3.11731e6 −0.686888
\(461\) 5.04123e6 1.10480 0.552400 0.833579i \(-0.313712\pi\)
0.552400 + 0.833579i \(0.313712\pi\)
\(462\) 0 0
\(463\) 5.04086e6 1.09283 0.546415 0.837515i \(-0.315992\pi\)
0.546415 + 0.837515i \(0.315992\pi\)
\(464\) 585056. 0.126154
\(465\) 0 0
\(466\) 2.99117e6 0.638081
\(467\) −8.12347e6 −1.72365 −0.861825 0.507205i \(-0.830679\pi\)
−0.861825 + 0.507205i \(0.830679\pi\)
\(468\) 0 0
\(469\) 6.48979e6 1.36238
\(470\) 8.86331e6 1.85077
\(471\) 0 0
\(472\) −2.25936e6 −0.466800
\(473\) 79481.0 0.0163347
\(474\) 0 0
\(475\) 450491. 0.0916119
\(476\) −647959. −0.131078
\(477\) 0 0
\(478\) 849312. 0.170019
\(479\) −6.60739e6 −1.31580 −0.657902 0.753104i \(-0.728556\pi\)
−0.657902 + 0.753104i \(0.728556\pi\)
\(480\) 0 0
\(481\) −3.08202e6 −0.607398
\(482\) 1.14042e7 2.23588
\(483\) 0 0
\(484\) 9.30629e6 1.80577
\(485\) 2.91605e6 0.562912
\(486\) 0 0
\(487\) −2.49806e6 −0.477289 −0.238644 0.971107i \(-0.576703\pi\)
−0.238644 + 0.971107i \(0.576703\pi\)
\(488\) −543272. −0.103269
\(489\) 0 0
\(490\) 4.78742e6 0.900765
\(491\) 5.70141e6 1.06728 0.533640 0.845711i \(-0.320824\pi\)
0.533640 + 0.845711i \(0.320824\pi\)
\(492\) 0 0
\(493\) 82944.0 0.0153698
\(494\) 2.35030e6 0.433317
\(495\) 0 0
\(496\) −4.35400e6 −0.794665
\(497\) 412337. 0.0748793
\(498\) 0 0
\(499\) 4.19754e6 0.754646 0.377323 0.926082i \(-0.376845\pi\)
0.377323 + 0.926082i \(0.376845\pi\)
\(500\) 3.61357e6 0.646414
\(501\) 0 0
\(502\) −1.25090e7 −2.21546
\(503\) −5.37784e6 −0.947738 −0.473869 0.880595i \(-0.657143\pi\)
−0.473869 + 0.880595i \(0.657143\pi\)
\(504\) 0 0
\(505\) 8.15616e6 1.42317
\(506\) −1.35362e7 −2.35029
\(507\) 0 0
\(508\) −1.54238e6 −0.265174
\(509\) −4.35623e6 −0.745275 −0.372637 0.927977i \(-0.621546\pi\)
−0.372637 + 0.927977i \(0.621546\pi\)
\(510\) 0 0
\(511\) 912655. 0.154616
\(512\) −5.52146e6 −0.930849
\(513\) 0 0
\(514\) −1.01563e7 −1.69562
\(515\) 5.58090e6 0.927227
\(516\) 0 0
\(517\) 1.56799e7 2.57998
\(518\) −1.60947e7 −2.63546
\(519\) 0 0
\(520\) 1.01520e6 0.164643
\(521\) 4.29639e6 0.693440 0.346720 0.937969i \(-0.387295\pi\)
0.346720 + 0.937969i \(0.387295\pi\)
\(522\) 0 0
\(523\) −1.07625e7 −1.72052 −0.860261 0.509854i \(-0.829699\pi\)
−0.860261 + 0.509854i \(0.829699\pi\)
\(524\) 3.06778e6 0.488086
\(525\) 0 0
\(526\) −1.18809e7 −1.87234
\(527\) −617271. −0.0968166
\(528\) 0 0
\(529\) −626807. −0.0973856
\(530\) 457134. 0.0706893
\(531\) 0 0
\(532\) 5.00031e6 0.765981
\(533\) 2.21042e6 0.337021
\(534\) 0 0
\(535\) −9.92218e6 −1.49873
\(536\) 2.85569e6 0.429338
\(537\) 0 0
\(538\) −2.98987e6 −0.445345
\(539\) 8.46932e6 1.25567
\(540\) 0 0
\(541\) 7.49825e6 1.10146 0.550728 0.834685i \(-0.314350\pi\)
0.550728 + 0.834685i \(0.314350\pi\)
\(542\) −1.80811e6 −0.264379
\(543\) 0 0
\(544\) −1.19750e6 −0.173492
\(545\) −7.33965e6 −1.05848
\(546\) 0 0
\(547\) −3.63295e6 −0.519148 −0.259574 0.965723i \(-0.583582\pi\)
−0.259574 + 0.965723i \(0.583582\pi\)
\(548\) −208226. −0.0296199
\(549\) 0 0
\(550\) −1.85890e6 −0.262028
\(551\) −640081. −0.0898165
\(552\) 0 0
\(553\) −1.38448e7 −1.92519
\(554\) 2.55249e6 0.353338
\(555\) 0 0
\(556\) −3.32009e6 −0.455473
\(557\) 7.12137e6 0.972581 0.486290 0.873797i \(-0.338350\pi\)
0.486290 + 0.873797i \(0.338350\pi\)
\(558\) 0 0
\(559\) −24440.0 −0.00330805
\(560\) 1.22130e7 1.64571
\(561\) 0 0
\(562\) 4.49280e6 0.600035
\(563\) 3.41768e6 0.454424 0.227212 0.973845i \(-0.427039\pi\)
0.227212 + 0.973845i \(0.427039\pi\)
\(564\) 0 0
\(565\) 1.01434e7 1.33678
\(566\) −1.51251e7 −1.98453
\(567\) 0 0
\(568\) 181440. 0.0235973
\(569\) 5.43699e6 0.704008 0.352004 0.935999i \(-0.385500\pi\)
0.352004 + 0.935999i \(0.385500\pi\)
\(570\) 0 0
\(571\) −3.92190e6 −0.503391 −0.251696 0.967806i \(-0.580988\pi\)
−0.251696 + 0.967806i \(0.580988\pi\)
\(572\) −3.95112e6 −0.504929
\(573\) 0 0
\(574\) 1.15430e7 1.46231
\(575\) 797809. 0.100630
\(576\) 0 0
\(577\) 1.07034e7 1.33839 0.669193 0.743088i \(-0.266640\pi\)
0.669193 + 0.743088i \(0.266640\pi\)
\(578\) 1.02052e7 1.27058
\(579\) 0 0
\(580\) 608256. 0.0750786
\(581\) 2.21877e6 0.272691
\(582\) 0 0
\(583\) 808704. 0.0985413
\(584\) 401594. 0.0487253
\(585\) 0 0
\(586\) 1.66696e7 2.00531
\(587\) −2.99424e6 −0.358667 −0.179333 0.983788i \(-0.557394\pi\)
−0.179333 + 0.983788i \(0.557394\pi\)
\(588\) 0 0
\(589\) 4.76350e6 0.565767
\(590\) −1.32823e7 −1.57088
\(591\) 0 0
\(592\) −1.63151e7 −1.91331
\(593\) 5.85279e6 0.683481 0.341740 0.939794i \(-0.388984\pi\)
0.341740 + 0.939794i \(0.388984\pi\)
\(594\) 0 0
\(595\) 1.73146e6 0.200502
\(596\) 5.07762e6 0.585523
\(597\) 0 0
\(598\) 4.16232e6 0.475973
\(599\) 1.93059e6 0.219848 0.109924 0.993940i \(-0.464939\pi\)
0.109924 + 0.993940i \(0.464939\pi\)
\(600\) 0 0
\(601\) −6.64461e6 −0.750384 −0.375192 0.926947i \(-0.622423\pi\)
−0.375192 + 0.926947i \(0.622423\pi\)
\(602\) −127628. −0.0143534
\(603\) 0 0
\(604\) 2.84814e6 0.317665
\(605\) −2.48680e7 −2.76218
\(606\) 0 0
\(607\) −6.72545e6 −0.740883 −0.370441 0.928856i \(-0.620794\pi\)
−0.370441 + 0.928856i \(0.620794\pi\)
\(608\) 9.24117e6 1.01384
\(609\) 0 0
\(610\) −3.19378e6 −0.347520
\(611\) −4.82148e6 −0.522489
\(612\) 0 0
\(613\) 3.03643e6 0.326372 0.163186 0.986595i \(-0.447823\pi\)
0.163186 + 0.986595i \(0.447823\pi\)
\(614\) −6.63255e6 −0.710002
\(615\) 0 0
\(616\) 9.37872e6 0.995845
\(617\) −5.93504e6 −0.627640 −0.313820 0.949483i \(-0.601609\pi\)
−0.313820 + 0.949483i \(0.601609\pi\)
\(618\) 0 0
\(619\) 1.21004e7 1.26932 0.634661 0.772791i \(-0.281140\pi\)
0.634661 + 0.772791i \(0.281140\pi\)
\(620\) −4.52666e6 −0.472932
\(621\) 0 0
\(622\) 1.07261e7 1.11165
\(623\) −1.49914e7 −1.54747
\(624\) 0 0
\(625\) −1.06904e7 −1.09470
\(626\) 2.02812e7 2.06851
\(627\) 0 0
\(628\) 5.67208e6 0.573910
\(629\) −2.31300e6 −0.233104
\(630\) 0 0
\(631\) −6.17037e6 −0.616933 −0.308466 0.951235i \(-0.599816\pi\)
−0.308466 + 0.951235i \(0.599816\pi\)
\(632\) −6.09210e6 −0.606701
\(633\) 0 0
\(634\) 125280. 0.0123782
\(635\) 4.12149e6 0.405621
\(636\) 0 0
\(637\) −2.60427e6 −0.254295
\(638\) 2.64122e6 0.256893
\(639\) 0 0
\(640\) 8.41536e6 0.812125
\(641\) 1.13478e7 1.09085 0.545427 0.838158i \(-0.316368\pi\)
0.545427 + 0.838158i \(0.316368\pi\)
\(642\) 0 0
\(643\) −1.00778e7 −0.961257 −0.480629 0.876924i \(-0.659592\pi\)
−0.480629 + 0.876924i \(0.659592\pi\)
\(644\) 8.85543e6 0.841386
\(645\) 0 0
\(646\) 1.76386e6 0.166296
\(647\) 7.07287e6 0.664255 0.332128 0.943234i \(-0.392233\pi\)
0.332128 + 0.943234i \(0.392233\pi\)
\(648\) 0 0
\(649\) −2.34973e7 −2.18981
\(650\) 571601. 0.0530651
\(651\) 0 0
\(652\) −2.89452e6 −0.266660
\(653\) 1.84773e7 1.69573 0.847865 0.530213i \(-0.177888\pi\)
0.847865 + 0.530213i \(0.177888\pi\)
\(654\) 0 0
\(655\) −8.19763e6 −0.746595
\(656\) 1.17011e7 1.06162
\(657\) 0 0
\(658\) −2.51783e7 −2.26705
\(659\) 1.53893e7 1.38040 0.690202 0.723616i \(-0.257521\pi\)
0.690202 + 0.723616i \(0.257521\pi\)
\(660\) 0 0
\(661\) 5.21093e6 0.463886 0.231943 0.972729i \(-0.425492\pi\)
0.231943 + 0.972729i \(0.425492\pi\)
\(662\) −2.47817e7 −2.19779
\(663\) 0 0
\(664\) 976320. 0.0859354
\(665\) −1.33617e7 −1.17168
\(666\) 0 0
\(667\) −1.13357e6 −0.0986582
\(668\) 5.65573e6 0.490397
\(669\) 0 0
\(670\) 1.67880e7 1.44481
\(671\) −5.65003e6 −0.484445
\(672\) 0 0
\(673\) 1.60404e7 1.36514 0.682569 0.730821i \(-0.260863\pi\)
0.682569 + 0.730821i \(0.260863\pi\)
\(674\) 2.64929e6 0.224636
\(675\) 0 0
\(676\) −6.95350e6 −0.585243
\(677\) −1.48811e7 −1.24785 −0.623927 0.781482i \(-0.714464\pi\)
−0.623927 + 0.781482i \(0.714464\pi\)
\(678\) 0 0
\(679\) −8.28370e6 −0.689525
\(680\) 761889. 0.0631858
\(681\) 0 0
\(682\) −1.96560e7 −1.61821
\(683\) −5.62881e6 −0.461705 −0.230853 0.972989i \(-0.574152\pi\)
−0.230853 + 0.972989i \(0.574152\pi\)
\(684\) 0 0
\(685\) 556416. 0.0453078
\(686\) 7.02569e6 0.570005
\(687\) 0 0
\(688\) −129376. −0.0104204
\(689\) −248672. −0.0199563
\(690\) 0 0
\(691\) −1.01916e7 −0.811987 −0.405993 0.913876i \(-0.633074\pi\)
−0.405993 + 0.913876i \(0.633074\pi\)
\(692\) 3.68341e6 0.292405
\(693\) 0 0
\(694\) −1.05970e7 −0.835185
\(695\) 8.87184e6 0.696709
\(696\) 0 0
\(697\) 1.65888e6 0.129340
\(698\) −4.97917e6 −0.386828
\(699\) 0 0
\(700\) 1.21609e6 0.0938041
\(701\) −2.39524e7 −1.84100 −0.920501 0.390739i \(-0.872219\pi\)
−0.920501 + 0.390739i \(0.872219\pi\)
\(702\) 0 0
\(703\) 1.78495e7 1.36219
\(704\) −7.70966e6 −0.586278
\(705\) 0 0
\(706\) 2.82537e7 2.13335
\(707\) −2.31694e7 −1.74328
\(708\) 0 0
\(709\) 1.49472e7 1.11672 0.558360 0.829599i \(-0.311431\pi\)
0.558360 + 0.829599i \(0.311431\pi\)
\(710\) 1.06665e6 0.0794098
\(711\) 0 0
\(712\) −6.59664e6 −0.487666
\(713\) 8.43604e6 0.621463
\(714\) 0 0
\(715\) 1.05581e7 0.772360
\(716\) −8.55926e6 −0.623956
\(717\) 0 0
\(718\) 1.00453e7 0.727196
\(719\) 2.61670e7 1.88770 0.943848 0.330380i \(-0.107177\pi\)
0.943848 + 0.330380i \(0.107177\pi\)
\(720\) 0 0
\(721\) −1.58538e7 −1.13578
\(722\) 4.58381e6 0.327253
\(723\) 0 0
\(724\) 3.63671e6 0.257847
\(725\) −155670. −0.0109992
\(726\) 0 0
\(727\) −2.91140e6 −0.204299 −0.102149 0.994769i \(-0.532572\pi\)
−0.102149 + 0.994769i \(0.532572\pi\)
\(728\) −2.88391e6 −0.201675
\(729\) 0 0
\(730\) 2.36088e6 0.163971
\(731\) −18341.8 −0.00126954
\(732\) 0 0
\(733\) 6.78250e6 0.466262 0.233131 0.972445i \(-0.425103\pi\)
0.233131 + 0.972445i \(0.425103\pi\)
\(734\) 8.59410e6 0.588790
\(735\) 0 0
\(736\) 1.63659e7 1.11364
\(737\) 2.96992e7 2.01407
\(738\) 0 0
\(739\) 1.52588e7 1.02780 0.513901 0.857850i \(-0.328200\pi\)
0.513901 + 0.857850i \(0.328200\pi\)
\(740\) −1.69620e7 −1.13867
\(741\) 0 0
\(742\) −1.29859e6 −0.0865890
\(743\) −1.96863e6 −0.130825 −0.0654125 0.997858i \(-0.520836\pi\)
−0.0654125 + 0.997858i \(0.520836\pi\)
\(744\) 0 0
\(745\) −1.35683e7 −0.895640
\(746\) −1.85671e7 −1.22151
\(747\) 0 0
\(748\) −2.96525e6 −0.193779
\(749\) 2.81862e7 1.83583
\(750\) 0 0
\(751\) −1.62379e7 −1.05058 −0.525290 0.850924i \(-0.676043\pi\)
−0.525290 + 0.850924i \(0.676043\pi\)
\(752\) −2.55231e7 −1.64584
\(753\) 0 0
\(754\) −812160. −0.0520251
\(755\) −7.61072e6 −0.485913
\(756\) 0 0
\(757\) 9.17096e6 0.581668 0.290834 0.956774i \(-0.406067\pi\)
0.290834 + 0.956774i \(0.406067\pi\)
\(758\) −1.61129e6 −0.101859
\(759\) 0 0
\(760\) −5.87952e6 −0.369239
\(761\) 2.31222e7 1.44733 0.723666 0.690151i \(-0.242456\pi\)
0.723666 + 0.690151i \(0.242456\pi\)
\(762\) 0 0
\(763\) 2.08500e7 1.29656
\(764\) 7.56728e6 0.469036
\(765\) 0 0
\(766\) −438912. −0.0270275
\(767\) 7.22531e6 0.443474
\(768\) 0 0
\(769\) 9.38318e6 0.572182 0.286091 0.958202i \(-0.407644\pi\)
0.286091 + 0.958202i \(0.407644\pi\)
\(770\) 5.51354e7 3.35123
\(771\) 0 0
\(772\) −5.53927e6 −0.334510
\(773\) 89239.8 0.00537168 0.00268584 0.999996i \(-0.499145\pi\)
0.00268584 + 0.999996i \(0.499145\pi\)
\(774\) 0 0
\(775\) 1.15850e6 0.0692854
\(776\) −3.64506e6 −0.217295
\(777\) 0 0
\(778\) −1.98888e7 −1.17804
\(779\) −1.28016e7 −0.755825
\(780\) 0 0
\(781\) 1.88698e6 0.110698
\(782\) 3.12375e6 0.182666
\(783\) 0 0
\(784\) −1.37860e7 −0.801029
\(785\) −1.51568e7 −0.877875
\(786\) 0 0
\(787\) 3.04100e7 1.75017 0.875084 0.483971i \(-0.160806\pi\)
0.875084 + 0.483971i \(0.160806\pi\)
\(788\) −1.80614e7 −1.03618
\(789\) 0 0
\(790\) −3.58141e7 −2.04167
\(791\) −2.88145e7 −1.63746
\(792\) 0 0
\(793\) 1.73736e6 0.0981083
\(794\) −3.25631e7 −1.83305
\(795\) 0 0
\(796\) −7.39545e6 −0.413697
\(797\) −2.44534e6 −0.136362 −0.0681809 0.997673i \(-0.521719\pi\)
−0.0681809 + 0.997673i \(0.521719\pi\)
\(798\) 0 0
\(799\) −3.61843e6 −0.200518
\(800\) 2.24749e6 0.124157
\(801\) 0 0
\(802\) 1.74588e7 0.958473
\(803\) 4.17658e6 0.228576
\(804\) 0 0
\(805\) −2.36632e7 −1.28702
\(806\) 6.04412e6 0.327714
\(807\) 0 0
\(808\) −1.01952e7 −0.549373
\(809\) −2.11075e7 −1.13388 −0.566938 0.823760i \(-0.691872\pi\)
−0.566938 + 0.823760i \(0.691872\pi\)
\(810\) 0 0
\(811\) −1.56012e7 −0.832925 −0.416462 0.909153i \(-0.636730\pi\)
−0.416462 + 0.909153i \(0.636730\pi\)
\(812\) −1.72789e6 −0.0919657
\(813\) 0 0
\(814\) −7.36538e7 −3.89614
\(815\) 7.73465e6 0.407893
\(816\) 0 0
\(817\) 141544. 0.00741885
\(818\) 1.26250e7 0.659703
\(819\) 0 0
\(820\) 1.21651e7 0.631803
\(821\) −4.04677e6 −0.209532 −0.104766 0.994497i \(-0.533409\pi\)
−0.104766 + 0.994497i \(0.533409\pi\)
\(822\) 0 0
\(823\) 2.21529e7 1.14007 0.570035 0.821620i \(-0.306929\pi\)
0.570035 + 0.821620i \(0.306929\pi\)
\(824\) −6.97612e6 −0.357928
\(825\) 0 0
\(826\) 3.77313e7 1.92421
\(827\) −1.72252e7 −0.875792 −0.437896 0.899026i \(-0.644276\pi\)
−0.437896 + 0.899026i \(0.644276\pi\)
\(828\) 0 0
\(829\) −2.31834e7 −1.17163 −0.585816 0.810444i \(-0.699226\pi\)
−0.585816 + 0.810444i \(0.699226\pi\)
\(830\) 5.73957e6 0.289190
\(831\) 0 0
\(832\) 2.37068e6 0.118731
\(833\) −1.95446e6 −0.0975919
\(834\) 0 0
\(835\) −1.51131e7 −0.750131
\(836\) 2.28829e7 1.13239
\(837\) 0 0
\(838\) 3.92874e7 1.93260
\(839\) −1.07272e7 −0.526118 −0.263059 0.964780i \(-0.584731\pi\)
−0.263059 + 0.964780i \(0.584731\pi\)
\(840\) 0 0
\(841\) −2.02900e7 −0.989216
\(842\) 4.17541e7 2.02964
\(843\) 0 0
\(844\) −1.80743e7 −0.873382
\(845\) 1.85809e7 0.895211
\(846\) 0 0
\(847\) 7.06432e7 3.38346
\(848\) −1.31638e6 −0.0628623
\(849\) 0 0
\(850\) 428976. 0.0203651
\(851\) 3.16111e7 1.49629
\(852\) 0 0
\(853\) −421069. −0.0198144 −0.00990719 0.999951i \(-0.503154\pi\)
−0.00990719 + 0.999951i \(0.503154\pi\)
\(854\) 9.07265e6 0.425686
\(855\) 0 0
\(856\) 1.24027e7 0.578539
\(857\) −2.71932e7 −1.26476 −0.632381 0.774658i \(-0.717922\pi\)
−0.632381 + 0.774658i \(0.717922\pi\)
\(858\) 0 0
\(859\) 2.01529e7 0.931869 0.465934 0.884819i \(-0.345718\pi\)
0.465934 + 0.884819i \(0.345718\pi\)
\(860\) −134506. −0.00620150
\(861\) 0 0
\(862\) −1.68934e7 −0.774369
\(863\) 1.88086e7 0.859666 0.429833 0.902908i \(-0.358572\pi\)
0.429833 + 0.902908i \(0.358572\pi\)
\(864\) 0 0
\(865\) −9.84269e6 −0.447274
\(866\) 3.47294e7 1.57363
\(867\) 0 0
\(868\) 1.28590e7 0.579306
\(869\) −6.33579e7 −2.84611
\(870\) 0 0
\(871\) −9.13234e6 −0.407884
\(872\) 9.17456e6 0.408596
\(873\) 0 0
\(874\) −2.41060e7 −1.06745
\(875\) 2.74302e7 1.21118
\(876\) 0 0
\(877\) −2.21143e7 −0.970898 −0.485449 0.874265i \(-0.661344\pi\)
−0.485449 + 0.874265i \(0.661344\pi\)
\(878\) −4.49890e7 −1.96956
\(879\) 0 0
\(880\) 5.58904e7 2.43294
\(881\) −1.00370e7 −0.435677 −0.217838 0.975985i \(-0.569901\pi\)
−0.217838 + 0.975985i \(0.569901\pi\)
\(882\) 0 0
\(883\) −2.12042e7 −0.915207 −0.457604 0.889156i \(-0.651292\pi\)
−0.457604 + 0.889156i \(0.651292\pi\)
\(884\) 911798. 0.0392435
\(885\) 0 0
\(886\) 4.91193e7 2.10217
\(887\) 1.73507e7 0.740472 0.370236 0.928938i \(-0.379277\pi\)
0.370236 + 0.928938i \(0.379277\pi\)
\(888\) 0 0
\(889\) −1.17080e7 −0.496855
\(890\) −3.87802e7 −1.64110
\(891\) 0 0
\(892\) 1.47485e7 0.620636
\(893\) 2.79235e7 1.17177
\(894\) 0 0
\(895\) 2.28718e7 0.954427
\(896\) −2.39057e7 −0.994792
\(897\) 0 0
\(898\) 3.68673e7 1.52563
\(899\) −1.64606e6 −0.0679275
\(900\) 0 0
\(901\) −186624. −0.00765871
\(902\) 5.28243e7 2.16181
\(903\) 0 0
\(904\) −1.26792e7 −0.516025
\(905\) −9.71791e6 −0.394413
\(906\) 0 0
\(907\) −1.02757e7 −0.414756 −0.207378 0.978261i \(-0.566493\pi\)
−0.207378 + 0.978261i \(0.566493\pi\)
\(908\) −1.89214e7 −0.761622
\(909\) 0 0
\(910\) −1.69538e7 −0.678679
\(911\) −3.94713e7 −1.57574 −0.787871 0.615840i \(-0.788817\pi\)
−0.787871 + 0.615840i \(0.788817\pi\)
\(912\) 0 0
\(913\) 1.01537e7 0.403133
\(914\) −5.02064e6 −0.198789
\(915\) 0 0
\(916\) −3.15210e7 −1.24126
\(917\) 2.32872e7 0.914523
\(918\) 0 0
\(919\) −1.65850e6 −0.0647779 −0.0323889 0.999475i \(-0.510312\pi\)
−0.0323889 + 0.999475i \(0.510312\pi\)
\(920\) −1.04125e7 −0.405588
\(921\) 0 0
\(922\) −3.70453e7 −1.43518
\(923\) −580235. −0.0224181
\(924\) 0 0
\(925\) 4.34106e6 0.166818
\(926\) −3.70426e7 −1.41963
\(927\) 0 0
\(928\) −3.19334e6 −0.121724
\(929\) 4.65517e6 0.176969 0.0884843 0.996078i \(-0.471798\pi\)
0.0884843 + 0.996078i \(0.471798\pi\)
\(930\) 0 0
\(931\) 1.50826e7 0.570298
\(932\) −8.95502e6 −0.337697
\(933\) 0 0
\(934\) 5.96951e7 2.23909
\(935\) 7.92365e6 0.296412
\(936\) 0 0
\(937\) −3.86106e7 −1.43667 −0.718337 0.695696i \(-0.755096\pi\)
−0.718337 + 0.695696i \(0.755096\pi\)
\(938\) −4.76900e7 −1.76978
\(939\) 0 0
\(940\) −2.65352e7 −0.979495
\(941\) 3.14452e7 1.15766 0.578828 0.815449i \(-0.303510\pi\)
0.578828 + 0.815449i \(0.303510\pi\)
\(942\) 0 0
\(943\) −2.26714e7 −0.830230
\(944\) 3.82480e7 1.39694
\(945\) 0 0
\(946\) −584064. −0.0212194
\(947\) 9.34273e6 0.338531 0.169266 0.985570i \(-0.445860\pi\)
0.169266 + 0.985570i \(0.445860\pi\)
\(948\) 0 0
\(949\) −1.28428e6 −0.0462906
\(950\) −3.31042e6 −0.119007
\(951\) 0 0
\(952\) −2.16432e6 −0.0773979
\(953\) 4.89849e6 0.174715 0.0873574 0.996177i \(-0.472158\pi\)
0.0873574 + 0.996177i \(0.472158\pi\)
\(954\) 0 0
\(955\) −2.02211e7 −0.717456
\(956\) −2.54269e6 −0.0899805
\(957\) 0 0
\(958\) 4.85542e7 1.70928
\(959\) −1.58063e6 −0.0554987
\(960\) 0 0
\(961\) −1.63792e7 −0.572114
\(962\) 2.26482e7 0.789033
\(963\) 0 0
\(964\) −3.41422e7 −1.18331
\(965\) 1.48019e7 0.511680
\(966\) 0 0
\(967\) −1.13925e7 −0.391791 −0.195896 0.980625i \(-0.562761\pi\)
−0.195896 + 0.980625i \(0.562761\pi\)
\(968\) 3.10850e7 1.06626
\(969\) 0 0
\(970\) −2.14285e7 −0.731244
\(971\) 1.48394e7 0.505089 0.252544 0.967585i \(-0.418733\pi\)
0.252544 + 0.967585i \(0.418733\pi\)
\(972\) 0 0
\(973\) −2.52025e7 −0.853416
\(974\) 1.83570e7 0.620016
\(975\) 0 0
\(976\) 9.19689e6 0.309041
\(977\) 2.53280e7 0.848915 0.424458 0.905448i \(-0.360465\pi\)
0.424458 + 0.905448i \(0.360465\pi\)
\(978\) 0 0
\(979\) −6.86051e7 −2.28770
\(980\) −1.43327e7 −0.476719
\(981\) 0 0
\(982\) −4.18967e7 −1.38644
\(983\) −3.48906e7 −1.15166 −0.575830 0.817569i \(-0.695321\pi\)
−0.575830 + 0.817569i \(0.695321\pi\)
\(984\) 0 0
\(985\) 4.82630e7 1.58498
\(986\) −609511. −0.0199659
\(987\) 0 0
\(988\) −7.03637e6 −0.229328
\(989\) 250671. 0.00814917
\(990\) 0 0
\(991\) 2.38192e7 0.770447 0.385224 0.922823i \(-0.374124\pi\)
0.385224 + 0.922823i \(0.374124\pi\)
\(992\) 2.37649e7 0.766757
\(993\) 0 0
\(994\) −3.03005e6 −0.0972710
\(995\) 1.97619e7 0.632807
\(996\) 0 0
\(997\) 3.78624e7 1.20634 0.603171 0.797612i \(-0.293904\pi\)
0.603171 + 0.797612i \(0.293904\pi\)
\(998\) −3.08455e7 −0.980313
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.6.a.c.1.1 2
3.2 odd 2 inner 27.6.a.c.1.2 yes 2
4.3 odd 2 432.6.a.o.1.1 2
5.4 even 2 675.6.a.j.1.2 2
9.2 odd 6 81.6.c.f.28.1 4
9.4 even 3 81.6.c.f.55.2 4
9.5 odd 6 81.6.c.f.55.1 4
9.7 even 3 81.6.c.f.28.2 4
12.11 even 2 432.6.a.o.1.2 2
15.14 odd 2 675.6.a.j.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.6.a.c.1.1 2 1.1 even 1 trivial
27.6.a.c.1.2 yes 2 3.2 odd 2 inner
81.6.c.f.28.1 4 9.2 odd 6
81.6.c.f.28.2 4 9.7 even 3
81.6.c.f.55.1 4 9.5 odd 6
81.6.c.f.55.2 4 9.4 even 3
432.6.a.o.1.1 2 4.3 odd 2
432.6.a.o.1.2 2 12.11 even 2
675.6.a.j.1.1 2 15.14 odd 2
675.6.a.j.1.2 2 5.4 even 2